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Abstract

This paper deals with generalized shape optimization of linearly elastic, three-dimensional continuum structures, i.e. we
Ž .consider the problem of determining the structural topology or layout such that the shape of external as well as internal

boundaries and the number of inner holes are optimized simultaneously. For prescribed static loading and given boundary
Ž .conditions, the optimum solution is sought from the condition of maximum integral stiffness minimum elastic compliance

subject to a specified amount of structural material within a given three-dimensional design domain. This generalized shape
optimization problem requires relaxation which leads to the introduction of microstructures. A class of optimum three-di-
mensional microstructures and explicit analytical expressions for their optimum effective stiffness properties have been

Ž . wdeveloped by Gibiansky and Cherkaev 1987 Gibiansky, L.V., Cherkaev, A.V., 1987. Microstructures of composites of
Ž . Ž .extremal rigidity and exact estimates of provided energy density in Russian . Report 1987 No. 1155. A.F. Ioffe

Physical-Technical Institute, Academy of Sciences of the USSR, Leningrad. English translation in: Kohn, R.V., Cherkaev,
Ž . xA.V. Eds. , Topics in the Mathematical Modelling of Composite Materials. Birkhauser, New York. 1997 . The present¨

Ž .paper gives a brief account of the results in Gibiansky and Cherkaev 1987 which will be utilized for our microlevel
problem analysis. It is a characteristic feature that the use of optimum microstructures renders the global problem convex if
an appropriate parametrization is applied. Hereby local optima can be avoided and we can construct a simple gradient based
numerical method of mathematical programming for solution of the complete optimization problem. Illustrative examples of
optimum layout and topology designs of three-dimensional structures are presented at the end of the paper. q 1998 Elsevier
Science Ltd. All rights reserved.

Keywords: Optimum structural design; Three-dimensional layout and topology optimization; Optimum material microstructures; Homoge-
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1. Introduction

Topology optimization of continuum structures was introduced in the literature by the landmark paper by
Ž . Ž .Bendsøe and Kikuchi 1988 see also Bendsøe, 1989 and has since been an extremely active area of research.

Topology optimization is decisive for the cost-efficiency of a structure and is most valuable as a preprocessing
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Ž Ž ..tool for refined shape or sizing optimization Olhoff et al. 1991 . An exhaustive account of the current status
Ž .of the field has recently been published in a monograph Bendsøe, 1995 by Bendsøe which witnesses that up to

now, layout and topology optimization of continuum structures have been almost exclusively reserved for
two-dimensional problems. The present paper may be considered as a generalization of topology optimization to

Ž Ž . Ž ..three-dimensional structures see also the recent papers Cherkaev and Palais 1996 and Allaire et al. 1996 .
Ž .The papers Bendsøe and Kikuchi, 1988; Bendsøe, 1989 as well as studies of similar two-dimensional problems

Ž . Ž . Ž .published earlier by Lurie et al. 1982a,b , Cheng and Olhoff 1981, 1982 , Olhoff et al. 1981 and Kohn and
Ž .Strang 1982 , have shown that topology optimization problems are generally not well-posed unless the

formulation of the problem is relaxed by introducing composites with perforated, periodic microstructures.
Ž . Ž .Gibiansky and Cherkaev 1987 and later Allaire 1994 derived the optimum effective properties of such

microstructures in explicit analytical form which is highly desirable for practical implementation. As outlined in
Section 2, these authors derived the minimum complementary energy density for the class of matrix layered

Ž .composites MLC of any rank and applied this as an upper bound on the energy density. At the same time, as
will be discussed in Section 3, the authors applied the theory of quasiconvexification to construct a lower bound
on the complementary energy density of a composite which is valid for composites of any microstructure. The
optimum composites are characterized by having a complementary energy density which lies between these two

Ž .bounds and it is shown in Gibiansky and Cherkaev 1987 that for the limiting case of perforated composites,
these bounds coalesce and yield analytical expressions for the optimum properties of perforated rank three
MLCs. These results are summarized at the end of Section 3 and briefly discussed in Section 4.

Ž .On the basis of these analytical results Gibiansky and Cherkaev, 1987 for optimization at the microstruc-
tural level, the global problem of maximizing the integral structural stiffness is easily established. Maximization
of the structural stiffness is equivalent to minimization of the total elastic energy and the sensitivity analysis of
the total elastic energy and material volume of the structure can be carried out analytically. Thus, an iterative
numerical procedure based on finite element analysis, sensitivity analysis and mathematical programming has
been developed for solution of the complete three-dimensional topology optimization problem. This procedure is
presented in Section 5.

Section 6 presents several examples of generalized shape optimization of three-dimensional structures and
contains a brief summary discussion of the new method.

2. Formulation of the microstructure problem

Ž .The analysis in this paper and the subsequent section follows Gibiansky and Cherkaev 1987 in establishing
analytical expressions for the complementary energy density E and elastic properties of the microstructure that
is optimum subject to a given three-dimensional state of stress in a given point of the structure.

This will be achieved by construction of an upper and a lower bound E FEFE for the complementaryl u

elastic energy density E of the optimum microstructure. The upper bound E will be established in this sectionu

by minimization of the complementary energy density of a bi-material MLC of any rank and the lower bound El
Ž .which is valid for any bi-material microstructure will be developed in Section 3 by means of quasiconvexifica-
tion. The optimum characteristics of the microstructure for the purpose of topology optimization are derived

Ž .subsequently in Section 3 by utilizing the fact Gibiansky and Cherkaev, 1987 that in the limit where the
compliance of one of the two materials tends to infinity in order to mimic void, the abovementioned bounds
coalesce with E so that E sEsE and from this follow the desired analytical results.l u

Ž .Now, following Gibiansky and Cherkaev 1987 and referring to Fig. 1, we consider a three-dimensional
layered composite microstructure of rank three. As we consider a single case of loading, the layers are mutually
orthogonal, and the composite is made of two isotropic, linear elastic materials with 6=6 dimensional
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Fig. 1. Model of a spatial rank three laminate where b denotes the ith length scale.i

compliance matrices denoted by C and C , respectively. The compliance matrices which are the inverted1 2

elasticity matrices are given by
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where k and m are the bulk and shear moduli, respectively, and indices for the two materials have been
omitted. The effective elastic properties of the resulting anisotropic material depend on the material properties of
the two constituents given by C and C , the normals n to the material interfaces and the volume fractions m1 2 1

Ž .and m m s1ym of the two materials. Furthermore, knowledge on how the material is distributed between2 2 1

the different layers is required.
Ž .The length scales Fig. 1 describe the relative thickness of each layer which yields the following relation

between volume density r and length scales for a rank n material

r sb q 1yb r 2Ž . Ž .n n n ny1
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where, in the case of a rank three material,

m a m a1 2 1 3
b sm a , b s , b s 3Ž .1 1 1 2 31ym a 1ym 1yaŽ .1 1 1 3

The introduced parameter a denotes the spatial thickness of layer i which means that it can be considered as ai

volume density for the layer. By introducing this parameter the basic idea is to equalize the stresses in the
different directions by varying the spatial thickness of each layer. As a function of this parameter the expression
for the optimum compliance tensor C , for a rank n MLC is given byM

C sC qQy1 4Ž .M 1

where

n n1 m y11y1 T TQs C yC q a N , N sN n sp p C p p , a s1, a G0 5Ž . Ž . Ž .Ž .Ý Ý2 1 i i i i i i 1 i i i im m2 2 is1 is1

The projection matrix p controls discontinuous stress components across the material interfaces and n is thei i

normal to the ith layer. Inserting this result in the expression for the complementary energy density, we get the
following equation for a minimum value of the upper bound energy density E with respect to the variables au i

and n i

T T y1E ss C sq min s Q s 6Ž .u 1
a ,ni i

where s is a 6=1 vector of stress components defined as

T
ss s s s s s sŽ .11 22 33 12 13 23

Assuming that we are dealing with a rank three material that is oriented along the principal stress directions, we
can write

3 2m B 01 1
a N s 7Ž .Ý i i 0 B3k q4m 21 1is1

where the matrices B and B are given by1 2

2 3k qm a qa 3k y2m a 3k y2m aŽ . Ž . Ž . Ž .1 1 2 3 1 1 3 1 1 2

3k y2m a 2 3k qm a qa 3k y2m aŽ . Ž . Ž . Ž .B s ,1 1 3 1 1 1 3 1 1 11

3k y2m a 3k y2m a 2 3k qm a qaŽ . Ž . Ž . Ž .1 1 2 1 1 1 1 1 1 2

3k q4m a 0 0Ž .1 1 3

0 3k q4m a 0Ž .B s , 8Ž .1 1 22

0 0 3k q4m aŽ .1 1 1

respectively.
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Expanding to the global structural level, we can formulate the total elastic energy minimization problem,
incorporating optimum microstructures, and subject to a given upper bound V on the total amount offixed

material, as

T T y1min s C sqs Q s dV ks1, . . . , NŽ .H 1
k Va ,u , ri k k

subject to =ss0,
3

ka s1, 0Fa F1, ks1, . . . , N ,Ý 9Ž .i i
is1

N

r Õ FV ,Ý k k fixed
ks1

0Fr F1, ks1, . . . , Nk

where a k, is1, 2, 3 and u are variables describing the layout and orientation of the microstructure in the k thi k

finite element, r is the volume fraction of material within the same element and N is the total number of finitek

elements. Here, the equilibrium equation =ss0 will be satisfied through finite element analysis of the structure
and the minimization with respect to u will be performed by orienting the microstructure along the principalk

stresses in each finite element. The minimization with respect to a k can be done analytically via expliciti

analytical expressions for the optimum values of a to be derived in Section 3 and minimization with respect toi

r can be carried out by means of mathematical programming as described in Section 5.k

3. Optimum material properties

Referring to the initial discussion in Section 2, the expression for maximum value of the lower bound E for1
Ž .the complementary energy density E of any microstructure made with volume fractions m and m s 1ym1 2 1

Ž .of two elastic materials with compliance matrices C and C , is given by Gibiansky and Cherkaev, 19871 2

TE s max s b C , C , F a s 10Ž . Ž .Ž .1 1 2 j
aj

Ž Ž ..with the compliance matrix b C , C , F a defined by1 2 j

y1y1 y1
bs m C yF qm C yF qF 11Ž . Ž . Ž .1 1 2 2

where

2a ya a ya a 0 0 01 1 2 1 3

2ya a a ya a 0 0 01 2 2 2 3

2ya a ya a a 0 0 01 3 2 3 3
Fs 12Ž .

2 20 0 0 a qa 0 02 3

2 20 0 0 0 a qa 01 3

2 20 0 0 0 0 a a1 2
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is the non-convex function that makes E quasiconvex. Here a , js1, 2, 3, are scalar parameters and the1 j
Ž .maximization in Eq. 10 is to be carried out with respect to these. The parameters a , a , a must satisfy the1 2 3

Ž .constraints of positive definiteness of the matrices C yF a , a , a , is1, 2, which ensures positivei 1 2 3
Ž .definiteness of the compliance matrix b , Eq. 11 , and hence positive complementary energy density for all s

Ž .in Eq. 10 .
In the case of topology optimization, where the compliant material is considered as void, the expressions for

the effective properties of the microstructure simplify considerably so that the optimal properties can be
Ž .expressed in explicit analytic form Gibiansky and Cherkaev, 1987 . Thus, letting C ™` to mimic void, the2

Ž .y1 Ž Ž .. Ž .term C yF of b C , C , F a in Eq. 11 vanishes and the following expression for E is obtained2 1 2 j 1

m m m2 2 2T T TE s max s 1q C y F sss C sq max s Gs 13Ž .1 1 1m m ma aj j1 1 1

Ž .where Gs C yF . Since n are assumed oriented along the principal directions of s , it is only the upper1 i

3=3 blocks of C and G that have an influence upon the resulting bound. The lower bound E can then be1 1

formulated as

m2T Tˆ ˆE ss C sq max s Gs 14Ž .ˆ ˆ ˆ ˆ1 1 m aj1

ˆ ˆwhere s indicates principal stresses and G and C indicate the upper-left 3=3 blocks of the 6=6 matrices Gˆ 1

and C , respectively. If a is chosen optimally we can write1 j

m2T ˆ ˆE ss C q G s 15Ž .ˆ ˆ1 1 m1

T Ž .Assuming that s is oriented along the principal directions such that s s s , s , s , 0, 0, 0 and by defining1 2 3

principal stress ratios v and h as

s s1 2
< < < <vs , hs where s G s and s G s 16Ž .3 2 3 1

s s3 3

the optimum values of the parameters a can be derived in an explicit analytical form by assuming that thej

optimum solution lies on the edges or vertices of the design space. The expressions for the optimum parameters
Ž .a change with changing stresses and it turns out Gibiansky and Cherkaev, 1987 that the entire stress domainj

is covered by nine different sets of expressions for the optimum parameters a . These expressions can be used toj
Ždetermine the optimum values of the microstructural parameters a associated with the upper bound Gibianskyi

.and Cherkaev, 1987 .
Ž . Ž .Considering the upper bound E in Eq. 6 with Q given in Eq. 5 and letting C ™`, the first term of Qu 2

equals zero. However, assuming that the rank three microstructure is oriented along the principal stress
directions, the second term in the expression for Q simplifies and the following expression for E is obtainedu

T T y1ˆ ˆE ss C sq min s Q s 17Ž .ˆ ˆ ˆ ˆu 1
ai

Provided that a , is1, 2, 3, are chosen optimally we can writei

T y1 Tˆ ˆ ˆE ss C qQ sss C s 18Ž .ˆ ˆ ˆ ˆu 1 M

ˆ ˆŽ . Ž .where C is the optimum effective compliance matrix. In Eqs. 17 and 18 the vector s and the matrices C ,ˆM 1
ˆ ˆQ and C are all expressed in the basis n , oriented along the principal directions of s . It is shown inM i
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Fig. 2. The domain V with individual sub-domains V .i

Ž .Gibiansky and Cherkaev 1987 that the two bounds E and E coalesce for an optimum microstructure whichu 1

implies that for any admissible a the following difference is equal to zeroj

T y1E s yE s s max min s Q a yG a ss0 19Ž . Ž . Ž . Ž . Ž .Ž .u 1 i j
a ai i

Ž .which after some algebra Gibiansky and Cherkaev, 1987 can be reduced to

ˆ ˆQ a G yI ss0 20Ž . Ž .ˆŽ .i i

where I is the unit matrix. In order to solve this problem we first determine the eigenvalues of the 3=3 matrix
ˆ ˆ ˆ ˆŽ . Ž . Ž .Q a G . It can be shown that for all matrices Q a G the corresponding eigenvalues are equal to 0, 0, 1 andi i i i

the corresponding eigenvector yields a set of equations which upon solution yields the optimum a that satisfyi
Ž .Eq. 20 .

The solution for a reveals that the relation between the principal stresses and the optimum microstructurei
Ž .changes for different stresses and that the entire stress domain is divided into nine sub-domains Fig. 2 with

Ž . Ž . Ž . Ž . Ž .different relations. The expressions for the individual domains are listed in Eqs. 21a , 21b , 21c , 21d , 21e ,
Ž . Ž . Ž . Ž .21f , 21g , 21h and 21i , where n denotes Poisson’s ratio.

1yvqh 1qvyh vqhy1
a s , a s , a s , if sgV 21aŽ .1 2 3 11qvqh 1qvqh 1qvqh

yvqhy 1y2n vyhy 1y2nŽ . Ž .
a s , a s ,1 21y2n vqhy 1q2n 1y2n vqhy 1q2nŽ . Ž . Ž . Ž .Ž . Ž .

vqhq 1y2nŽ .
a s , if sgV 21bŽ .3 2

vqhy 1q2nŽ .
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1yvy 1y2n h 1qvq 1y2n hŽ . Ž .
a s , a s ,1 21y2n 1qvy 1q2n h 1qvy 1q2n hŽ . Ž . Ž .Ž .

vy 1y2n hy1Ž .
a s , if sgV 21cŽ .3 31y2n 1qvy 1q2n hŽ . Ž .Ž .

hy1yv 1y2n 1yv 1y2n yhŽ . Ž .
a s , a s ,1 21y2n 1y 1q2n vqh 1y2n 1y 1q2n vqhŽ . Ž . Ž . Ž .Ž . Ž .

1qv 1y2n qhŽ .
a s , if sgV 21dŽ .3 41y 1q2n vqhŽ .

h v
a s , a s , a s0, if sgV 21eŽ .1 2 3 5

vqh vqh

h v
a sy , a s , a s0, if sgV 21fŽ .1 2 3 6

vyh vyh

h v
a sy , a s , a s0, if sgV 21gŽ .1 2 3 7

vyh vyh

1 v
a s , a s0, a s , if sgV 21hŽ .1 2 3 81yv vy1

1 h
a s0, a s , a sy , if sgV 21iŽ .1 2 3 91yh 1yh

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Eqs. 21a , 21b , 21c , 21d , 21e , 21f , 21g , 21h and 21i constitute the analytically derived solution to
the local microstructure optimization problem. From Fig. 2 it is clear that if the size of all principal stresses are
in the same range, the resulting microstructure is a rank three laminate, whereas the resulting microstructure is a
rank two laminate if one principal stress is considerably less than the two others.

4. Parametric study of the microstructure

An extensive parametric study of the method has been performed in order to verify the derived expressions.
By plotting the energy density E versus v and h over the entire stress domain it is verified that the problem of

Ž .determining the optimum microstructure is continuous but not differentiable due to the quasiconvexity and as
the material distribution problem is relaxed, a stable convergence of the problem is ensured. With a rigorous

Ž .three-dimensional method developed, it is interesting to compare the relative energy stiffness between the
Žoptimum microstructure and the non-relaxed material model used for isotropic materials commonly referred to

Ž ..as a solid isotropic microstructure, see Rozvany et al. 1995 . A plot of the relative energy density
E sE rE versus the volume density r of material is shown in Fig. 3.rel iso aniso

The energy density of anisotropic material is not uniquely defined because it varies with varying stresses, but
if we vary the stress field within the admissible limits for a fixed volume density of material r, we get the
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Fig. 3. Relative energy density E s E rE versus the volume density r of material for the entire range of principal stress ratios vrel iso aniso

and h.

results in Fig. 3. The upper limit of the grey region corresponds to a rank 1 material while the lower limit
corresponds to a rank 3 material. An essential observation is that the energy density of the ranked optimum

Ž .anisotropic material is always higher than in the special case of a uniaxial stress, equal to that of the isotropic
Ž . Ž .material law, in all points but rs0 void and rs1 solid material . This indicates that the commonly used

assumption of a linear material density to stiffness relation overestimates the stiffness of a given structure if
Ž .intermediate densities occur. This is in perfect agreement with results obtained by Sigmund 1994 for plane

laminates.

5. Solution of the complete optimization problem

Design for maximum stiffness of statically loaded linearly elastic structures is equivalent to design for
minimum compliance defined as the work done by the set of given loads against the displacements at
equilibrium. This is, in turn, equivalent to minimizing the total elastic energy U at the equilibrium state of the
structure. Thus we consider the material distribution problem of maximizing the integral structural stiffness
subject to a given upper limit on the total volume of material in the form of minimizing the total elastic energy
U at equilibrium.

We solve this problem by an iterative procedure as shown in Fig. 4. The procedure consists of a main loop
for solution of the global problem of distribution of the total volume of material into local densities r of
material and an inner loop for solution of the local problem everywhere.

Each iteration in the inner loop is initiated by a finite element analysis from which the principal stresses and
Ž .their directions are calculated, and followed by i computing everywhere the volume densities a for the layersi

Ž . Ž . Ž . Ž .is1, 2, 3 of the local microstructure by substituting the principal stresses into Eqs. 16 , 21a , 21b , 21c ,
Ž . Ž . Ž . Ž . Ž . Ž . Ž .21d , 21e , 21f , 21g , 21h and 21i and ii orienting the local microstructures along the principal stress
directions.
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Fig. 4. Flow diagram of iterative solution procedure.

In the inner loop for the optimization of the microstructures, the local volume densities r of material are kept
unchanged and, except for the initial finite element analysis, the loop essentially encompasses substitution into
known analytical expressions.

When the iterations of the inner loop have converged, these are kept fixed and we proceed to the outer loop,
see Fig. 4, which is associated with the global problem of determining a set of improved values of the local
densities r of material with a view to minimize the total elastic strain energy U at equilibrium subject to the
given limit V on the total volume of structural material at our disposal. Contrary to the microstructurefixed

problem, the global material distribution problem is of numerical nature and it is formulated as follows using
finite element notation:

N1 1
T Tmin Us D KDs d k dÝ k k k2 2rk ks1

subject to KDyRs0
N

r n yV F0 22Ž .Ý k k fixed
ks1

0Fr F1, ks1, . . . , Nk

Twhere k s B E B dnHk k k k k
nk

Here, the volume densities r of material, which are assumed to be constant within each individual finitek

element ks1, . . . , N are the design variables and the global stiffness matrix K and nodal displacement vector
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D depend on these. Upper case symbols denote global level while lower case symbols denote element level. R is
the load vector and the constraints imposed on the problem are the equilibrium condition, the global volume
constraint and the volume constraint within each finite element.

The sensitivity analysis of the objective function U with respect to r can be performed analytically ask

follows. The change of the total elastic energy

1
TUs D KD 23Ž .

2

due to a change in any of the design variables r , ks1, . . . , N, can be expressed ask

EU 1 E K E DT E D
T Ts D Dq KDqD K 24Ž .ž /Er 2 Er Er Erk k k k

where the first term arises from the change in energy due to the change in the stiffness matrix and the next terms
stem from the change of the displacement field. Assuming design independent loads, the derivative of the
equilibrium condition KDyRs0 with respect to the design variables, can be formulated as

E K E D
DsyK 25Ž .

Er Erk k

Ž . Ž . Ž .Substituting Eq. 25 and its transposed form assuming that K is symmetric into the last two terms of Eq. 24
yields upon collection of terms, the following simple results:

dU 1 E K
Tsy D D 26Ž .

d r 2 Erk k

Ž .Clearly from Eq. 26 , for design independent loads the sensitivity of U with respect to any of the design
variables r , ks1, . . . , N, can be determined as the negative of the derivative of U calculated for a fixedk

Ž .displacement field see Pedersen, 1990; Olhoff et al., 1993 . As the design variables r only affect the design ink
Ž .the local element, the expression in Eq. 26 is equivalent to

EU 1 E kkksy d d 27Ž . Ž .Ž .T kEr 2 Erk k

which means that the gradient vector of U for the entire structure is given by

T1 E k E k E k1 k NT T T= Usy d d , . . . , d d , . . . , d d 28Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 1 k k N N½ 52 Er Er Er1 k N

Here, the sensitivities of the local element stiffness matrices with respect to the corresponding volume densities
Ž .of material can be derived analytically and Eq. 28 provides the basis for the step of sensitivity analysis of U

with respect to the design variables r in the outer loop of the flow diagram in Fig. 4. In the next step of the
outer loop, a mathematical programming routine of sequential linear programming employs the sensitivities for
calculation of the optimum material distribution and in the subsequent step, the material density variables r are
updated. The entire iterative solution procedure depicted in Fig. 4 is continued until all the iterates have
converged.
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6. Numerical examples and discussion

The new method and the developed software have been tested by performing a number of different full
three-dimensional examples. All examples are performed using a material with Young’s modulus Es2.10P1011

Nrm2 and Poisson’s ratio ns0.3 unless otherwise stated, and length dimensions are given in metres. No
densities above 0.99 and below 0.01 are allowed, in order to avoid numerical problems which are prone to occur
if the material fractions become too small. The results are represented by grey scale, where high densities are
represented by black and low densities by white.

In order to be able to visualize the three-dimensional topology designs in sufficient detail we have chosen to
apply 8-node, i.e. low order, isoparametric 3D finite elements for the analyses behind all the examples presented
in the following. This is due to limitations on available computer capacity; the use of higher order elements, e.g.
20-node 3D elements, is much more costly and would considerably impair a reasonably detailed visualization of
the three-dimensional designs. We have checked by means of several test examples that the use of 8-node
elements yields the same overall topologies as 20-node elements.

Let us now demonstrate numerically that the microstructures used in this paper provide full relaxation of the
three-dimensional problems considered. As discussed in Section 1, generalized shape optimization problems
often are not well-posed because the design space is not closed in the appropriate sense. A remedy to ensure
closure of the set of feasible designs is to relax, i.e. regularize, the mathematical formulation of the problem by
introducing composites with perforated, periodic microstructures as admissible materials for the structural

Ždesign Cheng and Olhoff, 1981, 1982; Olhoff et al., 1981; Kohn and Strang, 1982; Lurie et al., 1982a,b;
.Bendsøe and Kikuchi, 1988; Bendsøe, 1989 . Numerical indications of the need for regularization of a given

problem are lack of convergence and dependence of the designs on the size of the applied finite element mesh.
In particular, if the problem is not properly regularized, it is not possible to obtain a limiting, numerically stable

Ž .design by consecutively decreasing the mesh size Cheng and Olhoff, 1981, 1982; Olhoff et al., 1981 .
To illustrate the mesh independency of topologies obtained by the present method, we consider, for

convenience, a planar design domain with loading and support conditions as depicted in Fig. 5a. We model the
problem using 8-node 3D isoparametric finite elements as mentioned above, solve it using three different mesh
sizes and obtain the solutions shown in Fig. 5b, c and d. The results clearly indicate mesh independency of the
topology, and the existence of a well defined limiting design for any degree of mesh refinement. This witnesses
that the applied microstructures have provided full relaxation of the problem.

It is worth noting that the solutions in Fig. 5 consist of composite in large sub-domains and that the designs
in Fig. 5c and d strongly resemble that of a Mitchell truss. This is not surprising since the Mitchell truss is the
optimum solution to the problem depicted in Fig. 5a provided that the amount of available material is much less
than the amount prescribed in the current example.

A full three-dimensional topology optimization example is presented in Fig. 6. Here, Fig. 6a shows a cubic
design domain which is subjected to four parallel concentrated loads at the upper surface and equipped with
simple supports at the four corners of the lower surface. The volume fraction of available material is taken to be
0.08 relative to the design domain, and we have chosen ns0 for the material.

Fig. 6b illustrates the optimum topology solution to this problem which is a quadropod consisting of four legs
of quite distinctly solid material, each transferring one of the applied concentrated loads to the nearest simple
support and a substructure made of composite material which interconnects the upper parts of the four legs.

As is clearly illustrated by the results in Fig. 5 and to a lesser extent in Fig. 6, it is a characteristic feature that
the structures of optimum topology obtained by the present method generally consist of composite material in
large sub-domains. There are two reasons for this. Firstly, as discussed in Section 4, depending on the state of
stress, composite materials generally are much more efficient than isotropic, solid materials, and therefore
largely manifest themselves in optimum solutions. Secondly, the current application of optimum microstructures
as a basis for topology optimization actually prompts a larger content of composite material in the resulting
solution, as compared with use of non-optimum microstructures.
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Ž .Fig. 5. Example of finite element mesh refinement. a Admissible design domain, loading and support conditions for the example problem.
Ž .b, c and d Topology results obtained for different mesh sizes. It is seen that the topology is consistent.

In fact, it is the main motivation for choosing optimum microstructures as a basis for three-dimensional
topology optimization in this paper that we aim at being able to determine global optimum solutions. The large
structural sub-domains of composite material that are a consequence of this aim, however, often make it difficult
to visualize the overall structural topology and to devise simplified sub-optimum designs that are attractive from
the point of view of manufacture. To facilitate visualization, we introduce a penalization technique which
reduces the amount of composite material in the solution.

We have tested different penalization techniques and chosen a commonly used method which has proven to
perform satisfactorily when combined with the present method, although it can only yield 0–1 solutions for
special problems. The method implies that when computing the local stiffness matrices of the finite elements,
the volume density of material r, 0FrF1, is raised to a power p, p)1,

r sr p
pen

Žwhich penalizes intermediate densities of material and thus makes a 0–1 solution more advantageous see, for
. Ž .example, Bendsøe, 1995; Rozvany et al., 1995 . The continuation approach see Sigmund, 1994 where the

optimization problem is treated unpenalized until convergence followed by a gradually increased penalization
power p, is applied. The following examples are all penalized using a maximum penalization power equal to
four and a penalization increment equal to one.
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Fig. 6. Cubic design domain subjected to four point loads where P s10 N. The volume fraction of available material is 0.08 and n s0 for
Ž . Ž .the material. a Design domain with loading and support conditions. b Quadropod solution to the problem with material densities less than

0.8 removed. The solution is obtained without penalization and U s28.28P10y10 N m.min

It is obvious that the price for producing more distinct structural topologies by the penalization procedure is
an increased value of the total elastic energy, i.e. penalized designs will be sub-optimal. However, as the
application of optimum microstructures renders our topology optimization problem convex and thus ensures that
we obtain the global optimum solution before penalization is carried out, we expect that the penalized solution
will be in the neighborhood of the global optimum. Indeed, typical tests have shown that the increase of the
value of the objective function due to penalization is less than 8%.

Fig. 7a displays an example of an oblong box-shaped design domain for which the available volume fraction
of material is 0.30. The two ends of the domain are clamped and a concentrated bending moment acts at the
center. Fig. 7b shows the topology solution obtained after penalization as described above, and is seen to consist
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Fig. 7. Oblong box-shaped design domain with clamped ends and a concentrated bending moment acting in the center, Ms20 N m. The
Ž . Ž .material volume fraction is 0.30. a Design domain with loading and support conditions. b Topology solution represented with all material

Ž . y1 0densities present. c Solution depicted with densities below 0.5 removed, Us3.559P10 N m.
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still of a large part of composite material. In Fig. 7c elements with material densities below 0.5 have been
removed from the solution as a means to visualize the topology.

Figs. 8 and 9 show examples of different box-shaped cantilevered design domains with different volume
fractions of available material. Penalization was applied in both cases and quite distinct topologies were
obtained, a truss-frame in the former example, and a tapered I-beam in the latter.

For the truss-frame, Fig. 8c presents an illustration of the principal stresses and their directions, which we
recall to be of fundamental importance for the optimization of the microstructures. In Fig. 8c principal tensile

Ž .Fig. 8. Slender box-shaped cantilevered design domain subjected to a point load Ps10 N. The volume fraction of material is 0.3. a
Ž .Design domain with loading and support conditions. b Truss-frame solution to the problem with densities less than 0.8 removed,

y9 Ž . ŽUs12.029P10 N m. c Flow of principal stresses in the truss-frame only the half of the truss-frame which is behind the plane of
.symmetry is displayed .
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Ž .Fig. 9. Short cantilevered box-shaped design domain subjected to a point load P s1 N. The volume fraction of material is 0.40. a Design
Ž .domain with loading and support conditions. b Tapered I-beam solution to the problem with densities less than 0.8 removed,

Us11.852P10y11 N m.

² : : ²stresses are indicated by and compressive ones by and it is interesting to note the
consistency between the flow of stresses and the load, support conditions and the resulting design of the
structure.

In closing this paper, authors may summarize the advantages of the current use of three-dimensional
optimum microstructures for topology optimization and discuss a few alternative approaches as follows:

Ž . Ž .i The dependence of the effective homogenized macroscopic properties on the microstructure geometry is
available in explicit analytic form for the material with optimum three-dimensional microstructure used in this
paper.

Ž .ii The optimum microstructures provide a full relaxation of the three-dimensional generalized shape
optimization problem. This means that the problem is well-posed and that the optimum solution is convergent
with respect to finite element mesh refinement.

Ž .iii The use of optimum microstructures renders the topology optimization problem convex such that local
solutions are avoided. This implies that a simple sensitivity based procedure of mathematical programming can
be applied for solution of the complete optimization problem.

There exists a different method which disregards formation of anisotropic composite material and is a
Žpenalized material density approach based on an artificial isotropic solid material model see, for example,
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.Bendsøe, 1995; Rozvany et al., 1995 . In this method an artificial density-like function is adopted as the design
variable, and is used to modify the stiffness matrix of a given solid material such as to make 0–1 solutions more
likely. Use of the method implicitly requires that designs obtained almost entirely consist of subdomains of
material and void, since there is no way to physically interpret intermediate densities. However, intermediate
material densities will always appear, though sometimes only in small sub-domains. It is another weakness of
the method that the material modeling does not provide regularization, and thus well-posedness, of the
mathematical problem formulation, and this manifests itself by strong mesh dependency of the results.

Ž .An interesting method called the perimeter method has recently been presented by Haber et al. 1996 in a
two-dimensional structural setting. This method does not require relaxation through introduction of anisotropic
microstructures and ensures well-posedness of the generalized shape optimization problem through specification
of an upper-bound constraint on the perimeter of the solid part of the structure. A generalization of this topology
design method to encompass a constraint on the surface area of the solid part of a three-dimensional structure is

Ž .being undertaken by Guedes private communication and is a very interesting alternative to the approach
presented in the present paper.
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