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Abstract

The Strength Pareto Evolutionary Algorithm (SPEA) has emerged as one of the leading evolu-
tionary algorithms for multi-objective optimisation. This paper examines the algorithm and shows
how significant improvements in the algorithm’s performance may be made. It is demonstrated that
SPEA, and other population based algorithms, can exhibit both retreating (or oscillatory) Pareto
fronts and shrinking Pareto fronts, which can significantly impair optimisation performance. Reme-
dies are proposed including the replacement of SPEA’s external set with a frontal set containing all
non-dominated solutions, which actively participates in the search process. The use of a frontal set
is shown not only to prevent Pareto front retreat and oscillation, but also to increase optimisation
speed. The use of an active frontal set also permits robust criteria for algorithm termination to be
used. New data structures are introduced which permit the efficient use of even very large frontal

sets.
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1 INTRODUCTION

Frequently a number of competing objectives have to be traded against one another whilst seeking a
viable solution to a given problem, often without any a priori knowledge of exactly how the objectives
interact with one another. For instance, in product design a firm may wish to maximise the performance
of an appliance whilst also trying to minimise its production cost. These two objectives cannot typically
be met by a single solution, so, by adjusting the various design parameters, the firm may seek to discover
what possible combinations of these two objectives are available, given a set of constraints (for instance
legal requirements and size limits of the product). In [1] for example, multi-objective optimisation
is applied to four performance measures of a gas turbine and in [2] different loads in trusses are the
competing objectives to be minimised.

The curve (for two objectives) or surface (more than two objectives) that describes the optimal
trade-off possibilities between objectives is known as the Pareto front [3]. A feasible solution lying on
the Pareto front cannot improve any objective without degrading at least one of the others, and, given
the constraints of the model, no solutions exist beyond the true Pareto front. The goal, therefore, of
multi-objective algorithms is to locate the Pareto front of these non-dominated solutions.

Multi-Objective Evolutionary Algorithms (MOEAs) represent a popular approach to confronting
these types of problem by using evolutionary search techniques (usually, though not exclusively, by
incorporating Genetic Algorithms (GAs)). MOEAs have been in use for a considerable length of time
now: Beale and Cook in 1978 used a random search technique in an attempt to simultaneously minimise
a number of objectives in an aircraft simulator [4]. However, it is the work of Schaffer in 1985 [5], which
recognised the need to return a set of solutions, that has been widely quoted as the first MOEA study

[6, 7, 8]. The use of Evolutionary Algorithms (EAs) as the tool of choice is due to such problems being



typically complex, with both a large number of parameters to be adjusted, and several objectives to be
optimised. In addition, EAs, which maintain a population of solutions, are able to explore several parts
of the Pareto front simultaneously.

Most recent investigations in the area [9, 1, 6, 10, 11] focus on a MOEA’s ability to produce an
accurate estimate of the Pareto front. Zitzler et al. [8] present a comparative study, on six test functions
introduced by Deb [12], of a number of the most widely used MOEAs, including Fonseca and Fleming’s
multiobjective EA [1], the Niched Pareto Genetic Algorithm [10], Hajela and Lin’s weighted-sum ap-
proach [2], the Vector Evaluated Genetic Algorithm (VEGA) [5] and the Nondominated Sorting Genetic
Algorithm [11]. Their study suggests that their Strength Pareto Evolutionary Algorithm (SPEA) out-
performs the other algorithms, with it consistently recording better results as measured by the C metric
[13, 8, 14] on a number of the test functions. In an earlier paper [14] Zitzler and Thiele also demonstrated
SPEA’s superior performance in comparison to four other MOEAs on a 0/1 knapsack problem.

Recent work by Laumanns et al. [15] provides a unified model for MOEAs with elitism (called
UMMEA), which extends the approach used in SPEA to the entire MOEA genus. This is facilitated by
using an archive set of non-dominated solutions in addition to the usual GA population. This archive is
limited to a fixed maximum number of individuals.

Despite the performance already proven, this paper will highlight problems in relation to both the
speed and stability of the SPEA, manifest in the form of shrinking, oscillating and retreating estimated
Pareto fronts. It is shown that these artifacts are a consequence of efforts to represent the Pareto front
by a restricted number of solutions. These problems will therefore also occur in models designed using
the UMMEA, and other existing population based MOEAs. Remedies are therefore suggested based
on retaining all the non-dominated solutions found: rather than merely keeping the non-dominated
solutions in a dormant offline store, they are used as an active input to the continuing search process.

This frontal set of non-dominated solutions is used in the binary tournament selection phase of SPEA as



a replacement for that algorithm’s external set. Furthermore, it is shown that this approach, along with
‘pinning’ of the extremal solutions, not only increases the algorithm’s efficiency by solving the problems
of shrinking, oscillating and retreating estimated fronts, but that it also enables the introduction of a
robust algorithm termination methodology, which has until now been largely absent from the MOEA
literature.

The methods introduced are applicable to any population based multi-objective search, and a new
data structure is introduced that permits rapid searching of the frontal set, allowing even very large
active frontal sets to become feasible.

The paper takes the following structure: in Section 2 Pareto optimality will be formally introduced
and described; in Section 3 the SPEA algorithm as developed by Zitzler et al. will described. In Section
4 a number of problems with the SPEA will be highlighted and demonstrations of their effect shown,
followed by the introduction of a number of solutions. In Section 5 implementational considerations of
the proposed extensions are discussed and in Section 7 a robust set of stopping criteria are introduced,
to replace the current methodology of ad hoc algorithm termination.

The results of a set of experiments quantifying the effects of the extended algorithm are reported in
Section 6 together with the performance measures used. The paper concludes with comments in Section

8.

2 PARETO OPTIMALITY

Most recent work on MOEAs hinges on the notions of non-dominance and Pareto optimality, which is
now briefly reviewed.

The multi-objective optimisation problem seeks to simultaneously extremise D objectives:



where each objective depends upon a vector x of P parameters or decision variables. The parameters

may also be subject to the J constraints:

ej(x) >0, j=1,...,J. (2)

Without loss of generality it is assumed that the objectives are to be minimised, so that the multi-

objective optimisation problem may be succinctly stated as:

Minimise —y = f(x)=(f1(x),f2(x),-..,fp(x)) 3)
subject to e(x) = (ei1(x),e2(x),...,es(x)) >0 (4)
where x = (21,72, ...,zp) and y = (y1,Y2,---,YD)-

When faced with only a single objective an optimal solution is one which minimises the objective
given the model constraints. However, when there is more than one objective to be minimised it is
clear that solutions exist for which performance on one objective cannot be improved without sacrificing
performance on at least one other. Such solutions are said to be Pareto optimal [7] and the set of all
Pareto optimal solutions are said to form the Pareto front.

The notion of dominance may be used to make Pareto optimality more precise. A decision vector u

is said to strictly dominate another v (denoted u < v) iff

filw) < fi(v) Vi=1,...,D and fi(u) < fi(v) for some ¢ (5)

Less stringently, u weakly dominates v (denoted u < v) iff



A set of M decision vectors {w;} is said to be a non-dominated set (an estimate of the Pareto front) if

no member of the set is dominated by any other member:

w, Aw; Vi,j=1,...,.M (7)

3 THE STRENGTH PARETO EVOLUTIONARY ALGORITHM

As evinced by a number of comparative studies [13, 8, 14] the Strength Pareto Evolutionary Algorithm
provides an effective methodology for multi-objective optimisation problems. The SPEA of Zitzler and
Thiele is now described, before some of its deficiencies and improvements to it are discussed. SPEA is
outlined in Algorithm 1.

At each genetic generation, £, the SPEA algorithm has two main populations, an internal search pop-
ulation, P;, where crossover and mutation take place, but also, unlike other multi-objective optimisation
algorithms, it incorporates an active external set, Ey, of non-dominated individuals, which is updated at
each generation. The external set forms the estimate of the Pareto front. The non-dominated individ-
uals are referred to as elite by analogy with single objective optimisation problems. Both the internal
and external sets are limited in size, with F; being reduced in size by clustering if its size exceeds the
predetermined limit M (part 3c of Algorithm 1). At the end of each generation the internal population
for subsequent mutation and crossover is created by binary tournament selection between the existing
internal and external populations (part 5 of Algorithm 1). A single strength value is attributed to each
individual in both populations (part 4 of Algorithm 1), which determines the individuals rank in the
binary tournament selection. For a non-dominated individual this value lies in the range [0, 1], and is
calculated as the fraction of the internal population that the selected individual strictly dominates. The
strength of a dominated individual is one plus the sum of the strengths of the non-dominated individuals

in the external set which dominate it (and therefore lies on the range [1,N]. More formally, where b € E;



Algorithm 1 Strength Pareto Evolutionary Algorithm [13].

Input:

Output:

N, Internal population size.

M, maximum size of External set.

T, number of generations for which SPEA will run
A non-dominated set of M individuals

Initialisation: Generate Internal population Py of N decision vectors chosen at random
and satisfying the constraints eq. 2. Initialise the external set of non-dominated solutions to
be the empty set, Ey = 0.

Set generation counter ¢ = 0.

Fitness assignment: For each member of P, evaluate the objectives eq. 1. Mark any
individuals which are non-dominated by other members in the population.

Update of External set:

a) Insert into Ey individuals from P; which are non-dominated by any individuals in P,UE; 1

b) Remove individuals from E; which are dominated by the new entrants.

c) Reduce the External non-dominated set size to M (if larger than M), by the imposition
of a clustering Algorithm (where M representative centroid solutions are selected, with the
remaining individuals removed).

Calculate Strengths: Assign scalar ‘strengths’ to members of P, and E; based upon how
many individuals they dominate or are dominated by.

Selection: Use binary tournament selection to fill P,; with individuals from P; and E;. N
pairs of individuals are selected from P, U F; with replacement, with the N individuals with
the lower strength value of the pair inserted into Py41.

Evolution: The evolution of individuals in the internal set is implemented using standard
GA mutation and crossover operators.

Termination: If T' generations have passed, terminate; otherwise ¢ := ¢+ 1, goto 2.




and a € P, strengths S (b) and S(a) are defined as:

a’'<b;a ePp
sy = I DiaEn ®

and

S@=1+ Y  S(p) (9)

b’ >a,b’€E;
As such the elite external set contains an estimate of the Pareto front that is actively involved, through
binary tournament selection, in the search process.
However, it is through the limitation of this external set’s size that two distinct problems can arise,
that affect both the extent of the final estimate of the Pareto front and the efficiency and stability of

the search process within SPEA.

4 EXTENSIONS TO SPEA

4.1 Shrinking Pareto fronts

For computational efficiency the SPEA limits the size of the external set to M individuals. As illustrated
in Figure 1, this is achieved by clustering (in objective space) the individuals comprising the external set
and replacing clusters by the individual closest to the cluster centroid. The clustering algorithm used in
SPEA is shown in Algorithm 2.

Figure 1 illustrates a consequence of using centroid replacement on the external set. Figure 1a shows
12 non-dominated individuals which are to be reduced to M = 4 individuals by clustering. The (hyper-)
planes bounding this estimated Pareto front on each dimension are marked as A and B. The individuals
that define these boundaries of the estimated Pareto front are referred to here as the extremal individuals

(containing what are referred to as component minima and maxima in [15], in the case of the true Pareto



Algorithm 2 Centroid clustering algorithm used in SPEA [13].

E; , External set at generation t.

M, maximum size of external set.

1) Initialize cluster set C, each individual residing in F; being a distinct cluster in C, C := F;.
2) If |C| < M, goto 5, else goto 3.
3) Calculate all possible cluster pair distances d., where l1,ls € C
de (I1,13) = ‘ML o a€l1,b€lz d(a,b), and d is the distance in objective space between indi-
viduals a and
4. Combine the two clusters with minimum distance
dc: C = C \ {ll,lg} U {11 Ulg} GOtO 2.
9. Select a representative individual from each cluster and insert into Fy1. The representative

is the centroid, the individual with the minimal average distance to all other individuals in
the cluster in objective space (if there is more than one individual in a cluster sharing a
minimal distance, one of these is chosen as the representative at random).

set.). Figure 1b illustrates how the estimated front is represented by clusters, and Figure 1c shows the
external set after the centroid individuals have been selected to represent the clusters. The result of this
process is seen to be a ’shrinking’ of the the Pareto frontier, with the extremal individuals shifting from
A and B and C and D. If subsequent evolution fails to rediscover the extremal individuals repeated
clustering will shrink the Pareto front and the final estimate Pareto set will lie across a narrow subset
of the true frontier, as shown in Figure 2.

This is true even in an offline ‘dormant’ estimated Pareto front (that is one that acts as a passive
store for individuals which are separate from the search process), as search will not have be directed
towards the extremal values. It is interesting to note that after the criticism [9, 11, 8] of Schaffer’s
VEGA [5] because of its bias towards extremal values, that its replacements (not just SPEA) should in
turn be biased towards search in the centre of the front.

The shrinking front effect as illustrated can be detrimental in two ways. The main consequence is

the narrow extent of the estimated front; secondly, extra search time is required in order to rediscover



the extremes of the estimated Pareto front.

These problems are easily circumvented by removing the extremal individuals from the clustering
process and passing them directly to the binary tournament selection stage. In this study this approach
is referred to as the pinning of extremal individuals, and is illustrated in Figure 3. As can be seen, the
hyper-planes bounding the original and reduced external non-dominated sets are identical. Consequently
in the next generation information from individuals on the extremes of the estimated Pareto front from
the previous generation will be used in the GA search process, and may aid further expansion on the
extremes of the estimated Pareto front.

Since up to D individuals may be required to define the extremes of the external set, there may be
as few as M — D individuals available for clustering. However, in Section 4.2 it is argued that clustering

should be dispensed with altogether.

4.2 Persistent ‘frontal’ set

The external set of SPEA is in essence a memory of where the algorithm has reached in previous
generations in its estimation of the Pareto front and should contain the ‘best’ estimate of the Pareto
front at any stage. The estimated front should ‘advance’ in the sense that no individual in F; should
be dominated by any member of an earlier external set, Fy,...,F; 1. Informally, it is said that an
individual x lies behind the front if a member of the external set dominates x. However, the requirement
that E; be limited to M members can produce ‘retreating’ or, more commonly, ‘oscillating’ estimates of
the Pareto front. In these cases members of E; may lie behind the earlier estimates of the external set.
The origin of this behaviour is now described.

An illustration of a retreating front is shown in Figure 4. Figure 4a illustrates an external set with a
maximum of M = 6 members. In Figure 4b a new non-dominated member (drawn as a filled circle) has

entered the set. Since there are now 7 elements in the external set, one must be removed by clustering;
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the pair of solutions nearest each other form a cluster of two and one of them (chosen at random) is
deleted, resulting in the external set shown in Figure 4c. If at a subsequent generation a new element
enters the external set (Figure 4d), the clustering process will reduce the external set as shown in Figure
4e. This results in an external set (Figure 4e) containing an element that lies behind (is dominated by)
elements of the original external set (Figure 4a). Repeated occurrences of this process can lead to the
estimated front retreating or, more commonly, oscillating as the front advances in the GA search stage
but retreats during clustering.

This artifact has two main consequences. First, search time is wasted ‘rediscovering’ individuals
and regions that have been eliminated by clustering. Secondly, convergence to the true Pareto front is
impaired. Numerical simulations show that this oscillation is particularly serious when the estimated
front lies close to the true front; the oscillation can prevent convergence to the true front leading to poor
estimates and difficulties in assessing convergence.

It should also be noted that this artifact is not just associated with SPEA; other population-based
MOEAs have no secondary elite set, and therefore have no externally-stored active ‘memory’ at all,
their search population alone containing the active estimated front. Consequently they are even more
susceptible to oscillating and retreating estimated fronts, due to the stochastic nature of the GA search
process which drives them. If an offline dormant non-dominated set is being used, it will simply remain
unchanged for long periods, until the search population converges once more on the estimated front it
had previously discovered.

Zitzler et al. [8] advance elitism embodied in the external set as being an important factor in SPEA’s
preeminence among MOEAs, as SPEA was the only algorithm that incorporated elitism as a central
component. Indeed Zitzler et al. demonstrate than when elitism in the form of an external set is
incorporated in the Nondominated Sorting Genetic Algorithm, its performance rises to the standard

of SPEA. However, as demonstrated, a second active population with a size limit can cause problems.
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Recognising that the stochastic nature of the EAs means that non-dominated solutions may not remain
in the search population, Van Velduizen and Lamont [7] note the need for a secondary non-dominated
population to hold all estimated Pareto solutions found by the search process, even if the secondary
population takes no further part in the search. They suggest that information held within this population
may be useful to the search process, and cite SPEA as a MOEA that implements this. However, Van
Velduizen and Lamont do not make any explicit recommendations beyond keeping a dormant store of
all discovered non-dominated individuals. In the light of the artifacts discussed here, it is recommended
that a secondary population of all currently non-dominated individuals found during the evolutionary
search is used actively within the search process. This set of all currently non-dominated individuals
is referred to as the frontal set, F;. Elimination of the SPEA clustering stage and use of the frontal
set effectively removes the oscillation / retreat problem, as well as ensuring that extremal individuals
are retained throughout the search. It should be noted that, while Laumanns et al [15] recommend the
truncation of the external set to a fixed size, one of their numerical studies retains all non-dominated
individuals as recommended here.

The estimated Pareto front of E-SPEA is no longer susceptible to oscillatory or retreating behaviour;

new members of the frontal set can only advance the estimated Pareto front or increase its resolution.

5 IMPLEMENTATION OF AN ACTIVE FRONTAL SET

Since the frontal set contains all the currently non-dominated decision vectors found, it may become
very large as the search progresses. In order for E-SPEA to be computationally viable, efficient ways of
selecting elements of F} for binary tournament selection and of storing F} to permit rapid query, insertion

and deletion of its elements must be found. These problems and their solutions are now discussed.
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5.1 Selection for binary tournament

In SPEA all members of the external set enter the binary tournament selection. In E-SPEA many more
individuals than necessary are available for selection. However, uniform random selection of individuals
from F; artificially concentrates the search on already densely populated regions of the front. It is
therefore helpful to select a number of representative individuals. An approach is to use the SPEA
clustering method to find representatives, however, this proves to be too time consuming for large
frontal populations. Here Partitioned Quasi-Random Selection (PQRS) is introduced as the selection
routine used in E-SPEA. Suppose that M elite individuals are required for the binary tournament. In
PQRS the objective space is partitioned into M — D bins of equal width across one of the D objective
dimensions, and an individual is selected at random from each of these bins. This ensures that individuals
are selected uniformly across the extent of the front in the selected dimension. The objective dimension
selected for partitioning rotates through the D dimensions with the generation, t. Pinned individuals,
on the extremes of the front, are automatically entered into the binary tournament.

An example of PQRS in a D = 2 objective problem is shown in Figure 5. Here M = 5 individuals
are to be selected from a frontal population of M=2 (where M denotes the current size of the frontal
set). As 2 extremal individuals are passed straight to binary tournament selection, this leaves 3 more
individuals to be selected. Having selected an objective coordinate, the frontal set is partitioned on that
coordinate into (M — D) equally spaced bins. In Figure 5 this can be seen to be three bins for the
selected dimension, each spanning 1/3 of the range of the front on that dimension. An individual in
each bin is selected by generating a uniformly distributed random number across the range of the bin,
and selecting the closest individual. If a bin is empty (for instance due to a discontinuity in the Pareto
front), additional individuals are found by randomly selecting from the entire frontal set. In addition,
no individual is selected twice.

Note that in SPEA clustering is used to reduce the external set size before individuals are selected

13



for binary tournament selection, in the E-SPEA the frontal set population is not reduced, PQRS only
selects individuals for breeding and does not remove them from Fj.

Rapid selection from the frontal set is enabled by maintaining D balanced binary trees, one for each
objective dimension. This means that each selection takes O (2 Ig M ) as opposed to O (J/VI\ ) for a linear
search. Since the frontal set is constantly changing it is implemented using self balancing trees (e.g.
AVL or Red-Black trees [16]).

Figure 5 shows how a two objective frontal set is stored in balanced binary trees for PQRS. In
the example shown, when finding an individual with a given objective value the maximum number of
comparisons needed is 4. If the sought value, say y], does not exist in the tree, then the closest value
has to be selected. In this case two traversals will occur to find the two individuals that lie either side
of yi: the individual closest to y; and lying in the correct bin is selected. If neither individual lies in
the bin an individual is returned at random. If more than one individual has y; = yj, one of them is

returned at random.

5.2 Efficient storage of the frontal set

The second and greater constraint on using a large active frontal set is the number of comparisons that
must be made with individuals in the frontal set at each generation. When the external set is small, for
instance M = 20 (as in [8]), the time for a linear search of E; is negligible. However, with no limits to
the size of the frontal set in E-SPEA, the linear search of 5000 individuals (for instance) before assigning
an individual as non-dominated, is simply too high to make the method practical. Therefore intelligent
storage is needed before the frontal set approach is viable.

The frontal set must be searched at three distinct junctures:

1. When representative individuals are selected for binary tournament selection, as discussed in Sec-

tion 5.1.
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2. When strengths are assigned to external and internal set individuals prior to binary tournament
selection. In E-SPEA strengths are calculated based on the representatives of F} selected by PQRS.
As there are relatively few of these, the strength calculation does not impose a great computational

burden.

3. When individuals which are non-dominated with respect to P; are compared with F} to determine
whether they dominate or are dominated by members of F;. A data structure to facilitate searching

F; in logarithmic time is the dominated tree, which is now discussed.

5.3 Dominated trees

To determine whether an individual, y = (f1(x), f2(x),..., fp(x)), should become a member of the
frontal set, F',' it must first be checked that y is not dominated by any element of F. At the same
time any elements of F' that are dominated by y should be deleted from F. When the frontal set is
small a simple linear search is sufficiently cheap to perform these checks. However, as the size of the
frontal set grows the cost of querying the frontal set becomes prohibitive. In this section we describe two
data-structures — dominated trees and non-dominated trees — for storing, rapidly querying, and updating
the frontal set?.

Here it is convenient to regard members of the frontal set and individuals from the internal population
as points y in D-dimensional space. Geometrically, finding individuals in F' that dominate y amounts
to finding frontal individuals that lie to the ‘south-west’ or ‘left and below’ y. More formally, the set of

dominating individuals is:

{z€F :2z;<y;foralll <i<D andz; <y; for at least one 1 < j < D} (10)

!Since the genetic generation plays no role here, the subscript ¢ has been dropped.
2An example implementation of dominated and non-dominated trees is available from
http://wuw.dcs.ex.ac.uk/academics/reverson/moea
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It would be possible to use kd-trees [17, 16] or range trees [18, 16|, but these are both suited to
querying F' for elements which lie in bounded (hyper-) rectangles. Priority trees, developed by McCreight
[19], are suited to rectangular queries in which the rectangle is unbounded on a single side.

As noted in section 2, the ‘dominates’ relation imposes a partial order on individuals. However, since
the elements of F' are mutually non-dominating, this relation cannot be used directly to construct, for
example, a binary tree to enable fast searching.

The dominated tree consists of an ordered list of composite points (usually stored as binary tree).
Each composite point represents (upto) D elements of F' and composite points are defined so that they
are ordered by the weakly-dominates relation, <. An example of a dominated tree is shown in figure 6.

The essential property of dominated trees is that the composite points are ordered:

CijCj iﬂ"i>j (11)

Usually, the stronger condition, ¢; < ¢; iff ¢ > j, will hold. In addition, if ¢; > c¢; then the constituent
points of c¢; also dominate c¢;. Thus, for example, in Figure 6 the constituent points of c4,c5 and cg
dominate by e3. Note, however, that they do not necessarily dominate the constituent points of c3,
namely y3 and ys.

It should be emphasised that the points forming the tree in Figure 6 do not form a non-dominated
set. This is for expository purposes, because non-dominated sets of two-dimensional elements have
the peculiar property that listing the points in order of increasing first coordinate (objective), yi, is
equivalent to listing them in order of decreasing second coordinate, yo. With more than two objectives
this is no longer the case and the points illustrated in figure 6 are more akin to the general case. The
dominated tree also has applications to general sets (that is, not non-dominated sets), such as answering

queries about enclosing rectangles; see, for example, [19, 20].
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Further details regarding the construction and update of dominated trees can be found in Appendix

6 EXPERIMENTS

In order to evaluate the efficiency of E-SPEA, results of a comparison with SPEA are presented in
this section. Deb has proposed a number of test objective functions for estimating the performance of
MOEAs [12, 8]. In this section a brief critique of the Deb functions is presented, before five alternative
multi-objective test functions are introduced.

The Deb test functions involve two objectives and have the following structure:

Minimise 7 (x) = (fi(z1),f2 (X)),
where f2(x) =g(z2,....zp) - h(f1(21),9(22,-..,2p)),

and X = (z1,...,zp).-

Although the six Deb functions represent many different features and levels of difficulty, the first
objective (f1) is always a function solely of the first decision parameter (in fact for the first four test
functions, fi (1) = z1). This simple form of f; means that when genes describing z; are initialised
as uniformly distributed random numbers, the initial estimate of the Pareto front extends over the full
range of f;. Consequently optimisation chiefly consists of minimising fo, rather than the combined
minimisation of both objectives. For the purposes of this study, where part of the focus is on searching
for the extent of the Pareto front, the Deb functions unfortunately are of limited use. Consequently, five
new test functions are introduced, where all objectives are dependent on all decision parameters. All

five are combinations of the following five base functions, B; (x) (see Table 1).
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e Base functions

P 1 %
B; = g zi — 3 exp ((i/m)?) (12)
P 2
By=)_ (wz - % (cos (107 (i/m)) + 1)) (13)
=1
P 1
B3 = |a; —sin® (i — 1) cos® (i — 1)| (14)
=1
P 1 %
By=) x; — 7 (cos (i — 1) cos (2(i — 1)) +2) (15)
=1
P 2
Bs=)_ (a:z - % (sin (10007 (i/m)) + 1)) (16)
=1

Where m=30 and z; € [0, 1]
The problem is therefore to use the SPEA and the E-SPEA to approximate the true Pareto fronts

described by the five test functions in Table 1.

6.1 Comparing Pareto fronts

Comparison of Pareto front estimates is difficult as there are several ways in which a front can be inferior
or superior to another. Indeed it is unlikely that any one measure will be sufficient to encompass all
desired information when evaluating the output of an MOEA, if there was, then that measure would
become the objective to minimise (or maximise), and the problem would become a single objective one.
In this situation, where the objective properties of the true Pareto front are known a priori, a single
objective optimiser should be used, using the performance measure as its objective.

Here a number of alternatives to the popular C metric [13, 8, 14] are discussed.

e The C metric.

beB:dJacA,a<b
c(4,8) =1 = ) (17)
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where A and B are two sets of decision vectors and A,B C X .

The C metric measures the fraction of members of B which are (strictly or weakly) dominated by
members of A. As such it measures the quality of A with respect to B. When C(A4,B) = 1 all the
individuals in B are dominated by solutions in A; C(A, B) = 0 represents the situation in which none of
the individuals in B are dominated by any of those in A.

It should be noted that C(A, B) is not technically a metric, since C(A, A) # 0 and C(A, B) is not
symmetrical in its arguments and it doesn’t satisfy the triangle inequality. Furthermore, C has the
following undesirable property: suppose that W is a non-dominating set and A C W and B C W, then
C(A, B) can take on any value in [0, 1].

In this study the following modified version of the C measure is used:

~ beB: JacA,a<b
C(A,B):H B i (18)

Now é(A,A) = 0 and, in addition, it measures two mutually non-dominating sets as equivalent. That
is, if A and B are each subsets of a non-dominating set, then C(4, B) = 0.

Nevertheless, C and C fail to account for the either the difference in the extent of the fronts being com-
pared or the uniformity of the distribution of points along the front. For example, Figure 7a illustrates
two fronts with similar extent, but points describing A are uniformly distributed along the front whereas
those describing B are clustered in one region. However, C(4, B) = C(B, A) = C(A, B) = C(B, A) = 4/12
even though elements of A dominate elements of B along the majority of their extents. In Figure 7b
although B has much greater extent, C(A4, B) = C(A, B) = 2/12, whereas C(B, A) = C(B, A) = 0/12.

As the some of the problems highlighted with the C and € measure show: there are a number of
properties which are usually desired of estimated Pareto fronts. These include that the distance of the

estimated Pareto front to the true Pareto front should be minimised, and that the extent of the estimated
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front be maximised (a wide range of solutions in objective space be returned). New measures which are
designed to include such information are now introduced.

In [8] Zitzler et al. suggest a number of new measures to encapsulate this information. One of
these, the M3 function, measures the extent of a front, and inspires the introduction in this study of
the following J; and J, measures (the M3 function itself is not used as it only measures the extent of

a single front).

e The J1 Measure.

D
1 max {|a; — a}| ; a,a’ € A}
J1(4,B) = Egmaxﬂbi—bﬂ b, b € B}

(19)

The J1 (A, B) measure is an average ratio of the extents of two fronts in each objective dimension, where
each objective is normalised by the extent of the front in B (the measure lies on the range [0, 00]). If
J1 (A,B) = 1 the two fronts are on average proportionately equal in extent, whereas J; (4,B) > 1
means that on average the extent of A is greater than the extent of B. Again however the J; measure
by itself does not provide all the contextual information that is desired, therefore the J» measure is

introduced and defined below, which should be used in tandem with it.

e The J5 Measure.

min{b; ; b € B} —min{a;; a € A})
|min{a;; a € A} +1

1 A (

Jo(4,B)= 5> (20)
=1

The J5 measure confronts the problems caused by situations when a front may be of wider extent than

another, but still dominated (where the minimum feasible value of each objective dimension is 0, the

measure lies on the range [— max { X} ,max {X}], where max { X} is the sum of the maximum feasible

values of each objective dimension divided by D). If J5(A,B) = 0 the average minimum objective

values defined by the two sets are equal, a value in greater than 0 corresponds to the average minimum
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objective values defined by set A being less than B, and a value less than 0 corresponds to the average
minimum objective values defined by set A being greater that B. Therefore where [J1 (A, B) is greater
than 1 and J5 (A, B) is greater than 0, the front defined by A is of a larger extent than that defined by
B, and its minimum objective values are also on average lower. If however [J; (A, B) is greater than 1
and J2 (A, B) less than 0, a situation exists where A is wider than B, but this extra width is dominated

by B.
e The V measure.

The final measure introduced in this study is similar conceptually to the performance measure used in
[15], and is a measure of the objective space volume that is dominated by one front but not the other.
Loosely V(A, B) is the fraction of the volume of the minimum hypercube containing both fronts that
is strictly dominated by members of A but is not dominated by members of B (and therefore lies on
the range [0, 1]). An illustration of this provided in Figure 8 where two continuous fronts A and B have
differing extents and also dominate each other in different region of the objective space.

V (A, B) is defined in the following manner. For any set of D-dimensional vectors Y, let Hy denote

the smallest axis-parallel hypercube containing Y':
Hy = {z eRP :4; <z <bjforsomea,beV,i= 1,...,D} (21)

Now denote by hy (y) : Hy — [0,1]” the normalising scaling and translation that maps Hy onto

the unit hypercube. This transformation comes to remove the effects of scaling the objectives. Let
Dy (A) = {z €[1,00” : 2z < hy (a) for some a € A} (22)

be the set of points in the hypercube defined by Y which are dominated by the normalised A.
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Then V (A, B) is defined as

V(A,B)=X(Dayp(A)\ Days(B)) (23)

where A (A) denotes the Lebesgue measure of A [21].

Despite this rather cumbersome description V (A, B) and V (B, A) are easily calculated by Monte
Carlo sampling of H,|jp and counting the fraction of samples that are dominated exclusively by A or
B. In this study sampling was terminated when the standard deviation (over the last 1000 samples) of
the estimate fell below 1075 - approximately 6 x 10 samples for the objective functions used here.

The benefit of the volume measure V is that it will reward sets that are of greater extents when
those extents are in front of the comparison set, and not when they are behind, it is not effected by
the distribution of points across a front, and it also gives information regarding how far one set is (on
average) in front of another.

Unfortunately the V measure, like the original C metric, has the property that, if W is a non-

dominating set, and A C W and B C W, V (A, B) and V (B, A) may be positive.

6.2 Results

The implementation of SPEA is almost identical to that in [8], the difference lying in the use of floating
point representation of parameters in the individual chromosomes instead of 30 bit binary representation.
In order to compare SPEA and E-SPEA the two EAs were each executed 30 times on each test problem,
and the resultant non-dominated solutions saved at the end of each run. In the case of E-SPEA these were
simply those individuals residing in F' at the end of run, whereas an off-line store of the non-dominated
solutions discovered by SPEA was kept. Each simulation was performed using the parameters shown

below:
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Number of generations : 500, 1000 & 2500

Search population size : 80

Max. external population size (SPEA) and

Max. No. of representative frontal individuals for breeding (E-SPEA) : 20
Crossover rate : 0.8

Mutation rate : 0.01

Single point crossover was used and the mutator variable was drawn from a zero-mean, symmetric,
leptokurtic distribution (kurtosis = 10) generated by the product of two uniform distributions covering
the range [0,1], and a Gaussian distribution with unit variance and zero mean. In each of the 30 different
runs E-SPEA and SPEA were initialised from identical decision vector populations. Initialisation of
decision vectors was from U(0,1). The experiments were repeated with the EAs terminated after 500,
1000 and 2500 generations.

Results on the five test functions, in relation to the €, Ji, J» and V measures, are presented in
Figure 9 in the form of boz plots. These box plots provide distribution information in relation to the 30
samples for each generation length. In each plot three boxes are presented, which (from left to right)
represent the sample runs for 500, 1000 and 2500 generations. The solid box represents the central 50%
of the data, the top and bottom of the box are the upper and lower quartiles, with lines from the box
top and bottom stretching to the maximum and minimum sample values.

The E-SPEA and SPEA are tested for significant variation (on the various error measures) using

the nonparametric Wilcoxon Signed Ranks Test [22] at the 2% level (1% in each tail)®. After 500

3t-tests cannot be used as the samples cannot reasonably be assumed to be drawn from Normal distributions, neither
are the samples independent (each pair being correlated). The Wilcoxon Signed rank test does not assume normality, and
its independence assumption is only in relation to the paired values (that each pair be independent in relation to all other
pairs).
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generations the E-SPEA is seen to be significantly better on the extent measures of Jiand Js on all five
test problems, as well as the dominated volume measure V. After 1000 generations the E-SPEA is also
seen to be significantly better according to the C measure. Even so, after 2500 generations C (S,E) >0
and V (S, E) > 0, meaning that in some region the set returned by SPEA is in front of that returned
by E-SPEA. This is due to the SPEA’s search being concentrated on a smaller section of the front than
E-SPEA, due to the shrinking front effect in SPEA’s external set. As SPEA’s search is focused on a
smaller objective volume than E-SPEA it has the local advantage of recombining proportionally more
individuals in from this space than E-SPEA.

However, even though this is the case, C (S, E) and V (S, E) are generally decreasing as the search
progresses: the local search advantage of not pinning the extremes is outweighed by the inefficiency
caused by the oscillating external front.

These results support the hypothetical effects of shrinking and oscillatory fronts as presented earlier
in the study. The search process of both SPEA and E-SPEA| in terms of genetic manipulation used, are
identical, as are their approaches to the Pareto ranking of individuals, the number of search individuals
used, and the number of ‘elite’ individuals used for breeding each generation. It is only through the
implementation of pinning and the active use of a frontal set that E-SPEA is seen to perform significantly
better on the J; and J> measures which measure extent (and therefore shrinking effects), and the C
and V measures which measure dominance (and therefore oscillation effects).

An example of the performance is provided in Figure 10, where the two estimated Pareto fronts
generated by SPEA and E-SPEA after 2500 generations on the F'1 test function are shown (each front
contains all the non-dominated individuals from each of the 30 runs of the MOEA, with the dominated
individuals removed from the two union sets). The front generated by E-SPEA is shown to extend
further than that of SPEA (highlighted by the two minimum hypercubes that contain each front), and

to also lie ahead of the SPEA front for a large portion of that front’s extent.

24



The potential size of a frontal set is determined by the nature of the problem and the granularity of
the decision parameters used in the genotypic representation of solutions. Figure 11 shows the increase
in frontal set size up to 10000 generations for a single run of the E-SPEA on the F1, F2, F3, F4 and F5
test functions used in this study. Although only limited inference can be made from this Figure with
regard to the domain as a whole, it is encouraging to note that the growth of frontal set sizes all follow
linear (or less than linear) paths with gradients from 2 to 0.1. The maximum possible growth of the
frontal set is N extra individuals per generation. In this study N = 80, therefore the growth of the

fastest growing frontal population (that of the four objective problem F'5) is only a 40th of this rate.

7 STOPPING CRITERIA

Robust stopping criteria are largely missing from the MOEA literature. Beale and Cook [4] include
a fitness-based stopping criterion in their study, in which the algorithm is terminated if the fittest
individual has remained unchanged for 1000 consecutive generations. As Coello [9] points out, MOEAs
since Schaffer [5], which carry a set of non-dominated individuals, are usually terminated after a fixed
number of generations, or the population is monitored at intervals and a decision made on a visual basis.

The use of a frontal set which can only ‘advance’ however allows a number of robust stopping

methodologies to be introduced. Examples of these are:

e When no individual that dominates a member of F' is discovered after a given number of consecutive

generations.

This is similar to the approach taken by Beale and Cook [4], however in E-SPEA there is a set of elite
solutions instead of a single elite individual. It is to be emphasised that this sort of criterion can fail
with an external set which is prone to oscillation.

Note that new individuals may have been found that are non-dominated by the frontal set - and
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therefore are inserted into F'. However, these individuals can be seen to be filling in the front (increasing

its resolution), as opposed to pushing it forward.

e When there has been no change in the extremal values for a given number of consecutive genera-

tions.

The previous stopping criterion, when taken by itself, may lead to sub-optimal stopping in that, although
the front may have ceased moving forwards, it may still be moving outwards towards the extremes. This
second criterion takes this form of search into account and can usefully be combined with the previous

criterion.

e When the average distance in objective space between neighbouring individuals in F' reaches a

specific threshold.

The practitioner may wish the front to be defined to a particular resolution, therefore they may not
solely wish to stop the search process after the front has finished moving, but also after this resolution
is reached. With two objectives this can be achieved by calculating the maximum over F' of the nearest

4

neighbour distances®. With more than two objectives a similar termination criterion can be defined

based on the maximum area of any triangle of a Voronoi tessellation [16] of F.

In practice the third criterion alone may lead to stopping before a good estimate of the true Pareto
front has been found, however in conjunction with the first two criteria a good estimate of the true
Pareto front to any desired resolution can be achieved.

If a practitioner prefers a small number of evenly distributed individuals to be returned after algo-
rithm termination, the final frontal set may be clustered using the method employed in standard SPEA

described earlier (the computational cost is not too high as it only needs to be performed once).

4This can fail in the pathological case that the true front contains isolated points in objective space.
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The stopping criteria defined above are not readily applied to methods which do not the use active
frontal set because, even if a dormant offline store is used, these methods are susceptible to oscillating

active estimates of the Pareto front, which may cause spurious early termination.

8 CONCLUSION

A number of improvements have been made to the SPEA multi-objective algorithm, in order to rectify
observed problems, to which a large number of other population based MOEAs are also susceptible.
These extensions have first been justified theoretically, and then supported by empirical evidence on
on a number test problems, using new measures introduced in this study, as well as measures used
previously in the literature. The impact of the extensions is shown to increase with time.

New data structures based on balanced binary trees have been introduced in order to make the use
of an active frontal set practical, and allay concerns of time costs. The concerns of robust algorithm
termination have also been addressed, an area that has been largely dormant in recent research in the
MOEA domain.

Current areas of research of interest to the authors include the parallel implementation of MOEAs
and the use of structural information in local regions of objective space to improve search efficiency.

E-SPEA is currently being applied to the evolution of neural network forecasting models [23], infor-

mation retrieval, and the optimisation of safety critical systems.

APPENDIX A

Construction of a dominated tree from M points F' = {yp, }nﬂif:l proceeds as follows. The first composite

point ¢y is constructed by finding the point y,, with maximum first coordinate; this value forms the first
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coordinate of the composite point:

Ci1 = MaxX Ym,1 (24)

This point y,, is now associated with ¢; and deleted from F'. Likewise, the second coordinate of ; is the
maximum second coordinate of the points remaining in F', thus ¢1 2 = maxz y,, 2. In this manner each
coordinate of ¢y is defined in turn. The process is then repeated to construct ¢y and subsequent points
until F' is empty. Note that in construction of the final composite point, (that is, the composite point
that dominates all other composite points) F' may be empty before the D coordinates of the composite
point have been defined. As illustrated by c¢7 in Figure 6, in this case the y,, (y13 in Figure 6) already
comprising the composite point serve to define the coordinates in any unfilled dimensions.

Since (except possibly for the dominating composite point) D elements of F' are used in the con-

struction of each composite point, the maximum number of composite points is M /D+D —1.

Query. Given a test point q, the properties of dominated trees can be used as follows to discover which
points in F' dominate q. Although the dominated tree may conveniently be implemented as a binary
tree, the query procedure is most easily described in terms of an ordered list of L = M /D+D -1
composite points. First, the list is searched to find the indices h and [ of composite points ¢, and ¢
that dominate and are dominated by q respectively:

Oife; <q
= (25)

max {7 : ¢; < q} otherwise

and

L+1ife;=q

min{i : ¢; > q} otherwise
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Also donote by cy the ‘least’ composite point that strictly dominates cy:

H=min{i : ¢; <cp} (27)

For the query point illustrated in Figure 6, = 2, h = 5 and H = 6. (Note that it is not necessarily
true that H = h + 1.) Since ¢, > q it is clear that all the constituent points of the composite points ¢;
that dominate ¢p, H < i < L, also dominate q. (Note that the constituent points of ¢j, and indeed and
¢; that only weakly dominate ¢, need not dominate q; in Figure 6 ¢5 > q, but yg ¥ q.) Also, since
q > ¢; and the constituent points of ¢; have at least one coordinate equal to a coordinate of ¢;, it may
be concluded that q is not dominated by any of the constituent points of ¢1,...¢;. Each constituent
point ¢; with [ < 4 < H must be checked individually to determine whether it dominates q; in Figure 6
the points y3,ys, ¥4, ¥s; Y9, Y10 must be individually checked.

Note that when determining whether q is to be included in F', it can be immediately rejected if
h < L because it is certainly dominated by at least one of the constituents of cr,.

Since the composite points are arranged as a sorted list, determination of [ and h takes O(lg(M /D))
comparisons each. Hence the total number of comparisons required is O(21g(M /D) + K), where K is
the number of points that have to be checked individually. Clearly, certain configurations of F' and q
can result in all elements of F' being checked — in linear time. However, such arrangements are seldom
encountered in practice and the logarithmic query time permits the use of very large frontal sets.

If it is determined that q is to be included in F' (because it is not dominated by any element of F'),
those elements of F' which are dominated by q must be identified and deleted from F. Queries about
which elements of F' are dominated by q can be answered using the dominated tree, however, it may be
inefficient. This is because although q > ¢; for 4 <[, q need not dominate the constituent points of these

c; and the constituent points must therefore be checked individually. Thus in Figure 6, q > ¢c2 > cq,

29



but y5 and y7 are not dominated by q. The non-dominated tree is a data structure which permits this
sort of query to be answered efficiently.

Non-dominated are analogous to dominated trees. A non-dominated tree consists of a ordered com-
posite points, ¢; = c¢; iff ¢ < j, with the additional property that if ¢; > c;, then the constituent points
of ¢; are also dominated by c¢;. An example of a non-dominated tree is shown in Figure 12. Construction
and querying of non-dominated trees is analogous to dominated trees and they are not discussed further

here.

Insertion and deletion. Elements are continually added and deleted from the frontal set during the
course of an optimisation. It is therefore important that the data structure used to support F' can be
modified dynamically. Online insertion of a new point y is straight-forwardly accomplished by creating
a new composite point, say ¢’. Let ¢; be the composite point that dominates y, with ¢; > y > ¢;_1.

Then the coordinates of ¢’ are determined by:
c;, = max(yg, ¢ ) k=1,...,D (28)

Figure 13 shows the dominated tree resulting from the insertion of a new point yi4 in the tree shown in
Figure 6. Note that the tree resulting from insertion is less than optimal in the sense that a point (e.g.,
y6) may contribute to more than one composite point.

Deletion of a point y from the tree is slightly more complicated because the composite point to
which it contributed, say c;j, must continue to be dominated by c;;1. Let Y; be the set of points which
contribute to ¢;, and 7]- =Y;\y. Then, if y defined coordinate k of c;, the new kth coordinate is given
by:

Cjk = Max (milx (ax) ,Cj+1,k> (29)
qEYj

30



Deletion of y4 from the tree shown in Figure 6 is illustrated in Figure 13. Note that if y contributes to
more than one composite point, then each of the composite points must be dealt with in turn beginning
with the one which dominates all the others; on the other hand, if y is the sole contributing point to c;

(e.g., c13 in Figure 6) then c; is deleted from the tree.

Cleaning. Insertion and deletion operations lead to some points contributing to more than one com-
posite point. The dominated trees therefore contain more composite nodes than necessary and hence
increased time is needed to search them. This can be alleviated by periodically ‘cleaning’ the tree in
the following manner. Starting with 7 = 1, points contributing to c¢; are deleted from c;j;1,...,L in
the manner just described. j is then incremented to sweep through the entire list of composite points,
thus ensuring that any point contributes to exactly one composite point. A cleaned tree is shown in
Figure 13. In practice it is not efficient to clean the tree following every insertion and deletion, but
occasional cleaning may be triggered when the number of composite points exceeds a threshold, say

1.5x (M/D+ D —1).
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Table 1: Test function composition.

Objectives
il fo|l f5| fa
Test Function F1 || By | By | — -
Test Function F2 || By | By | - -
Test Function F3 B2 Bg B5 -
Test Function F4 || B1 | By | By | —
Test Function F5 || By | Bs | B4 | Bs
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Figure 1: a),b) and c¢). Clustering in SPEA. The 12 individuals in (a) are to be clustered to find 4
representative individuals to form the external set at the next generation. Clusters are shown in (b) and
the resultant external set is shown in (c).
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Objective 2

True front

—— Found front

Objective 1

Figure 2: The 'Shrinking’ Pareto front effect, where the final front returned lies on a local section of the
true front.

Chjective 2

Ohjective 1

Figure 3: Pinning of the extremal individuals in Figure 1, and resultant clusters.
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Figure 4: Example of a retreating estimated Pareto Front, as stored in the External set of the SPEA.
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Figure 5: Two objective example of Partitioned Quasi-Random Selection, with the Objective 1 dimension
partitioned. M = b representative individuals required so selection from 3 bins (M — D), after pinning
of extremal values. Storage in balanced binary tree also illustrated, with node and leaf individuals I1 to
I8 marked, as well as root node I116.
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Figure 6: Dominated tree. Top: 13 points y,, in two dimensions and the composite points ¢;
(squares) forming a dominated tree. The open circle, ¢, marks a query point. Bottom: Composite
nodes listed as ordered by <.
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Ilustrates estimated Pareto fronts of differing extents. Front B is of far greater extent than A, but will
receive a lower C metric value.
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Figure 8: Two dimensional illustration of minimum surrounding hypercube volume dominated by two
fronts (hypercube boundaries marked with dashed lines).
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Figure 9: Box plots of C measure, J1 measure, Jo measure and V measure. Grid lines in C box-plots
mark 0.2 intervals on the range [0,1]. Grid lines in J; box plots mark 0.1 intervals, with the mid value
1.0 in bold. Grid lines in J> box-plots mark 0.5 intervals, with the mid value 0.0 in bold. Grid lines in V
box plots mark 0.02 (2%) intervals (boxes shown cover the range [0%,14%]). All results are significantly
different on the Wilcoxon test (5% two-tailed), except that of the C measure for 500 generations, in

relation to the F'3, F4 and F'5 test functions. A0



14

E-SPEA front.

SPEA front.

12F -

i
) © o
T T T

Objective 2

IS
T

““““““ IRRRRRRRRR RN RRRRRE KRR RN RN AR AR RRRRRN RRRRRRRRRRRRRRRRRRATRRRRRR AR

Objective 1

Figure 10: Empirical example. Figure shows the two fronts generated by E-SPEA and SPEA on test

function F1 after 2500 generations

(the non-dominated individuals from the 30 separate runs).
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Figure 11: Growth of frontal set M. Shows the increase in frontal set size of a single E-SPEA run up
to 10000 generations on the F1, F2, F3, F4 and F5 test problems. It should be mentioned again that

search of the frontal set for a particular individual is only O (2 g M ) in PQRS and O(21g(M/D) + K)

in dominated trees.
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