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Abstract In extending the Particle Swarm Optimisation methodology
to multi-objective problems it is unclear how global guides for particles
should be selected. Previous work has relied on metric information in
objective space, although this is at variance with the notion of domi-
nance which is used to assess the quality of solutions. Here we propose
methods based exclusively on dominance for selecting guides from a non-
dominated archive. The methods are evaluated on standard test problems
and we find that probabilistic selection favouring archival particles that
dominate few particles provides good convergence towards and cover-
age of the Pareto front. We demonstrate that the scheme is robust to
changes in objective scaling. We propose and evaluate methods for con-
fining particles to the feasible region, and find that allowing particles to
explore regions close to the constraint boundaries is important to ensure
convergence to the Pareto front.

1 Introduction

Evolutionary algorithms (EA) have been used since the mid-eighties to solve
complex single and multi-objective optimisation problems (see, for example,
[1,2,3]). More recently the Particle Swarm Optimisation (PSO) heuristic, in-
spired by the flocking and swarm behaviour of birds, insects, and fish schools
has been successfully used for single objective optimisation, such as neural net-
work training and non-linear function optimisation [4]. Briefly, PSO maintains
a balance between exploration and exploitation in a population (swarm) of so-
lutions by moving each solution (particle) towards both the global best solution
located by the swarm so far and towards the best solution that the particular
particle has so far located. The global best and personal best solutions are often
called guides.

Since PSO and EA algorithms have structural similarities (such as the pres-
ence of a population searching for optima and information sharing between
population members) it seems a natural progression to extend PSO to multi-
objective problems (MOPSO). Some attempts in this direction have been made
with promising results such as [5,6,7,8,9]. In the most recent heuristics the guides
are selected from the set of non-dominated solutions found so far. However, in
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a multi-objective problem each of non-dominated solutions is a potential global
guide and there are many ways of selecting a guide from among them for each
particle in the swarm. Heuristics to date have relied on proximity in objective
space to determine this selection, however the relative weightings of the objec-
tives are a priori unknown and the use of metric information in objective space
is at variance with the notion of dominance that is central to the definition of
Pareto optimality. In this paper we propose and examine MOPSO heuristics
based entirely on Pareto dominance concepts. The manner in which particles
are constrained to lie within the search space can have a marked effect on the
optimisation efficiency: the other central purpose of this paper is to propose and
compare constraint methods.

We start by briefly reviewing basic definitions of multi-objective problems
and Pareto concepts (section 2), after which we describe the single objective
PSO methodology in section 3. The multi-objective PSO algorithm is presented
in section 4, and we present and evaluate methods for selecting guides here. Tech-
niques for confining particles to the feasible region are described and evaluated
in section 5. Finally, conclusions are drawn in section 6.

2 Dominance and Pareto optimality

In a multi-objective optimisation problem we seek to simultaneously extremise
D objectives: y; = f; (x), where i = 1,..., D and where each objective depends
upon a vector x of K parameters or decision variables. The parameters may also
be subject to the J constraints: e; (x) >0 for j =1,...,J.

Without loss of generality it is assumed that these objectives are to be min-
imised, as such the problem can be stated as:

X)) 1)

minimise y = f (x) = (f1 (x), f2(x),..., fp(
= ) > 0. (2)

subject to e (x) = (e1(x),e2(x),...,es (x)

A decision vector u is said to strictly dominate another v (denoted u < v) if
fi(w) < fi(v) V¥i=1,...,D and f; (u) < f;(v) for some i; less stringently u
weakly dominates v (denoted u =< v) if f;(u) < f;(v) for all i. A set of decision
vectors is said to be a non-dominated set if no member of the set is dominated
by any other member. The true Pareto front, P, is the non-dominated set of
solutions which are not dominated by any feasible solution.

3 Particle Swarm Optimisation — PSO

The particle swarm optimisation method evolved from a simple simulation model
of the movement of social groups such as birds and fish [4], in which it was
observed that local interactions underlie the group behaviour and individual
members of the group can profit from the discoveries and experiences of other



members. In PSO each solution (particle) x,, in the swarm of N particles is
endowed with a velocity which determines its location at the next time step:

(D = x® 4y v® 1 e® (3)

where x € [0, 1] is a constriction factor which controls the velocity’s magnitude;
in the work reported here xy = 1. The final term in (3) is a small stochastic per-
turbation, known as the turbulence factor, added to the position to help prevent
the particle becoming stuck in local minima and to promote wide exploration of
the decision space. Although originally introduced as a normal perturbation [8],
here a perturbation to each dimension was added with probability 0.01 and ey
itself was a perturbation from a Laplacian density p(e) oc e~/ with 3 = 0.1.
The Laplacian distribution yields occasional large perturbations thus enabling
wider exploration.

The velocities of each particle are modified to fly towards two different guides:
their personal best, P,,, for exploiting the best results found so far by each of
the particles, and the global best, G, the best solution found so far by the whole
swarm for encouraging further exploration and information sharing between the
particles. This is achieved by updating the K components of each particle’s
velocity as follows:

vffljl) = wvs,z +c1r1 (P — szlz) + coro(Gug — szlz) 4)

r1 and 72 are two uniformly distributed random numbers in the range [0, 1]. The
constants ¢; and co control the effect of the personal and global guides, and the
parameter w, known as the inertia, controls the trade-off between global and
local experience; large w motivates global exploration by giving large weight to
the current velocity. In the work reported here ¢; = ¢ = 1 and w = 0.5. The
global guide carries a subscript n because for multi-objective PSO a (possibly
different) global guide is associated with each particle; this is in contrast to uni-

objective PSO in which there is a single global guide, namely the best solution
located so far.

4 Multi-objective PSO

The main difficulty in extending PSO to multi-objective problems is to find the
best way of selecting the guides for each particle in the swarm; the difficulty
is manifest as there are no clear concepts of personal and global bests that
can be clearly identified when dealing with D objectives rather than a single
objective. Previous MOPSO implementations [5,6,7,8,9,10] have all used metrics
in objective space (either explicitly or implicitly) in the selection of guides — thus
making them susceptible to different scalings in objective space.

The algorithms we propose here are similar to recent MOPSO algorithms
[7,8,9,10] in that they use an archive or repository, A, which contains the non-
dominated solutions found by the algorithm so far. We emphasise that we do not



Algorithm 1 Multi-objective PSO.

1:A:=0 Initially empty archive
2 : {Xn,Vn, Gn,Pp}A_ | := initialise() Random locations and velocities
J:fort:=1:G G generations
4 forn:=1: N
5 fork:=1: K Update velocities and positions
6: Unk 1= WUnk + 11(Prak — Znk) +72(Grk — Tnk)
7 Tnk ‘= Tnk + Unk + €
8 end
9: X := enforceConstraints(X,)
10 : Yn = f(xn) Evaluate objectives
11 : ifx, A uvVueA Add non-dominated x,, to A
12: A={uecAlu£x,} Remove points dominated by Xn
13: A=AUx, Add x, to A
14 : end
15: end
16: ifxpn <P, V (xn AP AP, £ xp) Update personal best
17 : P, :=xn
18: end
19: G, := selectGuide(x,, A)
20 : end

restrict the size of A by gridding, clustering or niching (as done in, for example,
[10]) as that may lead to oscillation or shrinking of the Pareto front [11,12].

At the start of the optimisation, which is outlined in Algorithm 1, A is
empty and the locations and velocities of the N particles are initialised randomly.
The personal bests for each particle are initialised to be the starting location,
P, = x,; likewise the global guide for each particle is initialised to be its initial
location: G,, = x,,.

At each generation ¢ the velocities v,, and locations x,, of each particle are
updated according to (4) and (3) (lines 5-8 of Algorithm 1). Following updating,
it is possible that the particle positions lie outside the region of feasible solutions.
In this case it must be constrained to the feasible region; this is indicated in
the Algorithm 1 by the function enforceConstraints, and we discuss methods
for enforcing the constraints in section 5. With x, in the feasible region the
objectives may be evaluated (line 10), and any solutions which are not dominated
by any member of the archive are added to A (line 13) and any elements of A
which are dominated by x,, are deleted from A, thus ensuring that A is a non-
dominating set.

The crucial parts of the MOPSO algorithm are selecting the personal and
global guides. Selection of P, is straightforward: if the current position of the n-
th particle, x,,, weakly dominates P, or x,, and P,, are mutually non-dominating,
then P, is set to the current position (lines 16-18). Since members of A are mu-
tually non-dominating and no member of the archive is dominated by any x,,
so that in some senses the archive is globally ‘better’ than each member of the
swarm, all the members of A are candidates for the global guide and we now



Algorithm 2 ROUNDS selection of global guides.

1: X' =X Swarm

2: A :=0 Candidate guides

3 : while | X'| >0

4: if |A'| =0, then A'=A New round: all A are candidates
5: forae A

6: Xa:={xe€ X'|a<x} Swarm members dominated by a
7: end

8: a’:=argminaeas (| Xal) a* dominates fewest particles
9: Xy := choose(Xax) Random selection from Xax
10: Gp:=a"
11: X' =X'"\x, Guide selected for x,
12: A :=A"\a* Assigned, so delete from candidates
11 : end

present alternative ways of selecting a global guide for each particle in the swarm
from A.

4.1 Selecting global guides

Here we focus on methods of selecting global guides which are based solely on
Pareto dominance and do not attempt to use metric information in objective
space. Three alternatives are examined: ROUNDS, which is most complex and
explicitly promotes diversity in the population; RANDOM, which is simple and
promotes convergence; and PROB, which is a weighted probabilistic method and
forms a compromise between RANDOM and ROUNDS. It may be supposed that
the archive members which dominate particle x,, would be better global guides
than those archive members which do not, and each of these schemes is based
on the idea of selecting a guide for a particle from the members of the archive
which dominate the particle.

ROUNDS The idea underlying this method is that in order to promote di-
versity in the population by attracting the swarm towards sparsely populated
regions, members of the archive that dominate the fewest x,, should be prefer-
entially assigned as global guides. As shown in Algorithm 2, this is achieved by
first locating the member of the archive a* which dominates the fewest particles,
which is then assigned to be the guide of one of the particles in X,«, the set of
particles which it dominates. Having assigned a* as a guide, it is removed from
consideration as a possible guide until all the other archive members have been
assigned a particle to guide and a new round begins (line 4). Clearly, the algo-
rithm can be coded more efficiently than the outlined in Algorithm 2, however,
the procedure can be computationally expensive when the archive is large.

RANDOM While the ROUNDS methods associates a member of the archive
with one of the particles in the swarm that it dominates, the RANDOM selection



Table 1. Test problems DTLZ1, DTLZ2 & DTLZ3 of [13] for 3 objectives.

Hi(x) = za12 (149 (%))
fo(x) = 321 (1 —22) (1 +g(x))
fs(x) =3 (1 —z1)(1+g(x))
g(x) = 100[|x| — 2+ 35, (zx — 0.5)% — cos (207 (z), — 0.5))]
0<z, <1l fork=1,2,... K, K=7
fi(x) = 12 (1+ g (%))
£206) = La1 (1 22) (1 + g ()
DILZ2  fa(x) = 1 (1—21) (1 + g (x))
9(x) =Yg (v = 05)°
0<ar<1 fork=12. . K K=12
f1(x) = cos (z17/2) cos (z2m/2) (1 + g (%))
f2(x) = cos (z17/2) sin (z27/2) (1 + g (x))
DTLZ3  f3(x) =sin (z17/2) (1 + g (x))
g (x) =100[|x| — 2+ 35 . (x5 — 0.5)> — cos (207 (zx — 0.5))]
0<ap<lfork=12. . K K=1

DTLZ1

methods focuses on the particle x,, and selects a guide from among the archive
members that dominate x,,. If Ax = {a € A|a < x} is the set of archived points
that dominate x, then the RANDOM selection method simply chooses an element
of Ay, with equal probability to be the guide for x,. If x,, € A then, clearly,
Al is empty, so in this case a guide is selected from the entire archive. Thus
G _12¢€ A with probability |A|~! if x, € A %)
" )|ae Ay, with probability |4y, |™" otherwise.

PROB The RANDOM selection method gives equal probability of being chosen
as the guide to all archive members dominating a particle. However, archive
members in sparsely populated regions of the front and towards the ‘edges’
of the front are likely to dominate fewer particles than those in well populated
regions or close to the centre of the front. To guide the search towards the sparse
regions and edges, we adapt the RANDOM method to favour archive members
that dominate the least points. Let X, = {x € X |a < x} be the set of particles
dominated by a. Then guides are chosen as:

G, = (6)

a € A with probability o |Xa|™! if x, € A

a € Ay, with probability oc |[Xa|™! otherwise.
The PROB selection method thus combines the intention behind ROUNDS with
the simplicity of RANDOM. With efficient data structures [12] or relatively small
populations the computational expense in calculating |Xa| and Ax is not exor-
bitant and can be efficiently incorporated into the updating of A (lines 11-14 of
Algorithm 1).



Table 2. GD(A) and Vp(A) measures for the methods proposed to select guides. The
best value across methods is highlighted in bold.

GD(A) Vp(A)
DTLZ1| MT ROUNDS RANDOM PROB MT ROUNDS RANDOM PROB
Best [0.0002 0.0048 3.77 x 10~° 3.15 x 10°°[0.9992 0.9823 0.9997 0.9997
Worst |0.7481 0.1761 0.031 0.0349 0.9270 0 0.9744 0.9796

Average|0.1016 0.0696 3.10 x 1072 5.55 x 1072 [0.9824 0.5201 0.9965 0.9974
Median [0.0303 0.0656 3.23 x 10™* 1.41 x 107%|0.9947 0.4952 0.9979 0.9992
S. dev. |0.2068 0.0572 7.30 x 1073 0.0114 0.0231 0.3413 0.0057 0.0047
DTLZ3

Best |0.003 0.001 4.81 x10 ° 577 x 10°°[0.9921 0.9972 0.9979 0.9981

Worst {0.2195 1.0244 0.1446 0.2621 0 0 0.7798 0.704
Average|0.0413 0.2044 0.0217 0.0305 0.8743 0.1602 0.9352 0.945
Median [0.0134 0.1343 1.44 x 1072 1.52 x 107% |0.9635 0 0.9486 0.9946
S. dev. [0.0627 0.2451 0.0429 0.0687 0.2290 0.316 0.0674 0.086

4.2 Experiments

We compared the efficiency of the global guide selection methods on standard
test problems DTLZ1-DTLZ3 [13], whose definitions for three objectives are
provided in Table 1.

Unlike single objective problems, solutions to multi-objective optimisation
problems can be assessed in several different ways. Here we use the Generational
Distance (GD) introduced in [14] and used by others (e.g., [10]) as a measure of
the mean distance between elements of the archive and the true Pareto front:

ﬁ 3 d(a)Q] (7)

where d(a) is the shortest Euclidean distance between a and the front P. Clearly,
this measure depends on the relative scaling of the objective functions, however,
it yields a fair comparison here because the objectives for the DTLZ test func-
tions have similar ranges.

An alternative measure which also measures the spread of the solutions found
across the front is the volume measure, Vp(A), which is defined as the fraction of
the minimum axis-parallel hyper-rectangle containing P which is dominated by
both P and A. It may be straightforwardly calculated by Monte Carlo sampling;
see [12] for details.

We present results of two sets of experiments performed, firstly, in order to
evaluate the selection methods and, secondly, illustrate the robustness of the
selected method to rescaling of the objectives.

To evaluate the selection methods proposed, we assessed the fronts generated
by the ROUNDS, RANDOM and PROB methods together with the fronts generated
by an implementation of the Mostaghim & Teich’s MOSPO (designated MT in
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Figure 1. Archives, archive growth and histograms of distances to the DTLZ1 Pareto
fronts corresponding to the median result of the GD metric for (top to bottom) MT,
ROUNDS, RANDOM, PROB selection methods. (The more distant clusters of particles were
cut from the MT histogram for visualisation purposes.)

this paper) [9]. In order to permit fair comparisons we did not limit the archive
size in the MT algorithm. During early experimentation it was observed that
more rapid convergence may be achieved (for all algorithms, including MT) by
initially promoting more aggressive search (wider exploration); in all the work
reported here this was done by ignoring the contribution from global guides
(cg = 01in (4)) when |A| < 100. For all methods N = 100 particles comprised
the swarm and the algorithms were run for 600 generations.

Table 2 shows the mean, standard deviation, median, worst and best values of
the GD(A) and Vp(A) measures over 20 different random initialisations of each
method. On the basis of these results it is difficult to distinguish between the MT
and ROUNDS methods, but it is clear that the RANDOM and PROB methods are
generally superior to both of them. In terms of the GD measure the RANDOM
selection scheme appears to be slightly superior to the PROB method, but the
Vp(A) measure favours the PROB method. This reflects the explicit promotion of
search towards edges and sparsely populated regions by PROB, resulting in better
coverage of the front, which is measured by Vp(A), rather than merely distance
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Figure 2. Archives, archive growth and histograms of distances to the DTLZ3 Pareto
fronts corresponding to the median result of the GD measure for (top to bottom) MT,
ROUNDS, RANDOM, PROB selection methods. (The more distant clusters of particles were
cut from the MT histogram for visualisation purposes.)

from the front which is quantified by GD(A). The fronts from the 20 different
runs of RANDOM and PROB methods were compared pairwise by calculating the
volume in objective space dominated by one front but not by the other [12]: in
over 60% of the comparisons PROB outperformed RANDOM.

Figures 1 and 2 show for DTLZ1 and DTLZ3 respectively the archives,
archive growth and histograms of the distances from P for the median run ac-
cording to the GD measure. For both problems it is apparent that RANDOM
selection achieves tightly grouped solutions close to the true front, but the PROB
scheme yields a better coverage of particles. These figures also show that the
PROB and RANDOM schemes both result in significantly larger archives than MT
and ROUNDS. It is also interesting to note that although ROUNDS often fails to
converge well it does provide good coverage.

These results, along with the preference for an algorithm promoting diversity,
lead us to choose PROB selection as the best alternative and from now on we
concentrate on this method.



Table 3. Comparison, using the GD measure, between the PROB and MT selection
methods with and without scaling of objectives. A indicates the percentage change
between scaled and unscaled quantities.

PROB MT
DTLZ2| unscaled rescaled A unscaled rescaled A
Best [5.79 x107% 5.87 x 10°% +1.38% [ 52 x 1073 6.4 x 107° +18.75%
Worst [ 1.10 x 1072 9.95 x 10™*  -9.54% | 0.0189 0.0174 -7.91%
Average | 7.18 x 107% 7.06 x 107* -1.67% | 0.0113 0.0120 +5.83%
Median |6.64 x 107* 6.84 x 107* +2.92% | 0.0111 0.0119 +6.72%
S.dev. [1.44x107* 1.03x107% -284% |38 x107% 3.1x 1072 -18.42%

PROB MT
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Figure 3. Pareto fronts and histograms of distances to the true Pareto fronts corre-
sponding for unscaled (top) and with fs rescaled by 20 (bottom) using the PROB (left)
and MT (right) selection rules.

As mentioned previously, the selection methods introduced here do not de-
pend upon metric information in objective space and thus may be expected to
be unaffected by the scales on which the objectives are measured. To illustrate
the robustness of the method we compared 20 optimisations of the DTLZ2 test
problem in which one of the objectives was rescaled with 20 optimisations with-
out rescaling. (All optimisations started from different random initial particle
locations.) On the i-th optimisation one of the objectives (chosen cyclically) was
multiplied by (i + 1). The fronts obtained after 45 generations were assessed
using the GD(A) measure, but to facilitate comparison the relevant objective
was rescaled back to the usual scale.

Average results are shown in Table 3 and Figure 3 compares the estimated
Pareto fronts for runs in which fs was multiplied by 20 with fronts from unscaled
runs. As the table shows, the optimisations using PROB selection are unaffected
by the rescaling, in contrast to the MT method which relies on objective space
distances for its selection of guides.
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5 Keeping particles within the search space

The velocity and position updates (4) and (3) are liable to cause particles to ex-
ceed the boundaries of the feasible regions and both single and multi-objective
PSO algorithms must be modified to keep the particles within the constraints.
The manner in which this is done may have a great impact on the performance
of the algorithm as it affects the way in which particles move around the search
space and it is particularly important when the optimum decision variables val-
ues lie on or near to the boundaries. In Algorithm 1 this is delegated to the
enforceConstraints function and in this section we discuss methods for ensur-
ing that particles remain in the feasible region.

A number of alternatives for this have been proposed: A straightforward
method [10] is to truncate the location at the exceeded boundary at this gener-
ation and reflect the velocity in the boundary so that the particle moves away
at the next generation. An alternative [18] is to resample the stochastic terms
in the velocity update formula (4) until a feasible position is achieved. Other
schemes rely on limiting the magnitude of the velocities, either explicitly [15] or
by modifying the constriction factor x and the other ‘constants’ w, co and cs
appearing in the update equations [16].

Other methods may involve using a priori knowledge about the particular
problem being optimised. For example, in [9] the trespass rule for the first D —1
parameters was different from the remainder [17], exploiting the knowledge that
in the DTLZ test functions the first D — 1 parameters determine the coverage
of the front while the remainder determine the distance from the front. This
approach does improve the quality of solutions but is not used here because we
are interested in examining generic methods and not those dependant on prior
knowledge about the functions to be optimised.

Here we examine four methods of constraining the particles. In describing
these we assume that the constraints are constraints on individual parameters
(i.e., constraints of the form L < zj < U for some upper and lower limits, L and
U), however, they are easily generalised to oblique or curved feasible regions.

TRC Particles exceeding a boundary are truncated at the boundary for this
generation and the velocity is reflected in the boundary so that they tend to
move away on the next update [10].

SHR In reflecting the particle at the boundary the TRC method endows the
particle at the next generation with a velocity away from the boundary, which
can be detrimental to finding optima if the optimal decision parameters lie on
the boundary. To combat this the SHR method shrinks the magnitude of the
velocity vector of the particle so that it arrives exactly at the boundary, but
does not alter its direction, permitting the particle to stay in the vicinity of the
boundary. Suppose that the k-th component of the particle’s position exceeds a
boundary at U, then the SHR scheme sets

KD =) + ol ) ®)
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with

(t)

z . —U

o= 7”(’;) 9)
XVUpp 1 €k

Note that, in contrast to the other methods discussed here, the SHR scheme
affects all components of the particle’s position, rather than just the component
that has exceeded a constraint.

RES The resampling method merely resamples the stochastic variables 1 and
ro in (4) and € in (3) for each velocity component until the particle location is
in the feasible region [18].

EXP The final method we examine updates the position component with a ran-

dom draw when that particular component, say x,(:), would have been updated

to a position beyond a boundary at, say, b. For convenience, suppose rg) <U.
In this case we sample from a truncated exponential distribution oriented so

that there is a high probability of samples close to the boundary and a lower

probability of samples at the current position a?](ct). More precisely a new location

acgfﬂ) is drawn with probability:

N .
(t+1)y o § P {_M} if o) <af ™V <U
xr X

pla) U—z"| (10)

0 otherwise
with obvious modifications if U < acl(ct). In a similar manner to the SHR method
this scheme tends to allow particles that would have exceeded the boundaries to
remain close to the boundaries.

5.1 Experiments

To determine the impact of each of the four methods, we compared the fronts
located for the DTLZ1 and DTLZ3 problems using each of them in conjunction
with the PROB guide selection scheme. The fronts were all assessed against the
true Pareto front using the GD(A) and Vp(A) measures. Each version was run
20 times (using the same parameters as described above) and the results are
presented in Table 4.

It is clear that the SHR method, which shrinks the velocity vector so that
the particle arrives exactly at the boundary, yields superior results on both test
problems according to both the generational distance and volume measures.
The EXP method, which resamples giving preference to locations close to the
boundary is the next best, while the two methods that tend to move a particle
away from the boundary, TRC and RES, give the poorest results. Indeed RES and
TRC occasionally prevent convergence.

Further insight into the way in which the RES and SHR methods behave may
be gained by examining the trajectory of a single particle, as shown in Figure

12



Table 4. Generational distance and Vp(A) measures for constraint handling methods
compared on DTLZ1 & DTLZ3

GD(A) Vr(A)

DTLZ1 SHR RES EXP TRC SHR RES EXP TRC
Best [3.77x107° 1.3588 6.36 x 107> 7 x 107°]0.9997 0.1289 0.9996 0.9957
Worst | 0.0349 11.8362  0.1996 0.4706 |0.9796 0 0.6958 0

Average |5.55x107% 82132  0.0336 0.1747 0.9974 0.0084 0.9645 0.6983
Median [1.41x10~* 8.6158  0.0178 0.2064 [0.9992 0  0.992 0.8221

S.dev. | 0.011426 2.3872 0.05 0.147 | 0.0047 0.0297 0.0699 0.3035
DTLZ3

Best |5.77x107° 21.75 2.03 x 10~ 0.0295 [0.9981 0  0.9965 0.9964
Worst | 0.2621  41.08 1.5826 409 |0.704 0 0 0
Average| 0.0305  31.74 0.1539 1.61 0945 0 0.8145 0.2189
Median [1.52x107% 32.29 0.0381 1.54 [0.9946 0  0.9367 0.0955
S. dev. | 0.068707  4.25 0.3501 1.21 0.086 0 0.2892 0.2945

4. The figure shows 7 coordinates of a single particle during an optimisation
of the DTLZ1 problem. As remarked previously, in this problem the optimum
value for variables z3 to x7 is 0.5, while 0 < z1,z9 < 1 provide coverage of the
front when x3 to x7 are at their optimum value. It is clear from Figure 4 that
the resampling method RES promotes greater movements across the space which
may be beneficial for exploration. However during the resampling the particle
is pushed away from the optimal locations. In contrast the SHR scheme permits
the particle to remain close to the boundaries during the search process.

The DTLZ test problems which we analyse here are special in that the roles
of the decision variables may be clearly distinguished. However, it is likely that
in real problems optima may lie close to or on the constraint boundaries or these
regions will be visited en route to the optima and it will be important to permit
particles to properly explore these regions.

6 Conclusions

We have examined several methods of choosing global guides in multi-objective
extensions of particle swarm optimisers. Unlike previous work, guides are se-
lected without reference to distance information in the objective space, which
renders them robust to the relative scalings of the objectives. Indeed, if the rel-
ative importance or scales of the objectives were known in advance it might be
more straightforward to optimise a single, appropriately weighted, sum of the ob-
jectives. Notions of dominance and Pareto optimality are well suited to handling
competing objectives whose relative importance is a priori unknown and it is
therefore natural to eschew metric information in favour of dominance concepts
when choosing guides. We find that selecting guides probabilistically from the
archive of non-dominated solutions, giving more weight to solutions that dom-
inate few particles, provides both good convergence and widespread coverage.
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Figure 4. Movements of a particle and growth of the archive during the searching
process when using SHR and RES methods on DTLZ1. (z1 to xz7 are shown top-left,
top-right, ..., to bottom-right.)

This method yields superior performance to an existing MOPSO technique and
is robust to changes of scale in the objective functions.

The computation involved in the selection is a little more extensive than
other recently proposed schemes (e.g., [9,10]) but is more than compensated for
by improved convergence and coverage.

The PROB selection method selects guides with probability inversely propor-
tional to the number of particles the potential guide dominates (c.f., (6)). It
would be interesting to examine the performance of an algorithm which selects
guides with probability proportional to |X,|~%; as ¢ — 0 the method becomes
the RANDOM method, but as ¢ increases additional weight is given to sparse re-
gions. Although this might enable finer control of the convergence and coverage
it would introduce an additional parameter to be ‘tweaked’.

It was found that the manner in which particles are constrained to the fea-
sible region can vastly affect the performance of a MOPSO. Four methods of
constraining particles were examined and it was found that a method which
permits particles to remain close to the boundaries enables more rapid location
of the Pareto front. We anticipate that careful handling of solutions to allow
exploration close to the boundaries will be important not only in MOPSO, but
also in other approaches to multi-objective optimisation.
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