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Abstract

In vivo optical imaging of the visual cortex (both of intrinsic signals as well as with voltage-

sensitive dyes) makes the activity of entire neuronal assemblies accessible for the �rst time.

However, the magnitude of the data collected (>1 Gbyte/minute) as well as the tiny signal-to-

noise ratio (O(10�4)) necessitate the development of optimized analysis algorithms. We have

developed extensions of the Karhunen-Lo�eve principal components analysis that e�ectively �lter

out unwanted noise and isolate the visually-relevant cortical response; the size of the remaining

data set is drastically reduced. The implementation of these techniques on a Parallel Virtual

Machine, which allows real-time extraction of cortical functional architecture and dynamics, is

described as well. These techniques can be a powerful tool wherever manipulation of a large

scienti�c data base is required.
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Introduction

Light from the external visual world is focused by the lens of the eye onto the retina. Some of the

many transformations of visual information take place in the layers of the retina. The �rst layer

of a typical mammalian retina is comprised of O(108) photoreceptors, while the �nal stage of the

retina, the ganglion cell layer, sends O(106) �bers into the optic nerve. Thus there is an O(102)

convergence in the visual information collected by the eye. The lateral geniculate nucleus (LGN),

which is the next sub-cortical station, also contains O(106) neurons. Both the retina and the

LGN process information in a circularly symmetric fashion; neurons at the retinal and LGN stages

have virtually circular local receptive �elds. Information leaves the LGN in (at least) two distinct

streams. In brief, the P (Parvo)-stream carries information which is relatively highly resolved in

space, is color coded , and is temporally low-pass. The M(Magno)-stream is optimal for coarse

grain patterns, is broadband in color and temporally bandpass. As this suggests, the receptive

�elds of M -cells are signi�cantly larger (4 to 9 times in area) than those of the P -cells, and the

former are signi�cantly more sensitive to luminance contrast than are the latter [1].

The next stage in the transformation of visual information occurs at the primary visual cortex,

also known as V1 (or area 17). The cortex is a thin piece of tissue (about 1:7 mm thick from dura to

white matter) composed of six layers, and V1 occupies an area of about 15 cm2. Visual information

is greatly elaborated in the primary visual cortex, a fact which is underlined by the presence of

O(108) neurons in V1, rougly 100 times as many as in the LGN. Circular symmetry is replaced by

elongated receptive �elds for the neurons in the upper layers of the cortex. The familiar modalities

of vision such as color, texture, orientation, motion and so forth, are represented in the cortex, and

this must be so for every visible position in visual space. It is found that neurons subserving a

particular modality are organized in columns perpendicular to the surface of the cortex. In addition,
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for many modalities, cells with similar eye, orientation or motion preference tend to be clumped in

patches.

This picture of the architecture and functionality of the visual cortex is based on over 25 years

of detailed experiments using single unit recording and staining methods [2, 3].

Optical Imaging

A new chapter in neurophysiological research began with the introduction of optical imaging meth-

ods. Cohen and his colleagues [4] introduced the use of voltage sensitive dyes to monitor neuronal

activity. (For a review see Lieke et al [5].) Such dyes, which respond instantly to changes in

membrane voltage, permit the polling of vast populations of neurons, in contrast to the single unit

recordings from which our present knowledge of cortical dynamics is largely derived. A related form

of imaging, known as intrinsic signal imaging, makes use of changes in the re
ectance of cortical

tissue due to metabolic activity induced by neuronal activity, and without the use of dyes. The

discovery of the intrinsic signal by Grinvald et al [6], allows measurements of activity, free of dye

related problems such as phototoxicity. In both instances responses to visual stimuli are extremely

small. For example, the intrinsic signal measures cortical re
ectance which includes contributions

from normal (unstimulated) background activity, such as cardiac and respiratory activity, as well

as noise. The sought-after signal is O(10�3) or less of the total signal. Figure 1 shows four cortical

images collected while a macaque viewed four di�erent stimuli: di�erences in the cortical response

are imperceptible to the naked eye.

Optical imaging o�ers the possibility of going well beyond the local activity of individual and

neighboring neurons. We can now attempt to measure assemblies of neurons engaged in correlated

activity and reveal the dynamics and underlying network of connections at work in the cortex.
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Subtraction Methods

A standard procedure for extracting the extremely small optical signal is referred to as the method

of subtraction. For purposes of background and later comparison we brie
y discuss this procedure.

In general, an image will be represented by the gray level, �(x), at pixel location x. More

particularly, we denote the optical response to visual stimulation of the left eye by �` = �(`;x).

(The particular stimulus is not of concern at this moment.) We can write this as

�` = �B(x) + '(`;x); (1)

where �B represents the background (vegetative) signal. Similarly, the right eye response can be

written as

�r = �B(x) + '(r;x): (2)

In each instance ' represents the level of activity above the background. The background is

eliminated by subtraction:

�� = �r � �` = '(r;x)� '(`;x): (3)

To minimize e�ects of noise and drift one averages over an ensemble of such di�erences,

Roc =< �� >=
1

N

�X
�r �

X
�`

�
; (4)

where N is the number of pairs of measurements. Roc is referred to as the ocular dominance map,

and an example is shown in Figure 2. Here, the light gray regions are active when the left eye

is stimulated, corresponding to a decrease in re
ectance, while the dark gray regions are active

during right eye stimulation. Ocular dominance maps obtained in this way show good qualitative
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agreement with similar maps obtained by staining techniques (for a review see LeVay & Nelson [3]).

A similar program can be carried out for orientation maps. Drifting bars, say of orientation �,

are a standard visual stimulus. (For purposes of exposition we do not discuss here the separation

of direction and orientation.) Cortical cells are known to be narrowly tuned to orientation [7].

Consequently, cells which �re for an orientation �0, are usually relatively silent for � = �0 � �=2.

Hence, if we represent the response image to bars of orientation � by

�(�;x) = �B(x) + '(�;x) (5)

we can eliminate the background by considering

�� = f�(�;x) + �(� + �;x)g �

�
�

�
� +

�

2
;x

�
+ �

�
� �

�

2
;x

��
(6)

As before we can form the ensemble average

R� =< �� > : (7)

An example of such a response is exhibited in Figure 3. The dark regions corresponds to maximum

response (a decrease in cortical re
ectance) at � (or � + �) and the dark regions to maximum

response at � � �=2. Through a systematic investigation of the response patches one can generate

an orientation preference map [8].

Subtraction methods are, however, susceptible to 
uctuations in the background re
ectance,

�B , resulting from changes in the animal's physiology. There may be imperfect cancellation of

the background, making it di�cult to distinguish the response elicited by stimulation. Below we

outline a new technique for extracting the response in an optimal manner.
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Eigenfunction Methods

Optical imaging of the cortex generates extremely large databases. Images containing as many as

O(106) pixels can be produced at the rate of O(102) per second. To accommodate the low signal

to noise ratio a dynamic range of 212 gray levels is required. A minute of recording can therefore

produce over �ve gigabytes of data. The combination of large data sets and low signal to noise

underline the need for innovative approaches for the analysis and interpretation of the results.

From a number of perspectives the Karhunen-Lo�eve (KL) procedure o�ers an ideal framework

for examining such data. (See Sirovich & Everson [9] for an earlier presentation of such a cortical

study.) It creates a coordinate system which is intrinsic to the data, and is optimally compact. For

completeness we brie
y review KL theory.

In general, an optical image can be represented by

� = �(t;x) (8)

where � is the gray level at pixel location x at time t. For purposes of presentation it is convenient

to regard both t and x as continuous. We seek orthonormal functions f n(x)g in space and fan(t)g

in time together with constants f�ng such that

�(t;x) =
X
n

an(t)�n n(x) (9)

where

Z
 n(x) m(x)dx = ( n;  m)x = �nm (10)

and
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(an; am)t =

Z
an(t)am(t)dt = �nm (11)

From (9) it follows that

�nan = ( n; �)x (12)

and

�n n = (an; �)t: (13)

It follows from these relations that  n is an eigenfunction of the two-point correlation

K(x;y) = (�(t;x); �(t;y))t; (14)

that is

Z
K(x;y) n(y)dy = �2n n(x): (15)

Once  n and �n are determined from (15) then an(t) is determined from (12). The dual prob-

lem of �rst determining the fan(t)g is often simpler and is known as the snapshot method [10].

Since K(x;y) is symmetric the eigenfunction problem (15) can always be solved and this, in brief,

demonstrates the existence of the expansion (9), which, in fact, is the continuous version of the

Singular Value Decomposition [11]. The technique is generally known as the Karhunen-Lo�eve pro-

cedure [12, 13]. The continuous form goes back to Schmidt [14], while the discrete version may

be identi�ed with Principal Components Analysis [15] and is closely related to factor analysis [16].

The spatial eigenfunctions,  n(x), are known variously as empirical eigenfunctions, principal com-

ponents or empirical orthogonal functions [17].
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If the eigenfunctions are arranged in descending order of the variances �2n, then it follows that

in approximating the dataset with an N term truncation of (9), for the choice of our eigenfunctions

(15) the mean squared error

EN =

Z
dxdt f�(t;x) �

NX
n=1

an(t)�n n(x)g
2 (16)

is minimum for all values of N and over all such eigenfunction expansions. By representing

the dataset in terms of the �rst N empirical eigenfunctions one captures, on average, a fraction

PN
n=1 �

2
n=
P
1

n=1 �
2
n of the variance, the maximum that can be captured using any N orthogonal

basis functions.

In Figure 4 we show the �rst eight eigenfunctions from an experiment on the visual cortex of a

macaque monkey. The �rst of these (having the largest variance) closely resembles the snapshots

of Figure 1, and can be associated with background activity. Comparison with vascular images

shows that eigenfunctions 3 and 4 are due to vascularity. By contrast, the second eigenfunction

is virtually identical to the ocularity map shown in Figure 2, which was obtained for this data

set by the subtraction method. This observation lends strong support for the methodologies we

have adopted. For the moment, we forego discussion of the remaining eigenfunctions which are

associated with orientation and other aspects of the stimulus.

Noise and Background

In Figure 5 we exhibit in log-log form the variance or eigenvalue spectrum, �2n, for the data set

under discussion. The �rst eigenvalue, �2
1
, is associated with the �rst eigenfunction which repre-

sents the gross re
ectance of the cortex: its size relative to the other eigenvalues underlines the

tiny size of the intrinsic signal. Apart from �2
1
, the spectrum is comprised of two di�erent regions.
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The �nal leg, consisting of many small eigenvalues, can be associated with pixel noise; the corre-

sponding eigenfunctions are 
uctuations, uncorrelated at all scales. As we have already observed,

eigenfunctions 1, 3, and 4 describe background physiological (but probably not neural) activity.

In Figure 6a we show an image at some time t with the background removed, viz.,

�(t;x) �

X
n=1;3;4

( n; �)x  n(x): (17)

The animal was viewing a stimulus of drifting random dots with its left eye, and the responding

columns are apparent. In Figure 6b we show

~� = �(t;x)�
X

n=1;3;4
n>11

( n; �)x  n(x):; (18)

i.e., the same image but with the pixel noise also removed. When ~� is viewed in a time sequence, we

obtain a dynamical picture of cortical activity in response to the stimuli presented to the animal.

The relative ease with which we were able to analyze the above data set is not typical. Isolation

of a modality such as ocular dominance by means of a single eigenfunction, while appealing and

desirable, depends greatly on the quality of the data. As already mentioned, the response to a

stimulus can be O(10�4) of the measured signal. In addition to a daunting signal to noise ratio we

must also contend with drift in both the animal's physiology and in the apparatus.

With these points in mind we observe that KL does not yield us a road map for data analysis.

Rather it provides us with an unsurpassed view of the terrain. With the use of KL we are generally

able to remove both pixel noise and background activity. We skip over some of the technical issues

that enter into this process (see Everson et al [18]). The images that we discuss below should be

regarded as having the background and noise removed. In a manner of speaking the KL procedure
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furnishes us with a band-pass �lter.

Indicator Functions

In order to extract the desired signal we have introduced a form of conditional averaging which

leads to the concept of an indicator function [18]. We denote by �k 2 P the responses measured in

response to a particular stimulus P . The indicator function, fP (x); is determined by extremizing

the criterion function,

C =
X
�k2P

((�k(x); fP (x))x � 1)2 +
X
�k 62P

(�k(t;x); fP (x))
2

x
: (19)

Thus, ideally, fP lies parallel to all responses to the distinguished stimulus and perpendicular to

the remaining responses.

In Figure 7 we show ocular dominance columns obtained by subtraction and those obtained by

forming

f0 = fR � fL; (20)

where R and L refer to right and left. With the same goal, alternatively we may let f0 extremize

X
�k2R

(�k; f0)x � 1)2 +
X
�k2L

((�k; f0)
2

x
+ 1)2: (21)

We point out that the vascularity which mars the subtraction picture is much reduced in the

indicator function picture. Also, the indicator function shows zero response along the bottom left

edge, which is area V2 and does not contain ocular dominance columns. As the �gure illustrates,

the procedures work quite well, even in situations when the subtraction methods fail or produce

only a faint signal.
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As another illustration of the indicator function idea we consider responses to drifting, oriented

bars. In the actual experiment 16 directions

�k = 2�k=16; k = 1; : : : 16 (22)

were used. We therefore obtain sixteen indicator functions, fk(x), from an expression similar to

(19). For simplicity �(�j ;x) can be regarded as the mean response to bars at orientation �j. A

typical indicator function, derived from cat data, is shown in Figure 8.

An invariance argument, which is given elsewhere [19], indicates that the characteristic function

for orientation is given by the following Fourier transform of the indicator functions:

F2(x) =
X
k

fk(x) e
�2i�k : (23)

Thus the real and imaginary parts of F2(x) represent characteristic functions, which in theory have

equal variances. Alternatively, we can consider the amplitude and phase of F2(x), which are shown

in Figure 9. As a little thought reveals, the phase plot gives the orientation to which neurons at a x

are tuned. The amplitude portion of the �gure gives us the magnitude of the orientation response

at x. Notable among the features of the orientation map are the singular points which mark the

intersection of many separate orientation regions, and at which the amplitude must fall to zero.

The structures surrounding a singular point are referred to as pinwheels in the literature [8].

Computational Aspects

The combination of large scale data acquisition and relatively strenuous analysis methods creates

some unique computational demands. In assessing the results of imaging methods it is important
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to be able to make comparison with electrode recordings { still considered to be the gold standard.

Therefore, the computational demands of experiment and analysis are considerably heightened by

the desire to achieve near real time results. In this way we are able to record electrically from

cortical regions that are functionally identi�ed by imaging.

Electrical recording of three types can be correlated with the optical images: single unit record-

ing, recordings from small neuronal clusters (2-4 units), and gross potentials or local �eld potentials.

The time series of electrical recordings of each type can be cross-correlated with the time courses

of the �rst few signi�cant eigenfunctions to determine which of them re
ects the activity of the

neuron(s) from which we recorded.

We use a Parallel Virtual Machine (PVM) [20, 21] to perform real-time Karhunen-Lo�eve decom-

positions of images as they are recorded. The procedure consists of two phases: a) the empirical

eigenfunctions,  n(x), for the particular experiment are determined from an initial experimental

sequence; b) the modal coe�cients, �nan(t), are found for each snapshot by projecting the picture,

�(x; t), onto each of the empirical eigenfunctions in turn.

The key to this procedure is the compression provided by the KL decomposition. As was

outlined above, the empirical eigenfunctions,  n(x), for large n describe only pixel noise and random


uctuations in the dataset. In our experiments the number of relevant eigenfunctions, with variance

above the pixel noise, is usually no more than 100. Therefore we need only �nd the 100 principal

eigenfunctions (in phase a) and form the �rst 100 modal coe�cients (in phase b) to capture all the

relevant activity.

This degree of compression, uniquely a�orded by the KL decomposition (recall equation (16)),

vastly reduces the burden of computation and storage. Elementary estimates show that over a

gigabyte of data can be generated in the course of ten minutes of optical recording. Even if it

were necessary to monitor 103 eigenfunctions, which would require a gigabyte of memory, then the
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storage of the associated modal coe�cients for a ten minute period would need only an additional

megabyte of storage. (Longer experimental runs lead to memory requirements which rise linearly,

i.e., 102minutes would need 10 megabytes.) While technically this compression is lossy, the nominal

thousand modes lie deep in the pixel noise, so that it is noise, and not real information, which is

lost.

The PVM in our laboratory consists of ten high-performance CPUs residing in several heteroge-

nous workstations, and linked by a network which allows rapid data transfer and multicasting of

data among them. The parallel virtual machine con�guration is suited for computing problems

which possess an inherent coarse-grained parallelism. Both phases of the procedure we describe

have a natural parallelism.

In the initial phase, images passed to the PVM from the camera are multicast to the component

machines which assemble the correlation matrix, C(t; s) = (�(t;x); �(s;x))x and diagonalize it to

�nd the empirical eigenfunctions. This stage is naturally coarse-grained in that each component

CPU of the PVM is responsible for computing several columns of the correlation matrix.

The second phase of the procedure involves projecting each snapshot onto the empirical eigen-

functions. Each snapshot recorded by the camera is multicast to a member of the PVM, and that

member �nds the projections for a group of eigenfunctions. This stage too is naturally parallel,

since each projection operation is orthogonal to the others, allowing a component machine to hold,

in core memory, the eigenfunctions for which it is responsible, and to project incoming images onto

those eigenfunctions without communicating with its peer machines.

The computational bottleneck is currently the transmission of images from the camera to the

various machines in the PVM. We anticipate that the installation of a fast FDDI or ATM network,

together with (lossless) compression algorithms adapted for the cortical images, will allow us to

cope with the very high data rates possible with voltage-sensitive dye imaging.
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Summary

Optical imagining of the cortex produces a number of problems of interest to biological imaging and,

more generally, to the study of scienti�c data bases. We encounter data sets which easily exceed

a gigabyte. The obvious problem of storage requires sensible compression procedures. Moreover

these should be of a nature conducive to analysis. In addition we have to deal with an extremely

low signal to noise ratio.

The suite of extensions of the Karhunen-Lo�eve procedure which we have developed meet the

above problems. Through the use of the empirical eigenfunctions we are able to �lter out noisy and

unwanted parts of the data. We are then left with a greatly compressed data set which contains

the essential information contained in the original data, and the data are rendered in a form

that is conveniently navigated and browsed. The methods and algorithms, while computationally

intensive, are nevertheless within reach of available equipment.
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1 mm

Figure 1: Four intrinsic signal images of area V1 in a macaque monkey. The gray scale indicates

the re
ectance of the cortex, and although the monkey was viewing a di�erent stimulus as each

image was recorded, stimulus-induced re
ectance changes are too small to be visible to the naked

eye. Part of the vascular tree is evident on the right hand side of the images.
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1 mm

Figure 2: Ocular dominance columns in the macaque obtained by subtracting of images obtained

in response to stimulating the right eye from those obtained in response to left eye stimulation.
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1 mm

Figure 3: Orientation response in area 18 of a cat found by subtraction of responses obtained to

bars drifting in orthogonal directions.
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Figure 4: The �rst eight eigenfunctions,  n(x) from a KL decomposition of intrinsic signal images

from a macaque cortex.
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Figure 5: The eigenvalue spectrum associated with the eigenfunctions shown in Figure 4. Each

eigenvalue �2n indicates the mean contribution of the eigenfunctions  n(x) and an(t) to representing

the dataset. The eigenvalues are normalized so that
P

n �
2
n = 1.
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Figure 6: A single snapshot with contributions from eigenfunctions describing noise and vascularity

removed. (a) Eigenfunctions 1, 3 & 4, describing the gross re
ectance and vascularity subtracted;

(b) eigenfunctions  n, n > 11, describing pixel noise subtracted as well as those in (a).
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1 mm

Figure 7: Comparison of ocular dominance columns in a macaque found by subtraction methods

and the indicator function technique.
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1 mm

Figure 8: Orientation indicator function from area 18 of a cat.
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1 mm

Figure 9: Fourier analysis of orientation indicator functions. The top picture shows the orientation

to which neurons are tuned, while the bottom picture gives the magnitude of their response.
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