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While many models of the dynamics and interactions of single neu-

rons are extant, analogous constructs which attempt to describe

large-scale (� O (108)) neuronal activity are few and far between.

Optical imaging of the visual cortex makes such macroscopic neu-

ronal activity accessible. Symmetries latent in the cortical architec-

ture are used here to develop a scheme for analyzing such images.

In this way, intrinsic modes of cortical response can be uncovered,

using minimal assumptions. Some of these modes correspond to

already-familiar features of the functional architecture, and it is

highly likely that others hold physiological relevance as well. Fi-

nally, the number of such modes that would be required in a more

fully developed model (incorporating cortical dynamics) is approx-

imated.
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1 Introduction

The dynamics of a single neuron may be regarded as a well understood prob-

lem. Hodgkin-Huxley theory (see e.g. [1]) provides both a solution to the

problem and a framework for further re�nement of single neuron dynamics.

However well understood this may be, when confronted by the interaction of

the O(1010) neurons that compose the mammalian brain, one is reminded of

the insigni�cant role of the dynamics of single molecules in the macroscopic

description of the 
ow of a gas. Several computational models of the cortex

have been based on the interaction of populations of individual neurons ([2],

[3]), but thus far only a few dynamical macroscopic (mathematical) models of

the brain or parts of it have been advanced. In this investigation we consider

the mammalian visual cortex, with the eventual goal of constructing a model

of large scale interacting populations of neurons, participating in macroscopic

modalities such as eye preference (ocularity), orientation preference, color,

texture and so forth.

Evidence for the existence of coherent macroscopic organization is available

from experiment, especially for the visual cortex. For example Hubel &Wiesel [4],

[5] showed that primary visual cortex is parceled into vertical columns of neu-

rons coded for like orientations, with nearby columns coded for nearby orien-

tations. Individual cells appear to be binocular, but generally, stimulation of

one eye dominates over the other. Staining procedures have demonstrated that

patterns of ocular dominance appear in segregated stripes that meander and

bifurcate in a rich and somewhat chaotic pattern [6]. Visual modalities must

�nd in the cortex locations where they are represented. It is thus reasonable

to �nd that in the visual cortex of cat or monkey, orientation columns reside

within the ocular dominance columns: each region of eye preference contains

a population of neurons which respond to the full range of orientations. The

same theme, namely that macroscopic assemblies of neurons of the cortex are

engaged in like activity, also emerges from imaging of cortical activity [7{

11]. This approach provides the central impetuous for the deliberations of the

present paper.

At the level of the primary visual cortex the transmitted visual information

has already undergone a number of transformations or mappings. The corti-

cal map is a topographic (continuous) map of retinal areas of responsiveness,

known as receptive �elds. The modalities of orientation and ocular dominance

play a central role in the cortical map. Starting with the ice cube model [12]

and the pinwheel model [13,14] a range of models has been proposed for ori-

entation and ocular dominance and a critical comparative study of the many

ensuing models has recently appeared [15]. The investigation which follows is

di�erent in spirit from these studies, in that no model is proposed. Rather, we

explore the consequences (applicable to any such model) of latent symmetries
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present in the cortical architecture and hence in the response images that are

generated from it. The symmetries provide organizing principles for analyzing

and viewing the data.

2 Background

Visual space is divided by the mammalian visual system into right and left

hemi�elds. Each hemi�eld is projected to the contra-lateral visual cortex. Thus

the normal right and left visual cortices each receive inputs from both the

contra-and ipsi-lateral eyes, in essentially equal proportion. Stimulation of

the visual system may be performed either monocularly or binocularly. In

exploring cortical response a rich variety of visual stimuli, S(t), are introduced

in order to elicit the various modalities that vision appears to encompass.

In the following we will denote cortical response by

� = �(t;x) (1)

where �, the recorded \gray level" measures neural activity at pixel location

x at time t. (It will not be necessary to distinguish between continuous and

discrete variables.) We shall also use � to denote the time history of cortical im-

ages collected in an experiment; a component of this signal is a result of neural

activity. The so-called "intrinsic signal" measures the re
ectance of light from

the tissue induced by local changes due to neural activity [10], while 
uores-

cence signals from appropriate dyes directly measure voltage changes [16,17].

In order to make explicit the dependence of � on the stimulus, we can also

write (1) as,

� = �(t;x; S[t0]): (2)

The form S[t0] is intended to convey the concept that the response �, at (t;x)

is a functional that depends on the entire past history t0 � t of the stimulus,

S.

Although a dynamical theory of the cortex is an eventual goal, in the work

we present here transient e�ects will be regarded as having been averaged

out (functional architecture rather than dynamics is being considered at this

stage). Thus, instead of (2) we will consider

� = �(S(t);x) (3)
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so that t plays the role of an index for the presented stimulus and � is the

appropriately averaged image elicited in response to the stimulus. In e�ect

the function S(t) provides a lookup table from which we �nd the stimulus

presented at time t. Although we will continue to use (1) it should be regarded

as shorthand for (3). Also on the notational side, when appropriate we will

replace S(t) in (3) by a vector which more explicitly indicates the nature of

the stimulus. For example, a spatial pattern that is frequently used as a visual

stimulus is a repeated array of drifting parallel bars oriented at some reference

angle �: In this case we will write,

� = �(e(t); �(t); x); (4)

for the image captured in response to the stimulation of the left or right eye,

e(t);with a pattern which has orientation �(t).

3 Data Analysis

In order to characterize cortical images we introduce su�ciently complete sets

of orthonormal functions, to be de�ned below, in time fan(t)g and in space

f n(x)g; i.e.,

(an; am)t =
X
t

an(t)am(t) = �mn; (5)

and

( n;  m)x =
X
x

 n(x) m(x) = �mn; (6)

and constants f�ng so that we may write

�(t;x) =
X
n

an(t)�n n(x): (7)

(In (5) and (6) and in the following
P

is shorthand for either discrete sum-

mation or continuous integration.) From (6) it follows that

( n; �)x = �nan(t); (8)

and

(an; �)t = �n n(x): (9)
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If we form the spatial and temporal correlation functions

K(x;y) = (�(t;x); �(t;y))t; (10)

C(t; s) = (�(t;x); �(s;x))x; (11)

then the back substitution of (8) into (9) yields

X
y

K(x;y) (y) = �2 (x); (12)

which speci�es  n and  m in (6), while (9) into (8) gives

X
s

C(t; s)a(s) = �2a(t); (13)

which speci�es an and am in (5).

On general grounds, since the kernels K and C are symmetric, the existence

of the decomposition, (7), has been demonstrated. The representation (7) can

be referred to as the singular value decomposition (SVD) [18], (12) as the

Karhunen-L�oeve (KL) procedure or principal components analysis [18] and

(13) as the snapshot method [19]. From (8) and (9) it follows that only one of

the two eigenfunction problems, (12), (13) need be solved. The basic method

(but not in its statistical framework) is due to Schmidt [20]. (See [21] for

further background.)

The two point correlation function, K(x;y), measures the range of correla-

tions present in the image data. The eigenfunctions ofK(x;y) can therefore be

expected to isolate and rank coherent activity , i.e., to identify coherent struc-

tures. Patterns with chaotic appearance are seen in cortical images and are

reminiscent of those seen in chaotic or turbulent 
uid 
ows. The KL procedure

has proven to be a highly successful means for treating the very complicated

phenomena in such 
ows [22].

It is worth noting that the coordinates fang and f ng are intrinsic to the data.

As is well known, this coordinate system is optimal in the sense that the error

incurred in any �nite truncation of (7) is minimal over the class of orthogonal

decompositions.

4 Filters

The response evoked by visual stimuli can be as small as O(10�4) compared to

the signal from the normal background activity at the cortical surface, and is
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overwhelmed by other time-dependent activity engendered by respiration and

pulse. A suite of procedures for eliminating unwanted signals have been devel-

oped in our laboratory [23]. These procedures, broadly referred to as indicator

function methods, have the following features in common: 1) From records of

unstimulated activity an image space, say B, is generated, which spans back-

ground and noise; 2) The projection operator, PB, onto B is constructed from

this; 3) Noise and background are removed by forming the indicator function
~� for a given stimulus

~� = �� PB� (14)

so that (~�;B) = 0.

Here � contains large spatial and temporal scales due to respiration and pulse,

and also small spatial and temporal scales resulting from pixel noise, while in
~�, which may be regarded as a �ltered version of �, both large (respiration and

pulse) and small scales (pixel noise) are removed. For the sake of simplicity

we drop the tilde, and unless otherwise stated, in the following, � refers to the

�ltered image or response.

5 Symmetries

For purposes of this exposition we restrict attention to the two visual modal-

ities of ocularity and orientation. (As will be seen, directionality of motion

is coupled to orientation and therefore will enter into the discussion.) The

ocularity, e(t); of a stimulus can take on the values r and ` for right and

left eyes, respectively. In experiments, oriented stimuli are frequently drift-

ing gratings composed of bars which are periodically repeated. Since these

are of a stereotypical form it su�ces to specify only their orientation, �(t).

Equation (4) above represents cortical images obtained in response to a stim-

ulus (e(t); �(t)): (Recall that the focus is on average responses with transients

averaged out in the analysis.)

The particular way in which ocularity and orientation are laid out on the

visual cortex is not �a priori known, nor is it important for our deliberations.

The assumption which we make is that, irrespective of the ocular mapping,

the layout is even-handed; that is, an extensive enough piece of tissue contains

equal numbers of neurons devoted to the left and right eyes. For orientation,

we assume that an oriented stimulus elicits a response from an equal number

of neurons regardless of orientation. It is expected that, if a large enough piece

of tissue is examined the principle of \even-handedness" will be respected in

the statistics. As mentioned, the images have a chaotic-appearing character
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and we will see that the eigenfunctions inherit this appearance. This does not

con
ict in any way with the notion of symmetry as used here. The symmetry

lies in the mapping and not in the resulting pattern. The cortex creates a

pattern according to a blueprint of its own. The principle of symmetry only

requires that this plan treat right and left eyes equally and that all orientations

be equally represented.

Symmetry, which can be marred by tissue size, may also be a�ected by noise.

Another possible symmetry breaking is the \oblique e�ect", which suggests

that orientation discrimination is stronger at vertical and horizontal orienta-

tions [24]. This small e�ect may be conditioned by environment, and would

appear to di�er from the slight ellipticity in orientation preference recently re-

ported [25]. E�ects of this sort, especially since they are small, can be treated

by perturbation theory, from which it follows that subspaces are split and

unperturbed eigenfunctions are distributed over several perturbed eigenfunc-

tions. These small caveats withstanding, symmetry considerations have proven

themselves to be a powerful tool for organizing and analyzing the data.

5.1 Ocularity

Here, as for orientation discussed below, the implications of even-handedness

are probably more easily viewed in terms of the temporal correlation function.

Since we have restricted attention to ocularity and orientation (11) takes the

form

C = C(e(t); e(t0); �(t); �(t0)) = C(e; e0; �; �0) ; (15)

where the prime indicates another instant of time. C is a spatial average over

the entire piece of tissue under investigation, which is assumed to be su�-

ciently large. Disregarding for the moment the role of orientation, the prin-

ciple of even handedness therefore implies that C(r; r) = C(`; `). In addition

C(r; `) = C(`; r) which follows directly from construction, (11). The correla-

tion function is thus invariant under C2; the cyclic group of two elements. This

suggests that we can reduce the operators of (12) and (13) under the group

representation of C2. To accomplish this we write

��(�;x) = �(r; �;x)� �(`; �;x) (16)

and de�ne

K�(x; y) =
X
t

��(t;x)��(t;y): (17)
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A direct calculation then veri�es that

K(x;y) =
1

2

n
K+(x;y) +K�(x;y)

o
(18)

The eigenfunctions of K+ and K� are orthogonal. To verify this we observe

that the snapshot method (Sirovich, 1987) states that the eigenfunctions of

K�, say  �; are given by an admixture of the corresponding snapshots, viz.,

 �(x) =
X
t

��(t)��(t;x) (19)

where the functions ��(t) are to be determined. (These are in fact eigenfunc-

tions of the corresponding C�(t; s) kernels.)

Substitution of (19) in ( +;  �)x shows that this vanishes as a result of the

already stated symmetry properties of C(e; e0).

5.2 Orientation

As part of the principle of even-handedness we assume that all orientations

are equally represented. The second working assumption that we adopt is that

the cross correlation, (11), satis�es

C(e; e0; �; �0) =
X
x

�(e; �;x)�(e0; �0;x)

=
X
x

�(e; � + �0;x)�(e
0; �0 + �0;x) (20)

= C(e; e0; � + �0; �
0) ;

for arbitrary �0. This simply says that if the two stimuli are rotated by the

same amount, then the average across all pixels of the cross correlation remains

unchanged. Aside from minor caveats stated above, this is a natural and rea-

sonable assumption. It follows from this that the average over all pixels of the

response product, (11), to two orientations only depends on the di�erence of

these orientations, viz.,

C(e; e0; �; �0) = C(e; e0; � � �0) (21)

If we assign the values +1 and �1 to the right and left eyes, then both symme-

tries can be incorporated into the statement that C(e; e0; �; �0) = C(ee0; ���0).
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An immediate consequences of the form (21) is that the eigenfunctions of C

are sinusoids in �. It therefore follows from (19) that the spatial eigenfunctions

are given by

 �
n
(�;x) =

X

�

ein���(�;x): (22)

6 Eigenfunctions

We next discuss the form of the eigenfunctions obtained above and make com-

parisons with experimental results. In discussing the eigenfunctions, (22), it

is useful to bear in mind that our images are represented by real numbers;

this property is inherited by the correlation operator (15), which in turn must

have real eigenfunctions as well. Thus, with the exception of n = 0, where

only one eigenfunction emerges, the eigenfunctions come in pairs, the real

and imaginary parts of (22), which pairwise decompose the space of images

into invariant two-dimensional subspaces spanned by these image pairs. Here

"invariance" has the following meaning. Let the cortical image, in response

to a speci�c stimulus, be resolved as a superposition of these eigenfunctions.

Then a geometrical rotation of the stimulus produces new superposition coe�-

cients, which are obtained from the old by the simple action of two-dimensional

orthogonal transformations within (and not between) those two-dimensional

subspaces.

We �rst consider  �0 , which from (22) is given by

 �0 =
X

�

f�(r; �; x)� �(`; �; x)g: (23)

This form which is the di�erence of right and left eye images corresponds to

a traditional construction used in cortical imaging. As discussed in Section 4,

background activity has been removed from �. In an actual experiment, the

image which is collected has the form �B + �(e; �; x), where �B is the portion

of the image due to background. Thus the process of subtracting like images,

(23), removes the background, and summation over all stimuli is equivalent to

an ensemble average. The background is removed from the resulting construc-

tion and the two ocularities appear with di�erent signatures. Figure 1 shows

ocular dominance columns obtained by the subtraction procedure performed

on cortical images from a macaque cortex. The result of of this experiment were

unusual in that the picture shown in the �gure almost identically coincides

with one of the raw eigenfunctions,  , given by (12). In most instances noise

intrudes and traces of ocular dominance columns can be seen in more than

one raw eigenfunction. Filtering procedures, section 4, in particular indicator
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Fig. 1. Ocular dominance columns, found by subtraction, from a 4 mm � 3 mm

patch of macaque striate cortex.

functions play a key role in extracting the latent information that is present

in the data. This is illustrated in �gure 2, which contrasts the re�ned eigen-

function  �0 (x), constructed from the indicator functions, with the subtraction

picture. Clearly a far better image emerges from the re�ned eigenfunctions. It

is worth mentioning that �gure 2 shows data taken from cat cortex, where it

is well-known that ocular dominance columns only appear faintly.

The images shown in �gures 1 and 2 bring out activity correlated to ocularity,

an architectural property. The structures exhibited in such �gures are called

ocular dominance columns, a term which derives from [4]. Thus we see that

the symmetry implied by the even handedness principle furnishes a proof that

the map of ocular dominance columns is an eigenfunction of the correlation

operator K(x;y). The fact that one of the eigenfunctions is a well-known

biological structure supports the suggestion that other eigenfunctions might

also represent biologically-meaningful entities.
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Fig. 2. Left:  �0 (x) describing ocular dominance columns found using indicator

functions. (5mm � 5mm patch of area 17 of cat striate cortex.) Right: Subtrac-

tion picture of the same data. The color scale for the subtraction picture has been

adjusted to emphasize the similarity between the bottom \toe" regions of the two

pictures.

Next we consider  +
0 , which from (22) is given by

 +

0 =
X

�

(�(r; �;x) + �(`; �;x)): (24)

Clearly this furnishes a response map of the cortex due to the summed activity

due to both eyes. Unlike  �0 there is no like image produced in traditional lab-

oratory practice, since background e�ects are overwhelmingly large compared

to the signal and straightforward procedures, like subtraction of the mean im-

age, are not adequate for the removal of the background. Since experimental

con�rmation of this modality is not yet available we do not dwell further on

this result.

As a next case we consider

 +

1 =
X

0���2�

ei��+(�;x): (25)

To gain insight into the meaning of this eigenfunction, we rewrite the summa-

tion as

 +

1 =
X

0����

ei�f�+(�;x)� �+(� + �;x)g: (26)

A neuron (or a pixel location) which responds purely to orientation does so

equally for � and �+ � and in such a case the summand in (25) vanishes. Sin-

gle electrode recordings con�rm the existence of such neurons [26]. Electrode
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recording also con�rms the presence of directional neurons,i.e., neurons which

respond to gratings drifting in the direction �; but not at all to gratings drift-

ing in the direction �+�. Clearly such neurons code for motion directionality,

and it is only such neurons that contribute to the summation in (25). Thus

 +
1 yields a map of the distribution of directionally sensitive neurons.

The second harmonic,

 +

2 =
X

0��<2�

ei2��+(�;x); (27)

can be written as

 +

2 =
X

0��<�

ei2�f�+(�;x) + �+(� + �;x)g: (28)

For neurons which code for orientation �+(�;x) = �+(� + �;x), while for

neurons which code for directionality only one term of the sum can be non-

zero. Thus the eigenfunction  +
2 ; carries both orientational and directional

information, in contrast to  +
1 which is purely directional.  +

2 provides us

with a map of neuronal sites which respond to orientation and subserves purely

directional sites.

In �gures 3 and 4 we show  +
1 and  +

2 ; which are conveniently represented

by amplitude and phase maps. An interesting feature of both �gures is the

presence of pinwheels in the phase maps. Each pinwheel includes a singular

point where zones of di�ering constant phase meet, and of necessity must

correspond to a locus of zero amplitude. Indeed, this is the only means by

which a complex number may vary smoothly and yet undergo a half cycle

phase change. Bonhoe�er [27] and Blasdel [8] by using subtraction methods

to eliminate background, �rst produced orientation preference maps. These

furnish loci of maximal response to oriented stimuli. Generally, directional

e�ects are small compared to orientation e�ects, and as a result the phase

map of  +
2 lies close to the orientation preference maps. This, therefore, is a

second instance for which we can demonstrate that a single eigenfunction of

K(x;y) can be identi�ed with an already known experimental structure.

Other modalities, such as  �1 and  �2 , still need experimental veri�cation and

will be discussed elsewhere.
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Fig. 3. The function  +1 (x), describing the directional response from area 17/18 in

the cat. The function is shown as a phase and an amplitude: the phase gives the

direction to which cells at x are tuned and the amplitude gives the magnitude of

the response.
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Fig. 4. The function  +2 (x), describing the orientation response from area 17/18 in

the cat. The function is shown as a phase and an amplitude: the phase gives the

orientation to which cells at x are tuned and the amplitude gives the magnitude of

the response.
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7 Dimension Considerations

Although the nature and character of dynamical systems which might describe

cortical dynamics has not been discussed, the structures which would emerge

from such a dynamical formulation are revealed by this analysis. Moreover, we

are in a position to make some educated speculations on what might be the

number of dynamical variables needed to describe such a dynamical system.

In our experiments the tissue sizes are typically 35 mm2. For these experi-

ments, the analysis indicates that 30 eigenfunctions appear to overestimate

the number of active modes. In as much as dimension is an extensive measure,

102 modes/cm2 appears to be a safe estimate and from this 1:5 � 103 modes

would appear to be a fair estimate of the modes needed to account for activity

in a cortex covering 15 cm2. However, this estimate does not take into account

all the modalities of the visual cortex, nor have all the scales been fully ex-

plored. Additionally parametric changes in the structures of the response due

to wavenumber and frequency variation in the stimulus will require further

study.

This problem of dimension may also be addressed in a di�erent, but related

manner. All visual modalities must �nd representation in the cortex, and this

must be true for every position of visual space. Results from single cell record-

ings and staining methods reveal that, although not strictly periodic, the ar-

chitecture of the primary visual cortex is repetitive. This is evidenced in at

least two ways: (1) By the presence of ocular dominance columns, each of

which has a width of roughly 500�m and which appear as relatively irregular

stripes; (2) By the presence of \cytochrome oxidase blobs", patches where a

metabolic enzyme appears in increased concentration and where there is a

rich blood supply to the cortex [28]. These are also roughly 500�m from one

another. The prevailing (although controversial) view is that the blobs medi-

ate color vision. Ts'o and Gilbert [29] have further suggested that two sorts

of blobs are required to account for the two opponent mechanisms of color

vision. On this basis a full complement of modalities is spread over approxi-

mately 1 mm2. Thus in this picture visual space is sampled by approximately

1500 sampling regions. (This compartmentalized view is easily replaced by a

continuously varying model.) The question of how many mathematical modes

are needed for a full complement of visual modalities is di�cult to answer. If

we take 10 as a nominal estimate then a model incorporating 15,000 modes

would be necessary to simulate the primary visual cortex, which is an order

of magnitude larger than the above rough and incomplete estimates in which

just 1 mode/mm2 was obtained.

Both lines of argument given above lack the precision we would like to achieve

in a discussion of this sort. At best the estimates are nominal. However, the
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main thrust of the argument is that O(104) appears to be a reasonable count

on the number of modes at work in the primary visual cortex. In comparison

with the O(108) neurons present, this represents a vast compression, and im-

plies that, due to correlations in the activities of individual neurons, a great

redundancy is suggested in a naive count which estimates the number of sep-

arate variables by the numbers of neurons in the cortex.

8 Concluding Remarks

We have made use of the KL procedure as a broad framework for developing

tools for examining and analyzing image data obtained from the mammalian

visual cortex. This procedure furnishes the tools for �ltering out background

(vegetative) activity, artifacts and noise from the signal. We are then left

with the response to the visual stimulation, a signal which can be as small as

O(10�4) of the recorded signal in the optical image.

The data can be further re�ned by means of two symmetry principles, each

based on reasonable hypotheses. A result of this was the demonstration that

ocular dominance maps are eigenfunctions of the correlation operator. It was

also demonstrated that other eigenfunctions carry orientational and direc-

tional information. In the absence of their experimental con�rmation, we have

not discussed the biological relevance of the other eigenfunctions that emerge

as a consequence of the analysis. It is worth mentioning that other modalities

also can be treated within the theoretical framework presented here. For ex-

ample, color opponency should be amenable to the same simple group theory

analysis as was used in the case of ocularity.

We end on a note of caution. It should be noted that images of small, bounded

samples of real neural tissue can be expected to depart from the ideal used in

the analysis, not strictly obeying the symmetry principles. For example, if the

tissue is not su�ciently large then we fall short of achieving symmetry due to

unequal populations of neurons. (A piece of tissue containing just one ocular

dominance column obviously destroys the right-eye/left-eye symmetry.) Nev-

ertheless the organizing principles which follow from the symmetry analysis

have proved itself capable of extracting meaningful structures from noisy data

where other methods fail.
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