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Abstract

Problems in data analysis often re-

quire the unsupervised partitioning

of a data set into clusters. Many

methods exist for such partition-

ing but most have the weakness of

being model-based (most assuming

hyper-ellipsoidal clusters) or com-

putationally infeasible in anything

more than a 3-dimensional data

space. We re-consider the notion

of cluster analysis in information-

theoretic terms and show that min-

imisation of partition entropy can

be used to estimate the number and

structure of probable data genera-

tors. The resultant analyser may be

regarded as a Radial-Basis Function

classi�er.

1 Introduction

Many problems in data analysis, es-

pecially in signal and image process-

ing, require the unsupervised parti-

tioning of data into a set of `self-

similar' clusters or regions. An

ideal partition unambiguously as-

signs each datum to a single cluster

and one thinks of the data as being

generated by a number of data gen-

erators, one for each cluster. Many

algorithms have been proposed for

such analysis and for the estima-

tion of the optimal number of parti-

tions. The majority of popular and

computationally feasible techniques

rely on assuming that clusters are

hyper-ellipsoidal in shape. In the

case of Gaussian mixture modelling

[8, 3, 4] this is explicit; in the case of

dendogram linkage methods (which

typically rely on the L2 norm) it

is implicit [5]. For some data sets

this leads to an over-partitioning.

Alternative methods, based on val-

ley seeking [3] or maxima-tracking

in scale-space [7] for example, have

the advantage that they are free

from such assumptions. They can

be, however, computationally inten-

sive, sensitive to noise (in the case of

valley seeking approaches) and un-

feasible in high-dimensional spaces

(indeed these methods can become

prohibitive in even a 3-dimensional

data space).

In this paper we re-consider

the issue of data partitioning from

an information-theoretic viewpoint

and show that minimisation of en-

tropy, or maximisation of partition

certainty, may be used to evaluate

the most probable set of data gen-

erators. The approach does not as-

sume cluster convexity and is shown

to partition a range of data struc-

tures and to be computationally ef-

�cient. We may regard the �nal

system as a Radial-Basis Function

(RBF) classi�er in which the num-

ber of output nodes is determined

from the data in an unsupervised

manner.

2 Theory

The idea underlying this approach

is that the observed dataset is gen-

erated by a number of data gen-

erators (classes). We �rst model
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the unconditional probability den-

sity function (pdf) of the data and

then seek a number of partitions

whose combination yields the data

pdf. Densities and classi�cations

conditioned on this partition set are

then easily obtained.

2.1 Partition entropy

Consider a set of k = 1::K parti-

tions. The probability density func-

tion of a single datum x, condi-

tioned on this partition set, is given

by:

p(x) =

KX
k=1

p(x j k)p(k) (1)

We consider the overlap between

the contribution to this density

function of the k-th partition and

the density p(x). This overlap

may be measured by the Kullback-

Liebler measure between these two

distributions. The latter is de�ned,

for distributions p(x) and q(x) as:

KL (p(x) k q(x)) =Z
p(x) ln

�
p(x)

q(x)

�
dx (2)

Note that this measure reaches a

minimum of zero if, and only if,

p(x) = q(x). For any other case

it is strictly positive and increases

as the overlap between the two dis-

tributions decreases. What we de-

sire, therefore, is that the KL mea-

sure be maximised as this implies

that the overlap between two dis-

tributions is minimised. We hence

write our overlap measure as:

vk = �KL (p(x j k)p(k) k p(x))
(3)

As the this measure is strictly non-

positive we may de�ne a total over-

lap as the summation of all vk:

V =
X
k

vk (4)

An `ideal' data partitioning sepa-

rates the data such that overlap be-

tween partitions is minimal. We

therefore seek the partitioning for

which V is a minimum. Using

Bayes' theorem we may combine

Equations 2,3 & 4 such that:

V =

Z
H(x)p(x)dx (5)

in which H(x) is the Shannon en-

tropy, given datum x, over the set

of partition posteriors, i.e. H(x) =

�
P

k p(k j x) ln p(k j x). Minimis-

ing V is hence equivalent to min-

imising the expected entropy of the

partitions over all observed data. It

is this objective which we will use to

form minimum-entropy partitions.

It is noted that this is achieved by

having, for each datum, some par-

tition posterior close to unity which

conforms to our objective for ideal

partitioning.

2.2 Partitions as mixture

models

We restrict ourselves in this paper

to considering a set of kernels or ba-

sis functions which model the prob-

ability density function (pdf) of the

data and thence of each data parti-

tion.

Consider a set of partitions of

the data. We may model the den-

sity function of the data, condi-

tioned on the i-th partition, via a

semi-parametric mixture model of

the form:

p(x j i) =
JX
j=1

p�(x j j)��(j) (6)

where J is the number of kernels

forming the mixture and ��

j are

a set of (unknown) mixture coe�-

cients which sum to unity. Each

mixture component may be, for ex-

ample, a Gaussian kernel and hence

each candidate partition of the data

is represented in this approach as a

mixture of these kernels. The use of

the `star' notation, i.e. p�(j), is to

denote that this set of probabilities

is evaluated over the kernel repre-

sentation, rather than over the set

of data partitions. Equation 6 may

be written, via Bayes' theorem, as
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a linear transformation to a set of

partition posteriors of the form:

p = Wp
� (7)

where p is the set of partition pos-

terior probabilities (in vector form),

W is some transform, or mixing,

matrix (not assumed to be square)

and p
� is the set of kernel posteri-

ors (in vector form). Hence the i-th

partition posterior may be written

as:

pi � p(i j x) =
X
j

Wijp
�(j j x)

(8)

If we are to interpret p as a set of

posterior probabilities we require:

pi 2 [0; 1] 8i and
X
i

pi = 1 (9)

As p�(j j x) 2 [0; 1] so the �rst of

these conditions is seen to be met if

each Wij 2 [0; 1]. The second con-

dition is met when each column of

W sums to unity.

2.3 Entropy minimisa-

tion

Given that we represent each par-

tition by a �xed set of kernels, we

wish to adjust the elements of the

matrix W such that the entropy

over the partition posteriors is min-

imised. We must also, however,

take into account the constraints

on the elements of W (that they

are bounded in [0; 1] and the sum

down each column of W is unity).

We may achieve this by introduc-

ing a set of dummy variables, which

will be optimised, such that W is

represented by a generalised logis-

tic function (the so-called `softmax'

function) of the form:

Wij =
exp(�ij)P
i0 exp(�i0j)

(10)

The gradient of the entropy with re-

spect to each dummy variable, �ij ,

is given by the chain rule as

@H

@�ij
=
X
i0

@H

@Wi0j

�
@Wi0j

@�ij
(11)

The summation term is easily eval-

uated noting that

@Wi0j

@�ij
= Wi0j�i0i �Wi0jWij (12)

where �i0i = 1 if i = i0 and zero

otherwise. The term @H=@Wi0j is

evaluated by writing the expecta-

tion of the entropy (of Equation 5)

as a sample mean over all the data,

i.e.

@H

@Wi0j

=

�
@H(xn)

@p(i0 j xn)
�
@p(i0 j xn)

@Wi0j

�

(13)

As p(i0 j xn) =
P

jWi0jp
�(j j

xn) the above is easily evaluated.

In all the experiments reported in

this paper we optimise W using

the above formalism via the BFGS

quasi-Newton method [6].

2.3.1 A RBF interpretation

Note that the form of the analy-

sis is identical to that of a Radial-

Basis Function (RBF) classi�er in

which the hidden-layer representa-

tion consists of a set of Gaussians

which are optimised to model the

data density, followed by a layer

in which a set of weights are opti-

mised so as to minimise an entropy

function. In the case of a super-

vised RBF system, this is the cross-

entropy function between the class-

posteriors and the targets whereas

in our case it is the posterior en-

tropy.

2.4 Model-order estima-

tion

We evaluate the entropy change,

per partition, as a result of observ-

ing the data set, X. This quantity

is given as,

�H(MK j X) =

H(MK )�H(MK j X) (14)

where MK is the K-partitions

model. The �rst term on the right-

hand side of the above Equation

is simply the entropy of the model

priors before data are observed and

is the Shannon entropy taking the
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partition probabilities to be uni-

form and equal to 1=K. The second

term is the entropy associated with

the posterior partition probabilities

having observed X. Noting that

H(X) � H(X j MK ) = H(MK) �
H(MK j X) and that H(X j MK)

is the expectation of the negative

log-likelihood of X given MK so

the likelihood (evidence) of X given

MK may be written as:

p(X jMK) / exp f�H(MK j X)g
(15)

in which the data entropy term,

H(X), is ignored as it is constant

for all models. Choosing the model

with the largest value of this likeli-

hood is equivalent, via Bayes' theo-

rem, to choosing the model with the

highest probability, p(MK j X) if

we assume 
at prior beliefs, p(MK),

for each model. By normalisation of

Equation 15 we hence obtain a pos-

terior belief, p(MK j X), for each

candidate partitioning and it is this

measure which we use to assess the

model order, choosing the order K

for which it is maximal.

3 Results

3.1 Simple data set

We �rst present results from a data

set in which clusters are simple

and distinct; the data are gener-

ated from four Gaussian distributed

sources with 30 data drawn from

each. Each component has the same

(spherical) covariance. As an illus-

tration of a simple kernel set, ten

Gaussian components are �tted to

the data using the EM algorithm.

Figure 1 shows P (MK j X) on

(a) log and (b) linear scales. Note

that a set of four sources is clearly

favoured. Choosing the K = 4

model we obtain, for this example,

W as a 4�10 matrix. The resultant

partitioning of the data set gives the

results of Figure 2. There are no er-

rors in the partitioning for this sim-

ple data set.
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Figure 1: Simple data set: (a)

ln p(MK j X) and (b) p(MK j X).

Note the clear maxima at K = 4.
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Figure 2: Simple data set:

Data partitioning in the trans-

formed space. For this simple ex-

ample there are no errors.

3.2 Ring data

The next (synthetic) data set we in-

vestigate is drawn from two genera-

tor distributions; an isotropic Gaus-

sian and a uniform `ring' distribu-

tion. A total of 100 data points

were drawn from each distribution

(hence N = 200). A 20-kernel

Gaussian mixture model was �tted

to the data (using again the EM al-

gorithm). Figure 3(a) shows that

p(MK j X) gives greatest support

for the two partition model. Plot

(b) of the same �gure depicts the

resultant data partioning. For this

example there are no errors. Fig-

ure 4 shows the maximum parti-

tion posterior and clearly depicts

the decision boundary for this ex-

ample. Note that, due to the patho-

logical structure of this example, a

Gaussian mixture model per se fails

4



to estimate the `correct' number of

partitions and provide a reasonable

data clustering.
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Figure 3: Ring data set: (a)

lnP (MK j X) & (b) resultant parti-

tioning. For this example there are

no errors.
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Figure 4: Ring data set: Maxi-

mum partition posterior.

3.3 Iris data

Anderson's `iris' data set is well-

known [2]. The data we anal-

ysed consisted of 50 samples for

each of the three classes present in

the data, Iris Versicolor, Iris Vir-

ginica and Iris Setosa. Each da-

tum is four-dimensional and con-

sists of measures of the plants mor-

phology. Once more a 20-kernel

model was �tted to the data set.

Figure 5(a) shows the model-order

measure, shown in this case on a

linear y-scale. Although support is

greatest for the K = 3 partitioning

it is clear that a two-partitionmodel

has support. We regard this as sen-

sible given the nature of the data

set, i.e. it naturally splits into two

partitions. As in previous �gures

plot(b) depicts the data partition-

ing. This plot shows the projection

onto the �rst two principal compo-

nents of the data set. The partition-

ing has three errors in 150 samples

giving an accuracy of 98%. This

is slightly better than that quoted

in [4] and the same as that pre-

sented for Bayesian Gaussian mix-

ture models in [8].
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Figure 5: Iris data set: (a)

P (MK j X) & (b) resultant par-

titioning. For this example there

are three errors, corresponding to

an accuracy of 98%.

3.4 Wine recognition

data

As a �nal example we present re-

sults from a wine recognition prob-

lem. The data set consists of 178

13-dimensional exemplars which are

a set of chemical analyses of three

types of wine. Once more we �t

a 20-kernel model and perform a

minimum-entropy clustering. Fig-

ure 6(a) shows lnP (MK j X).

There is a clear maximum at the

`correct' partitioning (K = 3). Plot

(b) shows this partitioning pro-

jected onto the �rst two compo-

nents of the data set. For this

example there are 4 errors, cor-

responding to an equivalent clas-

si�cation performance of 97.75%.

This data set has not (to the au-

thors' knowledge) been analysed us-

ing an unsupervised classi�er, but

supervised analysis has been re-

ported. Our result is surprisingly
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good considering that supervised

�rst-nearest neighbour classi�ca-

tion achieves only 96.1%, and multi-

variate linear-discriminant analysis

98.9% [1]. It should be commented

that the same partitioning is ob-

tained via analysis of the �rst two

data principal components alone,

rather than the full 13-D data set.
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Figure 6: Wine recognition data

set: (a) lnP (MK j X) & (b) resul-

tant partitioning. For this example

there are four errors, corresponding

to an accuracy of 97.75%.

4 Conclusions

We have presented a computation-

ally simple technique for data par-

titioning based on a linear mixing

of a set of �xed kernels. The tech-

nique is shown to give excellent re-

sults on a range of problems. For

computational parsimony we have

used an initial semi-parametric ap-

proach to kernel �tting although the

results from a non-parametric anal-

ysis are near identical in all cases.

The methodology is general and

non-Gaussian kernels may be em-

ployed in which case the estimated

partition-conditional densities will

be mixture models of the chosen

kernel functions. The method, fur-

thermore, scales favourably with

the dimensionality of the data space

and the entropy-minimisation algo-

rithm is e�cient even with large

numbers of samples.

5 Acknowledgements

IR and RE are funded respectively

via grants from the commission of

the European Community (project

SIESTA, grant BMH4-CT97-2040)

and British Aerospace plc. whose

support we gratefully acknowledge.

The iris and wine data sets are

available from the UCI machine-

learning repository.

References

[1] S. Aeberhard, D. Coomans,

and O. de Vel. Comparative-

Analysis of Statistical Pattern-

Recognition Methods in High-

Dimensional Settings. Pat-

tern Recognition, 27(8):1065{

1077, 1994.

[2] E. Anderson. The Irises of the

Gaspe peninsula. Bull. Amer.

Iris Soc., 59:2{5, 1935.

[3] K. Fukunaga. An Introduction

to Statistical Pattern Recogni-

tion. Academic Press, 1990.

[4] I. Gath and B. Geva. Unsu-

pervised Optimal Fuzzy cluster-

ing. IEEE Transactions on Pat-

tern Analysis and Machine In-

telligence, 11(7):773{781, 1989.

[5] A.K. Jain and R.C. Dubes. Al-

gorithms for Clustering Data.

Prentice Hall, 1988.

[6] W.H. Press, B.P. Flannery, S.A.

Teukolsky, and W.T. Vetterling.

Numerical Recipes in C. Cam-

bridge University Press, 1991.

[7] S.J. Roberts. Parametric and

non-parametric unsupervised

cluster analysis. Pattern

Recognition, 30(2):261{272,

1997.

[8] S.J. Roberts, D. Husmeier,

I. Rezek, and W. Penny.

Bayesian approaches to mixture

modelling. IEEE Transac-

tion on Pattern Analysis

and Machine Intelligence,

20(11):1133{1142, 1998.

6


