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Multi-Objective Optimisation of Safety Related
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Abstract— Many safety related and critical systems warn
of potentially dangerous events; for example, the Short Term
Conflict Alert (STCA) system warns of airspace infractions
between aircraft. Although installed with current technology such
critical systems may become out of date due to changes in the
circumstances in which they function, operational procedures and
the regulatory environment. Current practice is to ‘tune’ by hand
the many parameters governing the system in order to optimise
the operating point in terms of the true positive and false positive
rates, which are frequently associated with highly imbalanced
costs.

In this paper we cast the tuning of critical systems as a multi-
objective optimisation problem. We show how a region of the
optimal receiver operating characteristic (ROC) curve may be
obtained, permitting the system operators to select the operating
point. We apply this methodology to the STCA system, using a
multi-objective (1 + 1)-evolution strategy, showing that we can
improve upon the current hand-tuned operating point, as well
as providing the salient ROC curve describing the true-positive
versus false-positive trade-off. We also provide results for three-
objective optimisation of the alert response time in addition to
the true and false positive rates. Additionally, we illustrate the
use of bootstrapping for representing evaluation uncertainty on
estimated Pareto fronts, where the evaluation of a system is based
upon a finite set of representative data.

Index Terms— Evolutionary computation, multiple objectives,
safety related systems.

I. INTRODUCTION

ANY safety related systems can be regarded as two-
class classifiers: they classify a particular set of inputs
or features into classes that might be labelled dangerous and
benign. Classifications into the dangerous class raise an alarm
and generally require some sort of human intervention. The
specific example with which this paper is concerned is the
Short Term Conflict Alert (STCA) system in operation in
the United Kingdom and elsewhere. STCA monitors aircraft
locations from ground radar and provides advisory alerts to
air traffic controllers if a pair of aircraft are likely to become
dangerously close. The STCA system is designed to raise a
warning to air traffic controllers if there is a developing conflict
between aircraft, giving them time to redirect the aircraft.
Taking its input from ground radar, the STCA system is
independent of the aircraft, and cannot know the intentions
of the pilots or air traffic controllers who may be aware of
a potential conflict and already taking measures to avoid it.
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For this reason, and because STCA must make conservative
predictions, there are necessarily nuisance alerts as well as
genuine alerts. There is clearly a trade-off between genuine
and nuisance alerts and it is desirable to minimise the number
of nuisance alerts in order to maintain the air traffic con-
trollers’ confidence in STCA.

The Receiver Operating Characteristic (ROC, see [1] for
a recent review) is useful for displaying and assessing the
performance of two-class classifiers. The ROC curve displays
the false positive rate versus true positive rate for a particular
classifier as the classification threshold or parameters of the
classifier are varied. This visual representation of the operating
possible operating points for the classifier permits the system
designer to select the optimal parameters with a knowledge of
how true and false positive rates will vary as the parameters
are altered. Regarding STCA as a two-class classifier, which
partitions pairs of radar tracks into dangerous or serious and
benign classes, allows ROC analysis to be applied in which
genuine alerts are true positives, while nuisance alerts are
false positives.

The STCA system became operational for part of UK
airspace in 1988 [2] and versions capable of coping with
complex terminal control airspaces have been in operation
since 1994. Since its introduction there have been incremental
changes to the software and it is now used across the UK and
elsewhere. Importantly, however, there have been changes in
the volume and nature of air traffic together with changes to
the management of the airspace monitored by STCA. Bringing
new software into service involves a lengthy period of testing
and scrutiny, even for advisory systems such as STCA; con-
sequently, staff at the National Air Traffic Services (NATS,
the principal civil air traffic control service for the United
Kingdom) undertake parameter reviews in which they adjust
(tune) the operating parameters of the STCA system in order
to reduce the number of nuisance alerts, while maintaining
the genuine alerts. This tuning is performed on the basis of
a large (170000) database of track pairs containing historical
and recent encounters. The great number of parameters (at
least 1500) determining the behaviour of STCA make tuning
a highly skilled and laborious business. However, despite
a recent step towards automation [2], the optimal receiver
operating characteristics of the STCA system have not been
known.

In this paper we introduce an approach to resolving these
optimisation problems using multi-objective optimisation tech-
niques based on evolutionary algorithms [3]-[5]. We cast
the true positive and false positive rates obtained by STCA
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as two opposing objectives to be maximised and minimised
respectively. This allows us to obtain the optimal ROC curve
from which the operating point can be chosen with a full
knowledge of the trade-off between genuine versus nuisance
alert rates.

In section Il we describe the STCA system used in the
UK; and in section Il we describe the current optimisation
process of STCA within the UK air traffic service, together
with previous attempts at the automation of its optimisation.
In section IV we discuss the relation of ROC analysis to
the more general theory of Pareto optimality; based on this,
in section V we describe the multi-objective optimisation
technique approach to discovering the ROC curve for the
system, and provide results in section V1. The paper concludes
with a discussion in section VII. A preliminary report on this
work appeared in [6].

Il. THE SHORT TERM CONFLICT ALERT SYSTEM

Here we focus on the Short Term Conflict Alert system
(STCA) which is used widely within Europe by civil aviation
authorities, in order to alert air traffic controllers to potential
airspace infringements by aircraft pairs (i.e., two aircraft
which may become too close). STCA is not strictly a safety
critical system—a system containing computer, electronic or
electromechanical components whose failure may cause threat
to life and limb or severe damage to property'—but rather a
component of the NATS ‘safety net’, providing advisory alerts
to air traffic controllers of potential airspace proximity viola-
tions. Nonetheless, it exhibits many of the characteristics of a
safety critical system: it must be highly reliable, transparent
and verifiable. Its importance is highlighted by the fact that
it is thought that one of the factors contributing to the midair
collision over the border between Germany and Switzerland
in July 2002 was that the STCA system in the relevant Swiss
control station was switched off for maintenance [8].

A. Overview

Figures 1 and 2 give an overview of the operation of
the STCA system, which incorporates a highly complex and
proprietary algorithm. Ground radars track the aircraft in a
given airspace and those adjoining, and every four seconds (a
STCA cycle) create track pairs of all possible combinations
of aircraft. A coarse filter (Figure 1) is used first to remove all
those pairs which are simply too far away from each other to
be of concern. Potential conflict pairs are then processed in the
core of STCA by three fine filters: a mixture of three models;
a linear prediction filter; a current proximity filter; and a ma-
noeuvre hazard filter (Figure 2). The boolean outputs of these
fine filters are combined by the alert confirmation module, and
aircraft pairs which are in danger of becoming too close are
highlighted and alerted on the air traffic controllers’ screens.
The STCA is concerned with detecting airspace conflicts that
may occur in the near future (around two minutes), so that air
traffic controllers may be warned and the situation rectified in
sufficient time.

1The working definition adopted by an ACM Special Interest Group

on Computer-Human Interaction (SIGCHI) workshop [7] and typical of
definitions of safety critical systems.
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The minimum separation that is counted as an air proximity
conflict depends on a number of criteria (for example, the
airspace location and available radar cover). Generally in
the UK in controlled airspace it ranges between 3, 5 or 10
nautical miles horizontally and 1000ft vertically. The linear
prediction filter checks for loss of horizontal or vertical sepa-
ration assuming that the aircraft continue on in a straight line
at their current headings and speeds. The current proximity
filter merely checks for a current loss of separation and the
manoeuvre hazard filter classifies potential conflicts when
either or both of the aircraft are turning. The combination
of the binary classifications from the three fine filters by the
alert confirmation module (Figure 2) is relatively sophisticated.
During the confirmation process alerts from a track pair are
checked within a moving time window, and if they are in
conflict for a number of successive radar cycles (typically
two or three), then an alert is passed onto the controller,
although alerts from the current proximity filter are relayed
more rapidly.

B. Parameterisation

Each portion of the UK airspace is marked as distinct region
types. For instance en route describes the airspace between
airports, while regions where aircraft circle until permission
is given to land are designated as stack. Since aircraft in
different region types tend to have different types of flight
behaviour, separate parameter sets are used for each one of the
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region types. The particular parameter set used for classifying
a track pair therefore depends upon the region types of the
two aircraft; additional rules are used to determine the relevant
parameter set if the aircraft have different region types.

The busy airspace above London, with which this study
is concerned, is divided into 16 of these different region
types. This multiplicity of parameter sets leads to a great
number of parameters that can be adjusted to affect the
performance of the STCA system. There are 96 parameters
pertaining to the three fine filters, which means that the
system uses approximately 1550 parameters (the coarse filter
using fewer than 20). This includes both floating point and
integer values over many varying ranges. Note that it is not
feasible to adjust the parameters for the filters of each region
type independently of the other region types, because track
pairs involving pairs of regions lead to significant interactions
between the parameters of different region types. On the other
hand, as we describe below, only approximately two thirds of
the available parameters are routinely adjusted.

The three central components of STCA are readily un-
derstood and their operation is capable of verification by
practitioners, which is a common feature to the majority
of critical systems in use. Regulatory authorities are very
uneasy about using black-box techniques, such as artificial
neural networks, in which function mappings are not easily
described or understood. As we have described, the filter
components of the STCA system themselves do, however,
possess a large number of user determined parameters, which
affect the operation of the system and therefore whether or
not the system alerts pairs as being in potential conflict.
The STCA program may be thought of as a decision tree,
particular branches of which are followed depending upon the
aircraft track pair being processed and the thresholds which are
determined by the operational parameters of STCA. Note that
the operational parameters affect the classification produced
by altering the thresholds and model parameters; changes in
parameter values do not affect the logical routes that may
be taken through the decision tree. The logical structure of
the program is incrementally altered by NATS Operational
Analysis & Support group as new versions of the software
are introduced. However, routine tuning of the system does
not affect the logical structure.

I11. OPTIMISATION OF STCA

The STCA system is in operation in the four UK air traffic
control centres and at other air traffic control centres in Europe,
S0 appropriate parameter setting must be chosen for each
particular locale. Moreover, changes in the volume of air
traffic, changes in local air traffic operational procedures and
changes in the regulatory environment mean that the STCA
operational parameters must be reviewed and updated in order
to prevent the system becoming out of date. In the UK all
serious near-miss encounters are reviewed under the auspices
of the Airprox Board (see for example [9]). In addition NATS
regularly assesses the efficacy of the STCA system by running
an off-line version with a database comprised of recent general
traffic encounters together with historical serious encounters.

The two samples permit the nuisance alert rate for general
traffic to be monitored together with the warning time provided
for genuine alerts.

A. Manual Optimisation

As shown in Table I, each encounter is categorised by NATS
staff into one of five categories of diminishing severity; cate-
gory 4 encounters are semi-automatically categorised, but all
others are manually annotated. Note that without knowledge
of a pilot’s intentions or the instructions a pilot has received, it
is very difficult to predict whether an ascending or descending
aircraft will level off at a specified height or ‘bust’ through
the level potentially leading to a conflict. Errors in predicting
level off clearly lead to nuisance alerts and as such we ignore
category 3 encounters (as recommended by NATS).

STCA performance on the database is assessed using the
Conflict Alert Management Performance Analysis Package
(CAMPAP), which runs the STCA system on the database
and analyses the performance for each category in each
region [10], [11]. Using CAMPAP, the Operational Analysis
& Support group within NATS has over the last 10 years,
through manual adjustment of the parameters, tuned STCA to
achieve the best balance between genuine and nuisance alerts.
In essence this has been achieved by skilled staff running
different parameter settings through the CAMPAP simulation,
by changing one or more of the values in current use, and
assessing the performance on the collated data.

As iterative evolution of the STCA system has occurred, and
the airspace in the UK is partitioned into ever more disparate
region types, this task clearly becomes more arduous. As an
indication of the increasing complexity it may be noted that
since the work of Beasley et al. [2] in 2002 the increase in
the number of fine filter parameters and regions has led to an
increase of roughly 500 in the number of STCA parameters.

B. Weighted Objective Optimisation

Beasley et al. [2] recognised that the current approach of
tweaking the system variables by hand may be suboptimal, and
so applied the tabu search heuristic in an attempt to automate
the process. In this work a single objective was maximised.
The objective was a weighted sum of the number of genuine
alerts gained and lost in comparison with a base parameter set;
the number of nuisance alerts gained and lost in comparison
with the base parameter set; and a measure of the difference
in warning times for alerts, again in comparison with the base
parameter set.

The problem when optimising a weighted sum of objectives
is knowing the appropriate weights a priori to operate at
a point on a Pareto front whose location is not known in
advance. Indeed, slightly different shaped fronts can lead
weighted sum optimisers to return drastically different operat-
ing points [12].

The tabu search optimiser [2] was also found to be suscep-
tible to trapping in local minima and required manual analysis
of the parameter space to re-start the search. Perhaps in the
light of these considerations, the original iterative person-
based adjustment is still in use by NATS.
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TABLE |
ENCOUNTER CATEGORIESUSED BY NATS.

C | Alert

Description

1 | Necessary

Serious or potentially serious encounter with a significant
collision risk for which alerts and additional warning time
are considered highly desirable.

2 | Desirable

Serious encounters, which involved an actual or potential
loss of separation, but little risk of collision, where alerts
and additional warning time are considered desirable.

3 | Unnecessary

Level off with risk encounters where a standard level off
prevented a conflict. The desirability of alert for these
encounters is dependent on where (and to some extent
when) they occur. In busier airspace, such as stacks, they
may be seen as an unnecessary distraction. Whereas in
some less busy areas of airspace they may be seen as a
valuable safety net (some controllers may reaffirm level off
instructions when STCA indicates that a level bust would
lead to conflict).

4 | Undesirable

No actual or potential conflict. An alert would be considered
a nuisance.

5 | Bad data

Bad data for which alerts are generally considered a nui-
sance but are commonly deemed beyond the remit of
STCA and therefore not usually taken into account during
a parameter review.

IV. ROC ANALYSIS & PARETO OPTIMALITY

If we wish to satisfy the two opposing objectives of true
positive maximisation and false positive minimisation, when
the classes are skewed and the costs imbalanced it does not
make sense to try and optimise a single objective function as
illustrated in the previous section. If the costs of an incorrect
classification were known the expected cost for any parameter
set could be calculated [13] and used as a single objec-
tive function [14]. However, this procedure requires accurate
specification of the misclassification costs which are seldom
accurately known; indeed it is often desirable to present the
user with a ROC curve from which the best operating point
can be selected. A common method is to employ the Neyman
Pearson criterion: a maximum false-positive rate is specified,
which then determines the true-positive rate.

Alternatively, some other summary measure of the ROC
curve, such as the area under the ROC curve (AUROC) could
be used as a measure of the quality of a set of parameters [15],
[16]; this overall measure could then be used as an objective
to be optimised with respect to the system parameters.

Of course, all these measures based upon the ROC curve
require knowledge of the ROC curve, which hitherto has
been unavailable for the STCA system. In this section we
show how multi-objective evolutionary algorithms (MOEAS)
may be used to derive the ROC curve for the STCA system.
However, we take the view that summarising the ROC curve
neglects the true value of the curve, namely providing the
user with an analysis of the trade-offs inherent in choosing an
operating point. In this manner we can entirely circumvent the
problematic a priori setting of objective weights encountered

in [2].

A. The ROC curve and Pareto optimality

In general we consider a classifier g(x; @) which gives an
estimate of the probability that a feature vector x belongs to
one of two classes. We assume that the classifier depends upon
a vector of adjustable parameters 6, and we denote by 7'(9)
the classifier’s true positive classification rate (measured on a
particular dataset of interest), while the false positive rate is
denoted by F(0).

A ROC curve is frequently obtained by varying the prob-
ability threshold separating the two classes. As the threshold
is varied from zero to one a non-decreasing ROC curve in
the (F,T) plane is obtained for any particular fixed set of
parameters, and different ROC curves are obtained for differ-
ent parameters. In this work, we consider the classification
threshold to be subsumed in the parameter vector and seek
to discover the set of parameters (including threshold) that
simultaneously minimise F'(€@) and maximise 7(0). In fact,
the STCA classifier is a hard classifier, yielding only a binary
classification rather than an estimate, however imprecise, of
the probability of class membership. Nonetheless, we may
still seek the set parameter values that yield the optimal true-
positive versus false-positive trade-offs. (See, for example, [1]
for extensive discussions of ROC curves for hard and soft
classifiers.)

A general multi-objective optimisation problem seeks to
simultaneously extremise D objectives:
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where each objective depends upon a vector 8 of P parameters
or decision variables. It is convenient to assume that all the
objectives are to be minimised, so for the STCA system we
minimise the pair of objectives (—7'(0), F'(@)). The parame-
ters may also be subject to the J constraints:

e;(0)>0, j=1,...J )

so that the multi-objective optimisation problem may be ex-
pressed as:

minimise y =£(0) = (f1(0),...,fp(8)) (3)
subject to e(0) = (e1(0),...,es(0)) >0 4)
where 8 = (01,...,0p) andy = (y1,-..,YD).

When faced with only a single objective an optimal solution
is one which minimises the objective given the model con-
straints. However, when there is more than one objective to be
minimised solutions may exist for which performance on one
objective cannot be improved without sacrificing performance
on at least one other. Such solutions are said to be Pareto
optimal [3]-[5] and the set of all Pareto optimal solutions is
said to form the Pareto front.

The notion of dominance may be used to make Pareto
optimality clearer. A decision vector 0 is said to strictly
dominate another ¢ (denoted 6 < ¢) iff

fi(@) < fi(p) Vi=1,...,D and .
fi(0) < fi(¢) for some i. ®)

Less stringently, 8 weakly dominates ¢ (denoted 8 < ¢) iff
fi(0) < fi(p) Vi=1,...,D. (6)

A set of M decision vectors {6;} is said to be a non-
dominated set if no member of the set is dominated by any
other member:

0, £60; Vi j=1,... M. @

A solution to the minimisation problem (3) is thus Pareto
optimal if it is not dominated by any other feasible solution,
and the non-dominated set of all Pareto optimal solutions
is the Pareto front. Recent years have seen the development
of a number of evolutionary techniques based on dominance
measures for locating the Pareto front; see [3], [5], [17] for
recent reviews.

V. OPTIMISATION USING MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMS

Anastasio, Kupinski & Nishikawa introduced the use of
multi-objective evolutionary algorithms (MOEAS) to optimise
ROC curves, illustrating the method on a synthetic data [18]
and for medical imaging problems [19]. Here we used a similar
methodology, albeit with improved convergence properties.

The multi-objective evolutionary algorithm used in this
study is a stochastic search algorithm, based on a simple (1 +
1)-evolution strategy (ES), similar to that introduced in [20].
In outline, the procedure for locating the Pareto front/ROC
curve, operates by maintaining an archive, A, of mutually non-
dominating solutions, @, which is the current approximation
to the Pareto front/ROC curve. At each stage of the algorithm

Algorithm 1 A MO (1 + 1)-ES for STCA optimisation.

Inputs:
N Number of ES generations

1. A:=initialise()

2: n:=0

3 wiilen<N:

4: 6 = select(A)

5: 0’ := perturb(9)

6: (T(6"),F(6") := STCA(®)
7 if 0 £ApVepe A

8: A={pcAlp+£0}
9: A=AU@

10: end

11: n:=n+1

12: end

some solutions in A are copied and perturbed. Those perturbed
solutions that are dominated by members of A are discarded,
while the others are added to A and any dominated solutions in
A are removed. In this way the estimated Pareto front A can
only advance towards the true Pareto front. This algorithm,
unlike earlier versions [20], maintains an archive which is
unconstrained in size, permitting better convergence properties
[21].

Algorithm 1 describes in more detail the algorithm as
applied to the optimisation of the STCA system. Following
the current operating practice of NATS and [2], we choose
to optimise only 912 of the > 1500 parameters affecting the
STCA system; these parameters are those parameters which
have different values in different regions after tuning by NATS.
Furthermore we restrict these parameters to the ranges over
which they are adjusted by NATS.

The archive or frontal set A is initialised by drawing
parameters for the STCA system uniformly from their feasible
ranges; in addition the current ‘best’ parameter set from
manual tuning 6* is added to A. Of course many of these
randomly selected parameter vectors are dominated by other
parameter vectors and these dominated parameters are deleted
from A so that A is a non-dominated set (7). In fact, in the
work reported here, we found that of 100 randomly initialised
parameters only * and one other parameter vector remained
in A after dominated parameters were removed.

Following initialisation, the loop on lines 4-11 of Algorithm
1 is repeated for the desired number of iterations. At each
iteration a single parameter vector @ is selected from A;
selection may be uniformly random, but partitioned quasi-
random selection [21] was used here to promote exploration of
the front. The selected parent vector is perturbed to generate
a single child (line 5). Each individual parameter in the
parent vector is perturbed with equal probability (0.2 here);
the perturbations themselves are made by adding a random
number to the parent parameter value. Yao et al. [22] have
shown that perturbations drawn from heavy-tailed distributions
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Fig. 3. Dots show estimates of the Pareto optimal ROC curve for STCA
obtained after 6000 evaluations of the (1 + 1)-ES multi-objective optimiser.
The cross indicates the manually tuned operating point 6*.

facilitate convergence by promoting exploration and we draw
perturbations from a Laplacian density, p(z) oc e~1#/*| whose
width is set equal to one tenth the feasible range of the
parameter being perturbed; perturbations that lie outside the
feasible range are resampled.

The true T'(6") and false F(6') positive rates for the
perturbed vector are evaluated by running the STCA/CAMPAP
system with parameters 8’ on the test database of track pairs
(Table I). Following NATS practise, we consider category
1 and 2 alerts to be true positives, while category 4 alerts
are treated as false positives. The relatively small number
of category 3 and 5 alerts are ignored. If the child 8’ is
not dominated by any of the parameter vectors in A, any
parameter vectors in A that ' dominates are deleted from the
archive (line 8) and @’ is added to A (line 9). These two steps
ensure that A is always a non-dominated set whose members
dominate any other solution encountered thus far in the search.

In a (u+ \)—ES, p parameter vectors are perturbed to
generate A new vectors. That is, p parameter vectors are
selected (whose performances have already been evaluated);
these parents are copied and have their parameter values per-
turbed in order to generate A children. Optimisation schemes
with A > 1 are attractive because the evaluation of the children
may be performed in parallel. The computational cost of
evaluating a single set of STCA parameters within CAMPAP is
fairly high, at approximately 5 minutes. However, the system is
written in a proprietary variant of PASCAL, which necessitates
it be run on a Compaq Alpha machine. Since only a single
Alpha was available to us, we used a (1 + 1)-ES, which has
been shown to perform well compared to (u + A) MOEA
implementations [23].

VI. RESULTS

In this paper we present a conservative application of the
MOEA method to STCA optimisation. It is conservative in
that the ranges of parameters to be varied are limited by the
current ranges of that parameter across the 16 region types
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Fig. 4. Normalised parameter values for operating points on the Pareto
optimal ROC curve shown in Figure 3. Panels correspond to parameters for:
low F, low T (bottom-left); medium F', medium T (top-left); high F, high
T (top-right); and the manually tuned operating point 8* (bottom-right).

within the currently applied STCA parameterisation of NATS.
This means effectively we are only concerned with adjusting
2/3 of the model parameters (still a significant number!), and
the parameters are confined to regions of decision space with
which personnel at NATS have considerable experience.

A. True and false positive optimisation

Initially we optimised the true and false positive rates for
a database comprised of manually and semi-automatically
categorised encounters. The database included historical track
pairs leading to serious or potentially serious encounters
together with general traffic track pairs from two weeks in
2001.

Even this conservative optimisation approach produces
some striking results. Figure 3 shows the estimates of the
Pareto optimal ROC curve obtained using the multi-objective
optimiser after N = 6000 evaluations (approximately 12
days computation). The current NATS operating point is also
plotted as a cross. The optimisation has located an ROC
curve consisting of 76 points ranging from 38.5% to 67.9%
true positive and 0.1% to 3.7% false positive. In addition
the manually tuned STCA operating point 8* lies behind (is
dominated by) several operating points on the estimated ROC
curve. Although the improvement over 6* is relatively small in
percentage terms, the quantity of track pairs processed by the
STCA system means that a significant reduction in the number
of false alerts could be achieved while maintaining the current
genuine alert rate. We regard as more important, however,
the production of the ROC curve itself, because it reveals
the true-positive versus false-positive trade-off, permitting the
operating point to be chosen. In fact it may be observed that
the current operating point 8* is close to the corner of the
Pareto optimal curve. Choosing an operating point to the left of
the corner would result in a rapidly diminishing genuine alert
rate for little gain in the nuisance alert rate; whereas operating
points to the right of the corner provide small increases in the
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true positive rate at the expense of relatively large increases
in the false positive rate.

Figure 4 gives an indication of how the parameters which
could be altered during the optimisation vary as the Pareto
front is traversed. Each of the four panels in figure 4 shows
the 912 variable parameters, each normalised to the interval
[0, 1], so that O represents the minimum value it was permitted
to assume during optimisation and 1 represents the maximum.
The bottom-right panel shows the parameters at the manually
tuned operating point 8*; many of the parameters are at their
extreme values because we choose the allowable ranges to
be defined by the extremal values located by NATS manual
optimisation. There is a resemblance between these parameters
and the parameters corresponding to the middle of the Pareto
front (F = 0.52%, T = 64.87%) shown in the top-left panel.
The bottom-left and top-right panels show 6 corresponding
to the extreme ends of the front. These appear to have a
qualitatively different character. We observe that there is a
discernible bias toward the minimum allowable values in the
parameters at the bottom-left end of the front (£ = 0.08%,
T = 38.55%) and trend toward the maximum allowable
parameter values in the parameters at the top-right end (F' =
3.68%, T = 67.86%). This may indicate that further optimal
solutions can be found by permitting the optimisation to range
over parameter values beyond those currently employed by
NATS.

B. Warning time optimisation

In addition to the trade-off between correct alerts and
incorrect alerts, it is desirable to increase the warning time
of genuine alerts given to air traffic controllers. Current
practise is to compare a new parameter set with the current
operating point by calculating the mean increase or decrease in
warning times over the coincident genuine warnings of the two
parameter sets. Using the same method we can compare all
our frontal operating points with the current operating point.
Furthermore we can use this extra objective to create a three-
objective optimisation problem in which we seek to maximise
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Fig. 6. Three objective estimated Pareto front for STCA, the third objective
(mean additional warning time) represented in colour. The cross indicates the
manually tuned operating point 6*.

the mean warning time and true positive rate, while minimising
the false positive rate.

Again we use a (1 + 1)-ES, with the same parameters as
the previous experiment. We initialise the algorithm with the
frontal points discovered in the previous optimisation (which
by definition also form an estimated Pareto front in the 3
objective case). The front located after 5000 generations looks
like a twisted ribbon, as shown in Figure 5. As before the
current operating point 8 lies behind the discovered front.

It is interesting to observe that as the number of correct
warnings increases the mean additional warning time is also
seen to increase. This is shown clearly in Figure 6 where front
is plotted as an ROC curve in two dimensions with the warning
time in colour. We also point out that Figure 6 shows that the
increases in genuine and nuisance alert rates close to the corner
of the Pareto ROC curve are obtained without any significant
change in the warning time.

The three-objective front contains almost four times as many
points as the initial two-dimensional front. However, as Figure
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Fig. 7. Solutions from the 3-D optimisation that are are not dominated in

the F-T plane by the 2-D front. Red dots indicate the 2-D front (Figure 3)
and blue dots indicate solutions from the 3-D front.

7 shows, if the three dimensional points are projected into
the F-T plane a few of them dominate or are mutually non-
dominating with solutions from the initial two-dimensional
optimisation. As the front has shifted only marginally forward
at the edges, we may infer that we are providing a fairly good
approximation of the true Pareto optimal ROC curve for the
problem subject to the constraints on the parameters.

C. Robustness of the front

As we described above, the location of the Pareto front is
based upon evaluating the STCA system on a representative
sample of encounters, and although approximately 170000
encounters were used, it is important to discover the sensitivity
of any putative operating point to the data sample. Indeed, it
is especially important not to over-train the system to one
particular set of data. Ideally one would optimise the entire
STCA system on several independent data sets collected at dif-
ferent times. This, however, is impractical both because of the
expense in collecting and annotating the data and of because of
the computational expense of multiple optimisations (although
this cost might be reduced by initialising new optimisations
from fronts obtained in earlier optimisation runs). A further
consideration is that serious encounters are (fortunately) rare,
so that although independent sets of general traffic may be
obtained, the serious encounters would have to be reused. For
these reasons we employ a bootstrapping technique [24] in
order to estimate the variability in error rates around the front.

The bootstrap method evaluates the error rate on a number
of surrogate data sets constructed by sampling the original
data set. Suppose that the original data set comprises N =
Np + Np examples, where Np is the number of examples in
the dangerous class and N is the number of benign examples.
A bootstrap sample is constructed by drawing at random with
replacement N examples from the original sample. Note that
some examples in the original data will be included more
than once in a particular bootstrap surrogate, while others
will be excluded entirely. The classification rate averaged over
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Fig. 8. Uncertainty of points on the estimated Pareto optimal ROC curve
evaluated using bootstrapping. Error bars indicate two-standard deviation
intervals calculated using equation (9) for a few representative points.

a number of bootstrap replications is just the classification
rate evaluated on the original data set, but an estimate of
the variability in the classification rate may be obtained from
the variation in the classification rates over the bootstrap
replications.

Figure 8 shows the true and false positive rates obtained
by evaluating the STCA system on 500 bootstrap replications
for parameters on the front. While there is considerable spread
about each location on the front, these scatter diagrams provide
an estimate of the robustness of the parameter set to the data
and indicate the range of true and false positive rates that may
be expected.

In fact, the variability in rate may be obtained without
recourse to numerical sampling. Focusing on the true positive
rate 7(@) for a particular parameter set, a bootstrap sample
could be constructed as follows: Choose at random, with
replacement, Np examples from the dangerous class and
likewise Np examples from the benign class. Since the true
positive rate is 7°(0), the probability of obtaining exactly &
true positives in the bootstrap sample is given by the binomial
distribution:

o) = () T - e @

It is well known (e.g., [25]) that the mean of the binomial
density is NpT, so the mean true positive rate over many
bootstrap replications is 7', as expected. Furthermore, the
variance of the number of true positive examples in a particular
bootstrap replication is T(1 — T')Np, so the variance in the
true positive rate is

T(1-T

ats ©
D

with a similar expression for the variance of the false positive

rate.

In fact, the bootstrap samples were constructed by merely
sampling with replacement from the original data set without

of =
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regard for the number in each class, so although the mean
number of dangerous exemplars in each class was Np it fluctu-
ated from bootstrap sample to bootstrap sample. Nonetheless,
it may be shown that when Np and Np are even moderately
large (greater than about 20) (9) is a very good approximation
to the variance in the rate and well describes the scatter around
the front shown in Figure 8.

VIl. DISCUSSION

We have presented a straightforward multi-objective opti-
misation scheme for locating the optimal ROC curve for the
Short Term Conflict Alert system employed to give warning
of potential breaches in air proximity by aircraft. The results
show that parameters yielding a range of genuine and nuisance
alert rates are located by the MOEA, thus revealing the
genuine versus nuisance alert trade-off and permitting the
operating point to be set with explicit knowledge of the trade-
off. The idea of dominance is essential to the simultaneous
optimisation of both true and false positive alert rates and it is
interesting to note that the manually tuned operating point is
dominated by several of the solutions found by multi-objective
optimisation. In addition we have simultaneously optimised
the warning time given for genuine alerts, although we find
that significant gains in warning time can only be achieved if
the nuisance alert rate is substantially increased.

It should be emphasised that the true and false positive alert
rates were evaluated on a database of over 170000 track pairs,
consisting of historical alerts deemed to be serious and two
weeks worth of relatively current data, this comprises the same
database that is currently used for manual tuning of operational
STCA systems for the London sector airspace. It is important
current work for skilled staff to inspect the parameter values
obtained. However, the bootstrapping of the dataset around
the optimised front provides an indication of the robustness of
the optimised operating point. While these bootstrap estimates
quantify the uncertainty in the optimised front, we remark that
it would be beneficial to update a “probabilistic front” so that
new entrants were guaranteed with, say 90%, certainty not
to be dominated by other elements of the front. Although it
lies outside the scope of this report, we are developing multi-
objective optimisers for this purpose and we draw attention
to the work of Teich [26] and Hughes [27] who have both
discussed optimisation of uncertain objectives.

The optimisations reported here were conservative in that
they optimised only the 900 or so parameters that are routinely
adapted by NATS, and these parameters were restricted to the
ranges used by NATS. Although, as Figure 4 shows, solutions
on the front are obtained for parameter values lying between
the extremes used by NATS, we look forward to optimising a
larger number of parameters and to permitting the parameters
to vary over broader ranges.

The Pareto front located by the MOEA is comprised of a
discrete set of parameter vectors at which the STCA system
could be operated. However, we point out that the work of
Scott et al. [28] shows that by randomly combining classifiers
any operating point on the convex hull of the ROC curve
may be obtained. Indeed it is apparent that if the objectives

to be optimised are statistical expectations, then Scott et al’s
work may be readily extended to three or more objectives
to obtain an operating point on the convex hull of optimised
solutions in many dimensions. It should be noted, however,
that although the probabilistic combination of classifiers may
lead to provably better average operating points, there are
potential legal and ethical ramifications.

The production of the two-dimensional front took approx-
imately twelve days of computer time. However, we em-
phasise that this was unattended computer time, in contrast
to the labour-intensive and skilled process by which STCA
systems are currently optimised. We anticipate that once an
optimised ROC curve has been located for a particular STCA
system and database, the subsequent optimisation following
incremental incorporation of new cases into the database will
be much faster. More rapid optimisation schemes are readily
implemented via (¢ + A)-ES, which are amenable to coarse
parallelisation.

In this paper we have focused on the STCA system as an
example safety related system; however, the STCA/CAMPAP
system is treated purely as a subroutine of our evolutionary
algorithm. Indeed in our implementation, the STCA/CAMPAP
programs run on a separate computer. This ‘wrapping’ of the
system to be optimised is important for two reasons. First, it
shows that the technique is applicable to any critical system
whose operating point is dependent on parameters that must be
tuned and whose performance can be automatically evaluated.
Second, and more importantly for safety-related systems, the
wrapped system has not been modified in any way, thus
preserving its integrity and the integrity of any safety case
constructed for it.

Finally we remark that the majority of the parameters in the
STCA filters have direct physical or mechanical interpretation,
and that the transparency of the classification process is an
important component in assuring the safety case for STCA.
However, whether tuned by hand or optimised by a machine
algorithm, the operational parameters are inferred from data
and we look forward to the construction of safety cases for
purely statistical classifiers whose operational parameters are
inferred from data and have no ready physical interpretation.
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