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Abstract. Information access tasks involve setting a large
number of model parameters (such as term weighting func-
tions or which terms from the document collection to use);
in addition, information access tasks frequently attempt to
satisfy multiple competing objectives. We investigate the use
of multi-objective evolutionary algorithms for finding model
parameters that optimise both precision and recall. Method-
ologically, optimising precision/recall curves is equivalent to
optimising ROC curves (describing the trade off between re-
call and false positive rate). We present information access
experiments using the TREC 7 and 8 collections for ad hoc
query problems and the Cora collection for document clas-
sification. In particular, we compare the following optimised
term weighting functions in retrieval and classification tasks:
tf, idf, tf xidf, (tf xidf)/ndl, BM25 and neural networks. We
also optimise the range of terms used for document classifica-
tion. We show that performance can be significantly enhanced
beyond default parameter settings. This study presents a
methodology for improving, analysing and evaluating perfor-
mance for information access tasks.

1 INTRODUCTION

In information access tasks, such as document classification
(DC) or information retrieval (IR), there are many model pa-
rameters and, indeed, models to choose from. For example,
when performing document classification we must choose the
inputs to the model (term weighting method and values of
associated variables, stop-word removal, terms from the doc-
ument collection to use, etc.) together with the parameters
of the model (classifier and values of associated parameters,
etc.). In addition to the large number of parameters, in infor-
mation access tasks, the performance of the model is evaluated
according to multiple competing objectives, usually precision
and recall, leading to a trade-off curve similar to ROC (re-
ceiver operating characteristic) curves. Clearly, simultaneous
optimisation of several objectives for a single solution is usu-
ally impossible and the curve (for two objectives) or surface
(for three or more objectives) that describes the trade-off be-
tween objectives is known as the Pareto front.
Unfortunately in information access, although it is known
that carefully chosen model parameters result in improved
precision and recall performance, many model parameters
are chosen simply because the values have been reported to
be successful in a previous application. At best a few differ-
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ent values for parameters are evaluated for the model and
whichever performs best is used. This has probably been the
case as the only method to guarantee the return of optimal
parameters, exhaustive search, is infeasible. Also, the most
popular search algorithms for complex problems with many
parameters, for example simulated annealing, genetic algo-
rithms and evolution strategies (ES) [9] have traditionally
been formulated in terms of a single objective. However, re-
cent advances in the field of evolutionary computation have
led to a class of algorithms—multi-objective evolutionary al-
gorithms (MOEAs)—capable of locating the Pareto front; see,
for example, [5, 26].

In this paper we present a methodology for improving,
analysing and evaluating performance for information access
tasks. We investigate the use of an MOEA to estimate opti-
mal values for model parameters in information access tasks.
This provides a methodology for selection of optimal parame-
ters for particular tasks and elucidates the trade-offs between
competing objectives. In addition, it provides insight into the
behaviour of the models.

Section 2, information access tasks, discusses the IR and
DC tasks tackled in the experiments, term weighting methods
and term ranges. It also introduces the evaluation measures
(or objectives), precision and recall, used in the experiments
and discusses the reasons that these are more suitable for in-
formation retrieval tasks than the measures, recall and false
positive rate, used in ROC analysis. Section 3, optimality and
the MOEA, discusses the meaning of Pareto optimality, how
to compare Pareto fronts and the algorithm used for the ex-
periments. Section 4 describes the design of the experiments
and gives the results. Finally, Section 5 discusses the results
and areas of future work.

2 INFORMATION ACCESS TASKS

The vector space model underlies many information access
endeavours |2] and we briefly review it to emphasise the sim-
ilarities between ad hoc information retrieval and text clas-
sification. In common with the majority of information ac-
cess methods, the vector space model ignores the order of
terms within a document and describes a document d; in
a document collection D = {di,...,d;s} as a bag-of-words
or terms, t; € T = {t1,...,tr}. Bach document is repre-
sented by a vector of non-negative term weights w; ;, thus
dj = (Wi, Wi j,..., wr;) . Using all terms within the
collection to represent documents degrades performance by
introducing noise, whereas discriminative power is lost if too
few terms are used: Section 2.3 discusses current methods for



choosing the index terms for a model. Many schemes have
been proposed for assigning term weights and we defer dis-
cussion of these to Section 2.4. IR and DC both commonly
rely on the proximity of documents in the vector space repre-
sentation, which we now review.

2.1 Information retrieval

In IR the goal is to retrieve those documents from D which are
most relevant to a query, which is represented by a document
dq, where weights w; 4 are non-zero only if the term ¢; is in
the query.

Documents close to dq are judged more relevant than dis-
tant documents and the distance between documents is mea-
sured by the cosine similarity measure:
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which measures the cosine of the angle between d; and d,.

The terms |d,| and |d;| appearing in the denominator of (1)
have the effect of, at least partially, normalising the distance
between documents with respect to document length. The
popular BM25 weighting scheme [20] incorporates more so-
phisticated document length normalisation in its assignment
of term weights, hence the unnormalised inner product is used
to measure distance between documents when utilising the
BM25 term weighting method:

sim(dg, d])

I
sim(dg, d;) = dq - dj =Y wiqwi; (2)

2.2 Classification

In text classification each document d; in the document col-
lection is associated with one of M classes ¢; € {c1,...,cm}.
The goal of a classifier is to determine the probability that a
query or test document d, in the document collection belongs
to each class ¢y,. A straight forward and commonly used clas-
sification method is the K-nearest neighbours (K-nn) classi-
fier, in which d, is assigned to the class with the majority of
neighbours in a sphere around d, containing K neighbours.
The K-nn classifier can be formulated to provide probabilities
of class membership [3]: if K, is the number of the K nearest
neighbours of dg in class ¢y, then the probability of d, be-
longing to class ¢, is simply estimated at P(cm|dg) = Km /K.
K-nn classifiers can be shown to have an asymptotic error rate
no worse than twice the optimal Bayes error [10]. In an iden-
tical way to IR the K-nearest neighbours are determined by
distances derived from the cosine similarity (1) and (2).

2.3 Choosing terms

Luhn [16] predicted that the most and least frequently occur-
ring terms in a document collection would not be particularly
useful for information access tasks but, as illustrated in Figure
1, that the terms within a middle range would be most useful.
Unfortunately the cut-off points defining the useful range are
not easy to determine for each document collection. Further-
more, the useful range will depend on the nature of typical
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Figure 1. Resolving power of words (adapted from [22]).

queries. Normally, these upper and lower cut-off points are es-
timated by removing the most common terms in a document
collection using a stop-word list and removing terms that oc-
cur only a few times throughout the collection [2]. Often cut-
off points that have proven successful in previous systems are
used or a few different cut-off points are tested and those
which produce the best performance are used; however, these
methods are clearly suboptimal. Here we investigate the use
of multi-objective optimisation to find the upper and lower
cut-off points that produce the best precision and recall per-
formance for information access tasks.

2.4 Term weighting methods

Many term weighting methods have been introduced, see [19]
for examples, but in this study we examine the six term
weighting methods discussed below.

Term frequency, if, ;2 Luhn [17] observed that: repetition
s an indication of emphasis. Frequently used terms in a doc-
ument are important for that document. Term frequency, the
simplest term weighting method other than binary weighting,
assigns weights equal to the number of times, ¢f, ., that term
1 occurs in document j:

0,7
Wi,j = tfi,j (3)

Inverse document frequency, idf;: This method is con-
cerned with the discriminatory power of a term within a cor-
pus. A term that occurs in very few documents within the
collection is likely to be important for representing those doc-
uments in which it occurs. Weights are assigned as:

Wi, = dez = log % (4)

where J is the number of documents in the collection and df;
is the number of documents in the collection containing ;.



TFIDF: The well known tf x idf measure [21] simply com-
bines the ¢f and the idf weights:

J
wi; = tf, ; x log d_ﬂ (5)

TFIDF normalised by document length: The TFDIF
weight is often normalised by document length to prevent
longer documents obtaining higher weights simply because
they are verbose. The resulting weight is:

i J
wi; = —2 log af

ndlj
where the normalised document length ndl; = di;/avdl, the
average document length avdl = % E;] dl; and the length of
document j is denoted by dl;. A more sophisticated document
normalisation method is presented in [23].

(6)

BM25: The popular BM25 weighting [20] incorporates non-
linear document length normalisation and term frequency
weights:

g g
kx (1—b)+ (bxndly)+ f,,  dfs

Wi j =

Values for the b and k parameters are chosen according to the
qualities of the document collection. The b parameter controls
the degree of document length normalisation: b = 1 assumes
verbose documents and b = 0 assumes multi-topic documents.
The k term determines the sensitivity of w; ; to changes in
the term frequency. Common values are b = 0.75 and k = 2
[19].

Neural networks: The term weighting methods above all
combine document length, term frequency and document fre-
quency to arrive at the term weight. Here we use a neural
network as a flexible function approximator to map docu-
ment length, term frequency and document frequency to a
term weight dependent on the values of a vector of parame-
ters or weights, 0:

Wi,j = g(Cle: t}li,jv iné 9) (8)

Here dl; denotes the document length normalised so that the
mean and variance of dl; for the collection are 0 and 1 respec-
tively; and likewise for t}‘i’j and df;. In this study we use a
simple multi-layer perceptron network (MLP) [3] with three
hidden units. Instead of learning the weights in the traditional
manner, of back propagation for example, we use the multi-
objective optimisation framework to learn the 16 weights by
training on the document collection.

2.5 Evaluation

In order to make connections between the DC and IR
paradigms [15], we focus on two-class classification problems,
calling one class the relevant class and designating the other
class as the irrelevant class. Results of a two-class document
classification problem may be summarised by a confusion ma-
trix:

True class

relevant  irrelevant
Classified relevant TP FP
class irrelevant FN TN

Here TP (true positives) are the documents correctly classi-
fied as belonging to the relevant class, FP (false positives) are
the documents incorrectly classified as belonging to the rele-
vant class, FN (false negatives) are the documents belonging
to the class but not classified as such and finally TN (true
negatives) are documents correctly classified as not belonging
to the class.

In IR problems documents are assigned a weight or proba-
bility measuring the degree to which d; belongs to the relevant
to the query class. These weights are used to produce a ranked
list of the documents within the collection. Returning the en-
tire document collection as a ranked list to the user would be
unreasonable so a cut-off point is chosen after n documents,
from which a confusion matrix may be calculated. An im-
portant difference, however, between IR and DC is that in
document classification exemplars belonging to known classes
are readily available for training, whereas the relevant and
irrelevant classes in information retrieval are only defined in
relation to each new query and usually the only known rel-
evant exemplar is the single document formed by the query
itself.

Precision, P, and recall, R, are usually used to evaluate
information access tasks and can be calculated from the con-
fusion matrix:

D |TP| _ |TP| ©)
|TP|+ |FP| |TP|+ |FN|

Precision is the fraction of the documents classified as relevant

that actually are relevant, while recall quantifies how many

of all possible documents belonging to the relevant class have

been classified as such.

High precision is important in situations such as informa-
tion retrieval on the WWW, where there is such a vast pool of
documents that it is more important to find the most relevant
documents rather than all of the relevant documents. High
recall is required when all the available information about a
subject is required; for example, a patent search.

It is often found that it is difficult to obtain good values for
both recall and precision, because to get a better recall value
a system can retrieve more documents, which in turn lowers
the precision and vice versa.

If a fixed number, n, of documents are always returned
note that P and R increase or decrease together, because the
denominators in Equation 9 are both constant; |T'P|+|FP| =
n, and |T'P| + |FN| is the number of relevant documents in
the collection.

In IR it is usual to measure a system’s performance by pre-
cision and recall. We wish to maximise both precision and re-
call — that is return to the user a list of documents containing
all the relevant documents and only the relevant documents.
Equivalently, the objectives of ROC analysis are to return all
of the relevant documents and no irrelevant documents, but
it does so by maximising recall (called the true positive rate)
and minimising the false positive rate:

|FP|

F=—2>1"1 _
|FP|+|TN|

(10)

F shows how many of all possible documents belonging to the
irrelevant class have been classified as relevant. F is equivalent
to the, rarely used, fallout measure in IR [25].
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Figure 2. Left: precision/recall curve. Right: ROC curve. The

arrows denote the direction from worst classifier (W) to best
classifier (B) and S and L indicate equivalent points on each
graph.

The optimal or best classifier is equal in both preci-
sion/recall and ROC curves, however, they differ in their def-
inition of the worst classifier. The worst classifier on a preci-
sion/recall plot is defined as one that returns to the user a list
of documents containing no relevant documents. The defini-
tion of the worst classifier in an ROC plot is one which returns
no relevant documents and all of the irrelevant documents
to the user. However, in IR any classifier returning no rele-
vant documents is equally unhelpful to the user regardless of
the number of irrelevant documents returned. Precision/recall
curves are therefore well suited to IR task evaluation.

Figure 2 shows how precision/recall curves are related to
ROC curves. The best classifier (B) on both plots is equiva-
lent: (R=1AF=0)=(R=1AP =1). For R to equal
1 the |TP| must be at its maximum (/7P| = the number of
relevant documents) and, consequently, |F'N| must equal 0.
Given R = 1, for both F to equal 0 and P to equal 1 then
|F'P| must equal 0 and, therefore, |T'N| must be at its maxi-
mum. The worst classifier (W) on both plots is not equivalent:
(R=0AF=1)# (R =0AP =0) because if F = 1 then
|F'P| must be maximised, whereas for P to equal 0 the only
requirement is that |T'P| = 0; |FP| can have any value.

Points close to S on both the plots can be obtained by re-
turning very few documents (assuming that most documents
are irrelevant) for both precision/recall and ROC curves. S
can be obtained in ROC curves by returning 0 documents to
the user, however, in precision/recall curves that would pro-
duce the worst classifier (W) point because |T'P| = 0. S cannot
actually be obtained in precision/recall curves because |TP|
cannot equal 0 (to produce R = 0) and a positive number
(to produce P = 1) at the same time, however, points close
to S can be obtained by returning a small number of relevant
documents to the user.

Points close to L can be obtained by returning a large num-
ber of documents to the user (assuming that most documents
are relevant) for both precision/recall and ROC curves. L can
be obtained for ROC curves by assuming that all documents
are relevant, however, for precision/recall curves L cannot ac-
tually be obtained because for recall to be high then |T'P|
must be high. However, assuming that all documents are rel-
evant obtains the closest point possible to L because the de-
nominator of P is at its largest.

As discussed in Section 3, comparison of multi-objective

systems is difficult because it is not clear when one system
is outperforming another. To overcome this problem compos-
ite measures have been defined to combine the precision and
recall objectives into one objective. One of the most popular
composite measures is the F-measure [12]:

PR

Fp = (1-B)P +BR

(11)
If 3 = 0.5 the F-measure is the harmonic mean of precision
and recall. However, the variable 3 forces the system designer
to give an a priori weight to the relative importance of pre-
cision and recall when, in fact, the relative importance is un-
likely to be known in advance.

Instead of using a single objective, such as the F-measure,
the goal of this paper is to show that multi-objective optimi-
sation may be used to allow the system designer to investigate
the properties of models on the Pareto front before deciding
on the importance of each objective. A precision/recall curve
may be obtained, for a single set of model parameters, sim-
ply by adjusting the number of documents, n, returned to the
user; a larger n results in high recall and low precision and
vice versa. We could imagine discovering the optimal set of
model parameters by creating the precision/recall curves for
all possible sets of model parameters and selecting only the
convex hull of these precision /recall curves. In a similar man-
ner the area under the ROC curve (AUC) [4, 11] might be
computed for all possible sets of model parameters, the con-
vex hull of these being the optimal recall/false-positive-rate
trade-off curve. However, such exhaustive search is computa-
tionally infeasible for realistic problems, and we therefore use
MOEAs to discover the thresholds n and model parameters
(term weighting method, value of term weighting method pa-
rameters) that optimise the objectives precision P and recall
R for IR and DC. In addition, we find the lower ! and upper «
cut-off points for the index terms and the number of nearest
neighbours K that optimise P and R for DC. It should be
emphasised that we use relatively naive methods for the in-
formation access tasks and are not attempting to outperform
the more sophisticated models, but rather to demonstrate the
ability of the multi-objective optimisation methodology to al-
low the system designer to analyse, understand and improve
performance of their model.

3 OPTIMALITY AND THE MOEA
3.1 Pareto optimality

We seek to simultaneously maximise or minimise D objec-
tives, y;, which are functions, f;(0) of a vector of P variable
parameters, or decision variables, 6:

ylzf,(o), i:l,...,D (12)

Here the objectives are precision, P(0), and recall, R(0), so
D = 2. The parameters are the parameters of whichever term
weighting model is employed, the range [[,u] of index terms
used and the number n of documents returned, which is al-
ways the final element in the parameter vector. The precise
parameter set depends upon which of the different models is
being optimised; for example, 3 parameters 8 = (k,b,n), in
the case of IR with BM25 term weighting and 6 parameters



Algorithm 1 A MO (1 + \)-ES for information access.

Inputs.

T Maximum number of ES generations.

Q Perturbation distribution; normal with mean zero
and variance (0.1)2.

a Probability of perturbation (a = 0.8).

Nmaz  Number of different thresholds, for IR
Nmaz = 5000, and in classification nqe. = 54100.

1: Initialise random decision vector 6, with model
parameters lying in valid ranges.
Generate set M, by replicating 0 npq. times but
with different thresholds in its last element.
Initialise archive F' := (), and generation ¢ := 1.

2: Evaluate precision and recall for elements of M;.
That is, evaluate £(0;)V0; € M;.

3: Insert into F' those individuals 6; € M, that are
not dominated: F := F|J{6 € M, |0 £ M,|J F}.

4: Remove from F' any dominated individuals.

5: Copy a decision vector, @ € F: ¢ := 0. (Parti-

tioned quasi-random selection method [7] is used
to select 6.)

6: Perturb the elements of ¢ with probability «:
Op i =0p+Q Vp=1,...,P—1,
Generate M1 by replicating ¢ nmaqs times with
different thresholds in its last element.

7: t:=t+1.If t =T, end, else goto 2.

0 = (k,b,K,l,u,n) for DC with BM25 term weighting and
using K nearest neighbours.

Without loss of generality we assume that the objectives
are to be maximised, so that the multi-objective optimisation
problem may be expressed as:

y =1(0) = (f1(0),..., fp(9)) (13)

where 6 = (61,...,0p) and y = (y1,...,yD).

When concerned with a single objective an optimal solu-
tion is one which maximises the objective given any model
constraints. However, when there are two or more compet-
ing objectives to be optimised, it is clear that solutions exist
for which performance on one objective cannot be improved
without reducing performance on at least one other. Such so-
lutions are said to be Pareto optimal [26] and the set of all
Pareto optimal solutions is said to form the Pareto set, £.

The notion of dominance can be used to make Pareto opti-
mality clearer. A decision vector 6 is said to strictly dominate
another ¢ (denoted 6 > ¢) iff

fi(0) > fi(¢p) Vi=1,...,D and
fi(0) > fi(¢) for some i.
A set of decision vectors F' is said to be a non-dominated set

(an estimate of the Pareto front) if no member of the set is
dominated by any other member:

Maximise

(14)

Fo Fy Vkj=1,...,|F] (15)

3.2 The optimisation algorithm

Anastasio, Kupinski & Nishikawa [1] introduced the use of
multi-objective evolutionary algorithms (MOEAS) to optimise
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Figure 3. Comparison of Pareto fronts, A (dashed) and B
(solid). Solutions in the horizontally hatched region (of area
V(A, B)) are dominated by A, but not by B, whereas solutions in
the vertically hatched region (of area V(B, A)) are dominated by
B but not A.

ROC curves. Here we use to similar methodology, albeit with
improved convergence properties, to optimise precision/recall
curves.

The MOEA used in this study is a based on a simple (141)-
ES, similar to that introduced in [13]. In outline, the proce-
dure for locating the Pareto front, £ operates by maintaining
an archive, F, of mutually non-dominating solutions, 6, which
is the current approximation to the Pareto front. At each
stage of the algorithm some solutions in F' are copied and
perturbed. Those perturbed solutions that are dominated by
members of F' are discarded, while the others are added to
F and any dominated solutions in F' removed. In this way
the estimated Pareto front F' advances towards £. Algorithm
1 shows in more detail how this MOEA works in the con-
text of optimising information access models. This algorithm,
unlike earlier versions [13], maintains an archive which is un-
constrained in size, permitting better convergence properties
[7]-

In a (u+A)—ES, 1 decision vectors are perturbed to gener-
ate A new decision vectors. That is, ;1 parameter vectors are
selected (whose performance have already been evaluated);
these parents are copied and have their parameter values per-
turbed in order to generate A\ children. This perturbation is
typically the addition of a random value from a Normal dis-
tribution (part 6 of of Algorithm 1). These children are then
evaluated and compared to their parents. Children that are
not dominated by any other child or by a decision vector al-
ready in F' are added to F'; otherwise the child is discarded.
Any elements of F' that are dominated by the new children
are removed.

It should be emphasised that we regard the number, n, of
documents returned in response to a query as the final param-
eter Op to be optimised. Thus only the first P — 1 parameters
are perturbed, but it is computationally cheap to evaluate the
precision and recall for a wide range of n. All that is needed
is to evaluate the precision and recall for the most probable
document returned, the second most probable document re-



06.

BM25*

04r
tf x idf

tf x idf / ndl

Precision

BM25(0.75,2.0)

0.2},

L L T L T L ,
0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Recall

Figure 4. Pareto fronts for the various term weighting methods
in the information retrieval task, using the short queries on the
training data, fold 1.

turned, etc. For the IR tasks we evaluate the precision and
recall for thresholds up to n = 5000, beyond which the preci-
sion and recall change only very slowly with n; for the clas-
sification task there are 1028 documents in the test set and
hence thresholds up to n = 1082 are evaluated. The optimiser
therefore acts as an (1 + Nmaz)-ES, where nmaez = 5000 for
IR and nmee = 54100 for classifiers (an additional factor of
K = 50 models are evaluated, one for each number of nearest
neighbours).

3.3 Comparison

The comparison of estimated Pareto fronts (and therefore in-
formation access models) is difficult as there are several ways
in which a front or set of points could be judged as being in-
ferior or superior to another [14]. For example as illustrated
in Figure 3 the front B is superior when objective 1 is large,
whereas A is superior when objective 1 is small. Since preci-
sion and recall lie in the range [0, 1], we compare fronts A and
B by measuring V(A, B), the volume of the unit square in ob-
jective space that is dominated by A and not by B [7]. Note
that V(A, B) # V(B, A). The V measure may be estimated
by Monte Carlo sampling of the unit square and counting the
fraction of samples that are dominated exclusively by A or B;
see [7] for details.

4 EXPERIMENTS
4.1 Information retrieval

For the IR task we use the TREC 7 and 8 ad hoc docu-
ment collections (disks 4 and 5), topics (351 - 450) and rel-
evance judgements [24]. The document collection consists of
approximately 55,000 documents from the Federal Register
(1994), 210,000 documents from the Financial Times (1992-
1994), 130,000 documents from the Foreign Broadcast Infor-
mation Service and 130,000 documents from the Los Angeles
Times (1989-1990). All terms (no stop-word removal) con-
tained within the documents are used as index terms.

0.6

x idf / ndl

Precision

BM25(0.75,2.0)

Recall

Figure 5. Evaluation on the test data of the various model sets,
optimised with respect to the training data. Short query IR data,
fold 1.
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Figure 6. Box-plots of the volume measure comparing the
seven different IR term weighting methods using test folds for
both short (left) and long (right) queries.

The topics (queries) were randomly split into a 75% training
part and a 25% test part. This partitioning was performed 10
times to give 10 different folds to compare when evaluating
the results. Since the training and test sets are constant for all
classifiers being compared, the precision/recall curves are as
stable as ROC curves. Results on the test data are averaged
over all of the queries in the test set and results on the training
data are averaged over all the queries in the training set.

We use the term weighting methods described in Section
2.4, but we do not attempt to optimise the upper and lower
cut-off points for terms since we have only 99 queries and
would almost certainly over-fit the data. Term weighting
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Figure 7. Plots of k and b versus precision, taken from models
on the trade-off front of the BM25* model.

methods {f, idf, tf x idf and (¢ x idf)/ndl have no associ-
ated variables so they are used simply for comparison. Method
BM25 has two variables b and k, commonly used values for
these are b = 0.75 and k = 2 [19]. We denote BM25 term
weighting with these traditional, fixed values as BM25; we
also evaluate the BM25 method in which b and %k are ad-
justed as part of the optimisation process, these results are
denoted BM25*. Finally, we show results using the neural net-
work term weighting method, denoted by MLP, for which the
weights and biases producing optimal P and R values are
found.

There are short and long query types for each of the 99
topics, both types representing the same information need;
for example, topic number 351 has the short query ‘Falkland
petroleum exploration’ and the long query “What information
is available on petroleum exploration in the South Atlantic
near the Falkland Islands?” We compare the performance of
the different term weighting methods on both query types.

All term weighting methods were run for 1000 generations
after which there was little change in the estimated Pareto
front, except for the neural network term weighting method
which was run for 2000 generations to ensure convergence.

4.1.1 Results

Figures 4 and 5 show examples of the fronts found for the
first fold of the TREC data. At high recall most of the term
weighting methods perform in a similar fashion, however the
benefit of the MOEA approach is visually manifest in areas
of high precision. Both the optimised BM25* method and the
MLP method outperform the other methods dramatically.
This result has interesting repercussions for information re-
trieval on the Web where high precision is required but recall
is less important: using the methodology presented in this
paper for Web information retrieval could result in signifi-
cant improvements in performance. Interestingly, the tf x idf

and (#f x idf)/ndl methods are similar in their performance,
suggesting that the partial document length normalisation in
Equation (1) is sufficient.

On the short queries for all folds of the data, the MLPs per-
form significantly better under the Wilcoxon non-parametric
signed ranks test [27] than all other term weighting meth-
ods. The BM25* method with optimised parameters signifi-
cantly outperforms the tf, idf, tf xidf, tf xidf /ndl and BM25
methods for all values of precision and recall. The tf X idf,
tf x idf /ndl and BM25 methods obtain roughly equivalent
results outperforming both ¢f and idf. The performance of
each term weighting method on the long queries is very simi-
lar to the performance on the short queries, except for neural
networks which do not perform as well. This result is prob-
ably due to the increased complexity of the problem with
long queries: increasing the flexibility of the neural networks
by increasing the number of hidden units should yield better
performance.

For both query types, the optimised BM25 method per-
forms significantly better than the BM25 method with stan-
dard parameter values (k = 2, b = 0.75), suggesting that
significantly enhanced performance can be obtained by opti-
mising the IR model and its parameters for each particular
dataset.

The results of V measure comparison of the IR term weight-
ing methods on test data is shown in the form of boxplots in
Figure 6. These boxplots show the evaluation of weighting
methods over 10 folds. Each of the two plots contains seven
rows, where each row represents V for one method with re-
spect to all the other methods. For example the top row of the
left plot gives the boxplots, left to right, for V(if,tf), V (tf,idf),
V(tf,tfx df), V(tf,(tfx idf)/ndl), V (if,BM25), V (tf, BM25")
and V(if,MLP) and shows that, for the short queries, the tf
method is better than only the idf method. On the other
hand, again for the short queries, the BM25* row shows
that BM25* outperforms all other methods except neural net-
works.

Figure 7 shows the optimised k (left) and b (right) val-
ues obtained from all folds using the BM25" method plot-
ted against precision, for both short (bottom) and long (top)
queries. These plots demonstrate that k and b follow the same
general trends for both short and long queries; however, there
are differences, especially for b. For short queries, the average
value of b is very close to 0 and as b — 0 the higher the pre-
cision obtained, indicating that very little document length
normalisation is required. For long queries, a small b still ob-
tains higher precision but there is a wider spread of b values
with the average b value close to 1, high recall is obtained
when b is very close to 1. For long queries, it appears that
document length normalisation is more important.

A typically used value of k is 2 [19]; it is surprising then
that we find, for our data and model, that optimal k values
are much lower: the average is k ~ 0.5 for both short and long
queries, indicating that BM25 does not need to be as sensitive
to changes in term frequency.

Unsurprisingly, we find that models on the Pareto front
with high thresholds, n (returning many documents) generally
have high recall and low precision, and vice versa.



0.9 BM25*
BM25(2,0.75)
BM25(1.2,0.75)
0.7 MLP
tf x idf
0.6

tf x idf / ndl
0.5f

Precision

0.4r

0.3r

0.2r

0 . . . .
0 0.2 0.4 0.6 0.8 1

Recall

Figure 8. Pareto fronts for the various term weighting methods
in the classification task on the training data.
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Figure 9. Evaluation of the various model sets, optimised with
respect to the training data, on the test data for the various term
weighting methods in the classification task.

4.2 Classification

For the classification task we used the Cora document col-
lection [18] which was collected automatically by intelligent
web spiders. The data set is comprised of approximately
37000 papers, all of which have been automatically classified
into hierarchical categories such as /Artificial Intelligence/-
Machine Learning/Theory. In common with others [6, 8], we
use the 4330 documents in the 7 sub-categories of Machine
Learning. Although there are seven document categories, we
treat the data as seven two-class DC problems and report
precision and recall averaged over the seven problems.

All terms (no stop-word removal) occurring in the title, ab-
stract, author and affiliation are used as index terms. The
documents within the collection were randomly split into a
75% training part and a 25% test part, and in a similar man-

BM25*

BM25(2.0,0.75)

BM25(1.2,0.75)

Proportion of models using terms
I
(42

0 8000 16000
Terms ordered by decreasing frequency

Figure 10. Histogram showing the terms used by the different
BM25 models on the trade-off front. The abscissa shows the rank
of terms ordered by term frequency, with stop-word position
indicated by ticks.

ner to the IR task the results are averaged over 10 such folds.

As in the IR task, we calculate the average precision and
average recall at different thresholds 7, 1 < i < n = 1082; the
upper limit being set by the number of documents in the test
set. To ensure comparative consistency between the training
and test sets the average precision and recall are calculated
using every third document on the training set. For the clas-
sification task we use a K-nn classifier with 1 < K < 50.
In summary, for every term weighting parameter combina-
tion evaluated we return 54100 average precision and average
recall results, 1082 for each K.

As in the IR task, we compare the term weighting methods
tf, idf, tf x idf, (¢ x idf)/ndl, BM25 and find the values
for the variables, k and b, in the BM25" method and the
weights and biases, for the MLP method, that optimise the
average precision and average recall objectives. We also search
for the ranges of terms from the Cora document collection
that produce the maximum average precision and maximum
average recall. There are approximately 15000 terms in all.

4.2.1 Results

Figures 8 and 9 show the fronts obtained on the classification
task using the first fold of the Cora document collection. As
with the information retrieval task, the ¢f and idf methods
are outperformed by all other methods. The performance of
the tf x idf and (¢f X idf)/ndl methods is again very sim-
ilar demonstrating that the document length normalisation
(Equation 1) is sufficient, although there is a relatively small
range of document lengths in this collection. As discussed in
section 2.5, the classification task is easier than the informa-
tion retrieval task in the sense that many exemplars from the
few known classes are available for training; this explains why
the BM25 and BM25* methods show similar performance and
why the MLP shows only a slight performance improvement.

As found for the IR task the recall increases as the cut-off
n increases. Although we used K = 1,...,50 neighbours for



the K-nn classifier, it was found that most of the models on
the Pareto front had values of K close to 1.

Figure 10 displays a histogram of the range of terms used
by the different BM25 (dashed) and BM25* (solid) models on
the trade-off front. The proportion of models on the Pareto
front that used the terms is plotted against the terms or-
dered by decreasing frequency. The positions of stop-words
from a standard stop-word list (about 250 words) are indi-
cated in the ordered list of terms by a dash on the abscissa.
Reassuringly, this figure is similar to figure 1, showing quanti-
tatively that very common and very rare words are ineffective
discriminators for classification and that the standard stop-
words occur predominantly in the unused term ranges. Al-
though it appears that a great many more than the standard
250 words are ineffective for classification, in this specialised
collection of machine learning abstracts many of the frequent
terms are general terms about machine learning. We observe
that (authors’) surnames become common at rank 1500-2000,
suggesting that an effective classification strategy, for this col-
lection, is to assign a document to the category containing an-
other document with the same author(s) and probably similar
words.

5 CONCLUSION

We have presented a novel methodology for discovering
the optimal term ranges and weighting parameters of term
weighting methods in information access tasks. This optimal-
ity is defined both in terms of precision and recall since these
are more suitable objectives for IR than other possible mea-
sures (see Section 2.5). We obtained optimal sets of model
parameters which describe the trade-off between these objec-
tives on the training and test data used.

We have demonstrated that, on TREC data, multi-
objective optimisation can locate parameters for the BM25
model that yield significantly better performance than the
popular default parameter settings. Even with the simple
term weighting methods used in this study, significant per-
formance improvements can be obtained through the use of
an MOEA optimisation framework. We have also shown that
simple MLPs, trained using multi-objective optimisation, per-
form very well both on the classification and the information
retrieval problems. The performance hierarchy of term weight-
ing methods is very similar for both information retrieval and
document classification tasks.

Our experiments show that particular standard parameter
values may be not be optimal for particular collections. In-
deed, the designer of an information retrieval or document
classification system can seldom be sure in advance what bal-
ances between accuracy (precision) and coverage (recall) may
be available. Multi-objective optimisation algorithms provide
a straightforward method of investigating these trade-offs
and, in a similar manner to ROC curve analysis, allow the
designer to set the operating point without making a priori
assumptions.

We have defined optimality in terms of two objectives: pre-
cision and recall, it would be interesting future work to in-
vestigate the inclusion of a third objective: fallout or false
positive rate. However, increasing the number of objectives
would also increase the computational burden.

We emphasise that the experiments presented here used un-

sophisticated information retrieval models — the vector space
model and K-nearest neighbours classification; we used no
query expansion or (pseudo) relevance feedback, for exam-
ple. Nonetheless the methods are equally applicable to these
more sophisticated information access models incorporating
more parameters with more complex interactions. The multi-
objective algorithms used are readily implemented, although
considerable computer time may be needed to fully investigate
complicated models.
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