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Abstract

Independent Components Analysis finds a linear transformation to variables which are max-
imally statistically independent. We examine ICA and algorithms for finding the best transfor-
mation from the point of view of maximising the likelihood of the data. In particular, we discuss
the way in which scaling of the unmixing matrix permits a “static” nonlinearity to adapt to
various marginal densities. We demonstrate a new algorithm that uses generalised exponential
functions to model the marginal densities and is able to separate densities with light tails.

We characterise the manifold of decorrelating matrices and show that it lies along the ridges
of high-likelihood unmixing matrices in the space of all unmixing matrices. We show how to
find the optimum ICA matrix on the manifold of decorrelating matrices, and as an example use
the algorithm to find independent component basis vectors for an ensemble of portraits.

1 Introduction

Finding a natural cooordinate system is an essential first step in the analysis of empirical data.
Principal components analysis (PCA) is often used to find a basis set which is determined by the
dataset itself. The principal components are orthogonal and projections of the data onto them are
linearly decorrelated, which can be ensured by considering the second order statistical properties
of the data. Independent components analysis (ICA), which has enjoyed recent theoretical (Bell
and Sejnowski 1995; Cardoso and Laheld 1996; Cardoso 1997; Pham 1996; Lee et al. 1998) and
empirical (Makeig et al. 1996; Makeig et al. 1997) attention, aims at a loftier goal: it seeks a
linear transformation to coordinates in which the data are maximally statistically independent, not
merely decorrelated. Viewed from another perspective, ICA is a method of separating independent
sources which have been linearly mixed to produce the data.

Despite its recent popularity, aspects of the ICA algorithms are still poorly understood. In
this paper, we seek to better understand and improve the technique. To this end we explicitly
calculate the likelihood landscape in the space of all unmixing matrices and examine the way in
which the maximum likelihood basis is achieved. The likelihood landscape is used to show how
conventional algorithms for ICA which use fixed nonlinearities are able to adapt to a range of
source densities by scaling the unmixed variables. We have implemented an ICA algorithm which
can separate leptokurtic (i.e., heavy-tailed) and platykurtic (i.e., light-tailed) sources, by modelling
marginal densities with the family of generalized exponential densities. We examine ICA in the
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context of decorrelating transformations, and derive an algorithm which operates on the manifold
of decorrelating matrices. As an illustration of our algorithm we apply it to the “Rogues Gallery” —
an ensemble of portraits (Sirovich and Sirovich 1989) —in order to find the independent components
basis vectors for the ensemble.

2 Background

Consider a set of T observations, x(t) € RN, Independent components analysis seeks a linear
transformation W € RE*N to a new set of variables,

a= Wx, (1)

in which the components of a, ax(t), are maximally independent in a statistical sense. The degree
of independence is measured by the mutual information between the components of a:

p(a)
1) = [ () log 55— da 2)
When the joint probability p(a) can be factored into the product of the marginal densities py(ax),
the various components of a are statistically independent and the mutual information is zero. ICA
thus finds a factorial coding (Barlow 1961) for the observations.

The model we have in mind is that the observations were generated by the noiseless linear
mixing of K independent sources si(t), so that

x = Ms. (3)

The matrix W is thus to be regarded as the (pseudo) inverse of the mizing matriz, M. Thus
successful estimation of W constitutes blind source separation. It should be noted, however, that it
may not be possible to find a factorial coding with a linear change of variables, in which case there
will be some remaining statistical dependence between the ay.

ICA has been brought to the fore by Bell & Sejnowski’s (1995) neuro-mimetic formulation,
which we now briefly summarise. For simplicity, we keep to the standard assumption that K = N.

Bell & Sejnowski introduce a nonlinear, component-wise mapping y = g(a), yx = gx(ax) into
a space in which the marginal densities are uniform. The linear transformation followed by the
nonlinear map may be accomplished by a single layer neural network in which the elements of W
are the weights and the K neurons have transfer functions g.

Since the mutual information is constant under invertible, component-wise changes of variables,
I(a) = I(y), and since the gj are, in theory at least, chosen to generate uniform marginal densities,
pr(yx), the mutual information 7(y) is equal to the negative of the entropy of y:

I(y)=-H(y) = /p(y) log p(y)dy. (4)

Any gradient-based approach to the maximum entropy, and (if g(a) is chosen correctly) the
minimum mutual information, requires that the gradient of H with respect to the elements of W:

OH  0dlog|det W|
oW, oW;; + Z <

k ﬁim%mwzwq+@£> (5)
where z; = ¢i(a;) = ¢/ /g and (-) denote expectations. If a gradient-ascent method is applied, the
estimates of W are then updated according to AW = vdH/OW for some learning rate v. Bell &

Sejnowski drop the expectation operator in order to perform an online stochastic gradient ascent



to maximum entropy. Various modifications of this scheme, such as MacKay’s covariant algorithm
(MacKay 1996) and Amari’s natural gradient scheme (Amari et al. 1996) enhance the convergence
rate, but the basic ingredients remain the same.

If one sacrifices the plausibility of a biological interpretation of the ICA algorithm, much more
efficient optimisation of the unmixing matrix is possible. In particular, quasi-Newton methods,
such as the BFGS scheme (Press et al. 1992), which approximate the Hessian 0?H /0W;;Wi,, can
speed up finding the unmixing matrix by at least an order of magnitude.

3 Likelihood Landscape

Cardoso (1997) and MacKay (1996) have each shown that the neuro-mimetic formulation is equiv-
alent to a maximum likelihood approach. MacKay in particular shows that the log likelihood for a
single observation x(¢) is

log P(x(t)|W) = log | det W| + Zlogpk(ak(t)). (6)

The normalised log likelihood for the entire set of observations is therefore

log £ = 7Y log Px(0)|W) = log | det W| — 3~ Hy(ar), (7)
t=1 k
where
1 T
Hy(ag) = 7 Zlogpk(ak(t)) - /pk(ak) log pi(ax)dag, (8)

is an estimate of the marginal entropy of the kth unmixed variable.
Note also that the mutual information (2) is given by

@) = [ pla) og pla)dat 3 Hifar (9)
k
= —H(a)+ Y Hi(a) (10)
k

and since H(a) = log|detW| — H(x) (Papoulis 1991), the likelihood is related to the mutual
information by

I(a) = H(x) — log L. (11)

Thus the mutual information is a constant, H(x), minus the log likelihood, so that hills in the log
likelihood are valleys in the mutual information.

The mutual information /(a) is invariant under rescaling of a, so if D is a diagonal matrix,
I(Da) = I(a). Since the entropy H (x) is constant, equation 11 shows that the likelihood does not
depend upon the scaling of the rows of W. We therefore choose to normalise W so that the sum of
the squares of the elements in each row is unity: 2]- ij =1 Vi

When only two sources are mixed, the row normalised W may be parameterised by two angles,

W= (c0501 511101)’ (12)

cosfy sin b,

and the likelihood plotted as a function of #; and ;. Figure 1 shows the log likelihood for the



3

(a)

Jest 0

-3 -2 -1 0 1 2 3

01

Figure 1: Likelihood landscape for a mixture of a Laplacian and Gaussian sources. a: Log likelihood,
log L, plotted as a function of 61 and 65. Dark gray indicates low likelihood matrices and white indicates
high likelihood matrices. The maximum likelihood matrix (i.e., the ICA unmixing matrix) is indicated by
the *. b: log |det W (f1, 62)|. c: Log likelihood along the “ridge” 65 = const., passing through the maximum
likelihood. d: The marginal entropy, Hy(ar) = h(0k).



mixture of a Gaussian source and a Laplacian (p(s) x e l*l) source with M = (3 i) Also

plotted are the constituent components of log £: namely log|det W| and Hy. Here the entropies

were calculated by modelling the marginal densities with a generalised exponential (see below), but

histogramming the a(t) and numerical quadrature gives very similar, though coarser, results.
Several features deserve comment.

Singularities. Rows of W are linearly dependent when 6, = 6y + nw, so log|det W| and hence

log £ are singular.

Symmetries. Clearly log £ is doubly periodic in #; and 6;. Additional symmetries are conferred

by the facts that

1. log | det W| is symmetric in the line 6, = 6,.

2. The likelihood is unchanged under permutation of the coordinates (here 6, and #3). In this
example Hjy(ay) depends only on the angle, and not on the particular k; that is, Hy(ax)
may be written as h(6j) for some function h, which depends, of course, on the data, x(t).
Consequently

log £ = log | det W| =) " h(6y). (13)
k

h(#) is graphed in Figure 1d for the Gaussian/Laplacian example.

Analogous symmetries are retained in higher dimensional examples.
Ridges. The maximum likelihood is achieved for several (8, #) related by symmetry, one instance
of which is marked by a star in the figure. The maximum likelihood W lies on a ridge with steep
sides and a flat top. Figure lc shows a section along the ridge. The rapid convergence of ICA
algorithms is probably due to the ease in ascending the sides of the ridge; arriving at the very best
solution requires a lot of extra work.

Note however that this picture gives a slightly distorted view of the likelihood landscape faced
by learning algorithms because they generally work in terms of the full matrix W, rather than with
the row-normalised form.

3.1 Mixture of images

As a more realistic example, Figure 2 shows the likelihood landscape for a pair of images mixed
0.7 0.3
0.55 0.45
are certainly not unimodal the marginal entropies were calculated by histogramming the a; and

numerical quadrature.

The overall likelihood is remarkably similar in structure to the Laplacian-Gaussian mixture
shown above. The principal difference is that the top of the ridge is now bumpy and gradient-based
algorithms may get stuck at a local maximum as illustrated in Figure 3. The imperfect unmixing
by the matrix at a local maximum is evident as the ghost of Einstein haunting the house. Unmixing
by the maximum likelihood matrix is not quite perfect (the maximum likelihood unmixing matrix

with the mixing matrix M = ( ) . Since the distributions of pixel values in the images

is not quite M~') because the source images are not in fact independent, indeed the correlation

_ v _ ( 1.0000 —0.2354
matI‘IX<SS>— —0.2354 1.0000 ] °

4 Choice of squashing function

The algorithm, as outlined above, leaves open the choice of the “squashing functions” gz, whose
function is to map the transformed variables, ag, into a space in which their marginal densities are
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Figure 2: Likelihood landscape for a mixture of two images. a: Log likelihood, log L, plotted as a function
of §, and 6,. Dark gray indicates low likelihood matrices and white indicates high likelihood matrices. The
maximum likelihood matrix is indicated by the *; and M " is indicated by the square. Note that symmetry
means that an equivalent maximum likelihood matrix is almost coincident with M~'. Crosses indicate the
trajectory of estimates of W by the relative gradient algorithm, starting with Wy = I. b: The marginal
entropy, Hy(ag) = h(fr). c: Log likelihood along the “ridge” s = const., passing through the maximum
likelihood.



Figure 3: Unmixing of images by maximum likelihood and sub-optimal matrices. Top row: Images
unmixed by a matrix at a local maximum (logL = —0.0611). The trajectory followed by the relative
gradient algorithm that arrived at this local maximum is shown in figure 2. Bottom row: Images unmixed
by the maximum likelihood matrix (log L = 0.9252).

uniform. It should be pointed out that what is actually needed are the functions ¢ (ax) rather
than the g themselves.

If the marginal densities are known it is, in theory, a simple matter to find the appropriate
squashing function, since the function which is the cumulative marginal density is the map into a
space in which the density is uniform. That is

ga) = Pla) = | pla)da, (14

where the subscripts k£ have been dropped for ease of notation. Combining (14) and ¢(a) = ¢" /¢’
gives alternative forms for the ideal ¢:

_0p _Ologp p'(a)

¢(a) - 8_P - da p(a) (15)

In practice, however, the marginal densities are not known. Bell & Sejnowski recognised this
and investigated a number of forms for g and hence ¢. Current folklore maintains (and MacKay
(1996) gives a partial proof) that so long as the marginal densities are heavy tailed (platykurtic)
almost any squashing function that is the cumulative density function of a positive kurtosis density
will do, and the generalised sigmoidal function and the negative hyperbolic tangent are common
choices. Solving (15) with ¢(a) = — tanh(a) shows that using the hyperbolic tangent is equivalent
to assuming p(a) = 1/(7 cosh(a)).

4.1 Learning the nonlinearity

Multiplication of W by a diagonal matrix 1D does not change the mutual information between
the unmixed variables, that is I(DWx) = I(Wx). It therefore appears that the scaling of the



rows of W is irrelevant. However, the mutual information does depend upon D if it is calculated
using marginal densities that are not the true source densities. This is precisely the case faced by
learning algorithms using an a priori fixed marginal density, e.g., p(a) = 1/(7cosh(a)) as implied
by choosing ¢ = —tanh. As figure 4 shows, the likelihood landscape for row-normalised unmixing
matrices using p(a) = 1/(wcosh(a)) is similar in form to the likelihood shown in figure 1, though
the ridges are not so sharp and the maximum likelihood is only —3.9975, which is to be compared
with the true maximum likelihood of —3.1178. Multiplying the row-normalised mixing matrix by a
diagonal matrix, DD, opens up the possibility of better fitting the unmixed densities to 1/(r cosh(a)).
Choosing W* to be the row-normalised M, figure 4b shows the log likelihood of DW* as a function
of D. The maximum log likelihood of —3.1881 is achieved for D = (1'067 5.894) .

In fact, by adjusting the overall scaling of each row of W ICA algorithms are “learning the
nonlinearity.” We may think of the diagonal terms being incorporated into the nonlinearity as
adjustable parameters, which are learned along with the row-normalised unmixing matrix. Let
W = l)li/, where D is diagonal and W is row-normalised and let a = Da = DWX, so that a are
the unmixed variables produced by the row-normalised unmixing matrix. The nonlinearity is thus
d(ar) = ¢(Dprir) = d(ag). If ¢(ar) = —tanh(ag), then ¢(ap) = —tanh(Dyriz). The marginal
density modelled by ¢ (for the row-normalised unmixing matrix) is discovered by solving (15) for
p, which yields p(a) o< 1/[cosh(Dymmai)]*/Pmm. A range of densities is therefore parameterised by
Dyi + as Dgg — 0, p(ag) approximates a Gaussian density, while for large Dy the nonlinearity
6 is suited to a Laplacian density. Figure 4d shows the convergence of D as W is located for
the Laplacian/Gaussian mixture using the relative gradient algorithm. The component for which
D —= 1.67 is the unmixed Gaussian component, while the component for which D —= 5 is the
Laplacian component.

An observation of Cardoso (1997) shows what the correct scaling is. Suppose that W is a scaled
version of the (not row-normalised) maximum likelihood unmixing matrix: W = DM ™!, The the
gradient of the likelihood (5) is

ng/ = (7" + (@(DM )5 ) MT (16)
= (7" + (e(Ds)sT )M, (17)
where ®(a) = (é(a1), ..., #(ax))T. Since the sources are independent and ¢ is a monotone func-

tion (¢(D;s;)s;) = 0 for ¢ # j and the likelihood is maximum for the scaling factors given by
(¢(Drsi)spDy) = —1.

The manner in which nonlinearity is learned can be seen by noting that the weights are adjusted
so that the variance of the unmixed Gaussian component is small, while the width of the unmixed
exponential component remains relatively large. This means that the Gaussian component really
only “feels” the linear part of tanh close to the origin and direct substitution in (15) shows that
¢(a) = —a is the correct nonlinearity for a Gaussian distribution. On the other hand, the unmixed
Laplacian component sees the nonlinearity more like a step function, which is appropriate for a
Laplacian density.

Densities with tails lighter than Gaussian require a ¢ with positive slope at the origin and it
might be expected that the — tanh(a) nonlinearity would be unable to cope with such marginal
densities. Indeed, with ¢ = — tanh, the relative gradient, covariant and BFGS variations of the
ICA algorithm all fail to separate a mixture of a uniform source, a Gaussian source and a Laplacian
source.

This point of view gives a partial explanation for the spectacular ability of ICA algorithms
to separate sources with different heavy-tailed densities using a “single” nonlinearity, and their
inability to unmix light-tailed sources (such as uniform densities).
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Figure 4: Likelihood for a Laplacian-Gaussian mixture, assuming 1/ cosh sources. a: Normalised log
likelihood plotted in the space of two-dimensional, row-normalised unmixing matrices. M~' is marked with
a star. b: The log likelihood plotted as a function of the elements D11 and Dss of a diagonal matrix
multiplying the row-normalised maximum likelthood matrix. Since the log likelihood becomes very large and
negative for large Dy, the gray scale is —log, (| log L|). ¢: Section, D11 = const., through the maximum in
(a). d: Convergence of the diagonal elements of D, as W is found by the relative gradient algorithm.



log £ CA(WM) Ry

20+

10+

o 10 20 30 0 ' 0 ' 70 a0 0 10 20 30
Tteration Tteration Tteration

(a) (b) ()

Figure 5: Separating a mixture of uniform, Gaussian and Laplacian sources. a: Likelihood log L of the
unmixing matrix plotted against iteration. b: Fidelity of the unmixing A(W M) plotted against iteration.
c: Estimates of Ry for the unmixed variables. R describes the power of the generalised exponential: the
two lower curves converge to approximately 1 and 2, describing the separated Laplacian and Gaussian
components, while the upper curve (limited to 25 for numerical reasons) describes the unmixed uniform
source.

4.2 Generalised Exponentials

By refining the estimate of the marginal densities as the calculation proceeds one might expect
to be able to estimate a more accurate W and to be able to separate sources with different, and
especially light-tailed, densities. An alternative approach advanced by (Lee et al. 1998) is to
switch (according to the kurtosis of the estimated source) between fixed — tanh(:) and + tanh(:)
nonlinearities. We have investigated a number of methods of estimating ¢(a) from the 7" instances
of a(t), t = 1...T. Briefly, we find that non-parametric methods using the cumulative density or
kernel density estimators (Wand and Jones 1995) are too noisy to permit the differentiation required
to obtain ¢ = p'/p.

MacKay (1996) has suggested generalising the usual ¢(a) = —tanh(a) to use a gain 3; that
is ¢(a) = —tanh(Ba). As discussed in §4.1, scaling the rows of W effectively incorporates a gain
into the nonlinearity and permits it to model a range of heavy-tailed densities. To provide a little
more flexibility than the hyperbolic tangent with gain, we have used the generalised exponential
distribution:

1/R

= mexp{—ﬁMR}. (18)

p(alB, R)
The width of the distribution is set by 1/3, while the weight of its tails is determined by R. Clearly
p is Gaussian when R = 2, Laplacian when R = 1, and the uniform distribution is approximated in
the limit R — oo. This parametric model, like the hyperbolic tangent, assumes that the marginal
densities are unimodal and symmetric about the mean.
Rather than learn R and (3 along with the elements of W, which magnifies the size of the search
space, they may be calculated for each a; at any, and perhaps every, stage of learning. Formulae
for maximum likelihood estimators of § and R are given in the Appendix.

4.2.1 Example

We have implemented an adaptive ICA algorithm using the generalised exponential to model
the marginal densities. Schemes based on the relative gradient algorithm and the BFGS method
have been used, but the quasi-Newton scheme is much more efficient and we discuss that here.
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The BFGS scheme minimises — log £ (see equation 7). At each stage of the minimisation the
parameters Ry and [, describing the distribution of the kth unmixed variable, were calculated.
With these on hand —log L can be calculated from the marginal entropies (8) and the gradient
found from

—a(;ovf/ﬁ =-WwT - <sz> ) (19)

where z;, = ¢(ag|fk, Ri) is evaluated using the generalised exponential. Note that (19) assumes
that R and 3 are fixed and independent of W, though in fact they depend on W;; because they
are evaluated from ai(t) = >, Wimn,(t). In practice, this leads to small errors in the gradient
(largest at the beginning of the optimisation, before R and  have reached their final values), to
which the quasi-Newton scheme is tolerant.

Two measures were used to assess the scheme’s performance: first, the log likelihood (7) was
calculated; the second measures how well W approximates M ~!. Recall that changes of scale in the
ar and permutation of the order of the unmixed variables do not affect the mutual information, so
rather than WM = I we expect WM = PD for some diagonal matrix 1) and permutation matrix
P. Under the Frobenius norm, the nearest diagonal matrix to any given matrix A is just its diagonal
elements, diag(A). Consequently the error in W may be assessed by

. |IWMP — diag(WMP)||

AMW)=AWM) = min WM , (20)

where the minimum is taken over all permutation matrices, P. Of course, when the sources are inde-
pendent A(W M) should be zero, though when they are not independent the maximum likelihood
unmixing matrix may not correspond to A(WM) = 0.

Figure 5 shows the progress of the scheme in separating a Laplacian source, s (t), a uniformly
distributed source, s3(t), and a Gaussian source, s3(t), mixed with

0.2519 0.0513 0.0771
M= [0.5174 0.6309 0.4572 | . (21)
0.1225 0.6074 0.4971

There were T" = 1000 observations. The log likelihood and A(W M) show that the generalised
exponential adaptive algorithm (unlike the ¢ = — tanh) succeeds in separating the sources.
5 Decorrelating matrices

If an unmixing matrix can be found, the unmixed variables are, by definition, independent. One
consequence is that the cross-correlation between any pair of unmixed variables is zero:

T
1 1
<anak> ~ f § ak(t)an(t) = T(a’ka an)t = 5mnd3u (22)
t=1

where (-, )¢ denotes the inner product with respect to ¢, and d,, is a scale factor.
Since all the unmixed variables are pairwise decorrelated we may write

AAT = D? (23)

where A is the matrix whose kth row is ax(t) and D is a diagonal matrix of scaling factors. We
will say that a decorrelating matrix for data X is a matrix which, when applied to X, leaves the
rows of A uncorrelated.
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Equation (23) comprises K (K — 1)/2 relations which must be satisfied if W is to be a decorre-
lating matrix. (There are only K (K —1)/2 relations rather than K2 because (1) AAT is symmetric,
so demanding that [D?];; = 0 (i # j) is equivalent to requiring that [D?];; = 0; and (2) the diagonal
elements of D are not specified: we are only demanding that cross-correlations are zero.)

Clearly there are many decorrelating matrices, of which the ICA unmixing matrix is just
one, and we mention a few others below. The decorrelating matrices comprise an K (K + 1)/2-
dimensional manifold in the K N-dimensional space of possible unmixing matrices, and we may
seek the ICA unmixing matrix on this manifold.

If W is a decorrelating matrix, we have

AAT =wWXXTWT = D? (24)
and if none of the rows of A is identically zero,
DTYWXXTWTD™ = I (25)
Now, if Q@ € R¥*K is a real orthogonal matrix and D another diagonal matrix,
DRDT'WXXTWTDTIQTD = D? (26)

so DQD~'W is also a decorrelating matrix.
Note that the matrix D~!'W not only decorrelates, but makes the rows of A orthonormal. It is
straightforward to produce a matrix which does this. Let

X=uxv' (27)

be a singular value decomposition of the data matrix X = [x(1),x(2),.x(1)]; U € RE*K and
V € RTXT are orthogonal matrices and ¥ € REXT is a matrix with singular values, o; > 0,
arranged along the leading diagonal and zeros elsewhere. Then let Wy = X='UT. Clearly the rows
of Wy X = VT are orthonormal, so the class of decorrelating matrices is characterised as

W = DQW, = DQX"'UT. (28)

The columns of U are the familiar principal components of principal components analysis and
Y~'UTX is the PCA representation of the data X, but normalised or “whitened” so that the
variance of the data projected onto each principal component is 1/7".

The manifold of decorrelating matrices is seen to be K(K+1)/2—dimensional: it is the Cartesian
product of the K-dimensional manifold D of scaling matrices and the (K — 1)K /2-dimensional
manifold of orthogonal matrices Q. Explicit coordinates on Q are given by

Q=¢ (29)

where S is an anti-symmetric matrix (ST = —S). Each of the above-diagonal elements of S may
be used as a coordinate for Q.

Particularly well-known decorrelating matrices (Bell and Sejnowski 1997; Penev and Atick 1996)
are:

PCA @ =1 and D = Y. In this case W simply produces the principal components representation.
The columns of U form a new orthogonal basis for the data and the mean squared projection
onto the kth coordinates is ¢f/7. The PCA solution holds a special position among decor-
relating transforms because it simultaneously finds orthonormal bases for both the row (V)
and column (U) spaces of X. Viewed in these bases, the data is decomposed into a sum of
products which are linearly decorrelated in both space and time. The demand by ICA of in-
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Figure 6: The manifold of (row-normalised) decorrelating matrices plotted on the likelihood function for
the mixture of Gaussian and Laplacian sources. Leaves of the manifold corresponding to det ) = %1 are as
solid and dashed lines respectively. The symbols mark the locations of decorrelating matrices corresponding

to PCA (o), ZCA (+) and ICA (x).

A(WM) [ logZ
PCA | 0.3599 | -3.1385
ZCA | 03198 | -3.1502
ICA | 0.1073 | -3.1210

Table 1: PCA, ZCA and ICA errors in inverting the mixing matrix (equation 20) and log £, the log likelihood
of the unmixing matrix (equation 7)

dependence in time, rather than just linear decorrelation, can only be achieved by sacrificing
orthogonality between the elements of the spatial basis, i.e., the rows of W.

ZCA @Q = U and D = T1I. Bell and Sejnowski (1997) call decorrelation with the symmetrical
decorrelating matrix, WT = W, the zero-phase components analysis. Unlike PCA, whose
basis functions are global, ZCA basis functions are local and whiten each row of WX so that
it has unit variance.

ICA In the sense that it is neither local or global, ICA is intermediate between ZCA and PCA.
No general analytic form for ¢ and D can be given, and the optimum ) must be sought by
minimising equation (2) (the value of D is immaterial since I(Da) = I(a)). It is important
to note that if the optimal W is found within the space of decorrelating matrices it may not
minimise the mutual information, which also depends on higher moments, as well as some
other W which does not yield an exact linear decorrelation.

When K = 2 the manifold of decorrelating matrices is 3-dimensional, since two parameters are
required to specify D and a single angle parameterises (). Since multiplication by a diagonal matrix

13
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Figure 7: Likelihood and errors in inverting the mixing matrix as the det () = +1 leaf of the decorrelating
manifold is traversed. The symbols mark the locations of decorrelating matrices corresponding to PCA (o),

ZCA (+) and ICA (x).

does not change the decorrelation, D is relatively unimportant and the manifold of row-normalised
decorrelating matrices (which lies in D x Q) may be plotted on the likelihood landscape — this
has been done for the Gaussian/Laplacian example in figure 6. Also plotted on the figure are the
locations of the orthogonal matrices corresponding to the PCA and ZCA decorrelating matrices.
The manifold consists of two non-intersecting leaves, corresponding to det Q = £1, which run close
to the tops of the ridges in the likelihood. Figure 7 shows the likelihood and errors in inverting
the mixing matrix as the det () = +1 leaf is traversed. Table 5 gives the likelihoods and errors in
inverting the mixing matrix for the PCA, ZCA and ICA.

In general the decorrelating manifold does not exactly coincide with the top of the likelihood
ridges, though numerical computations suggest that it is usually close. When the sources are
Gaussians the decorrelating manifold and the likelihood ridge are identical, but all decorrelating
matrices (PCA, ICA, ZCA, etc) have the same (maximum) likelihood and the top of the ridge is
flat.

This characterisation of the decorrelating matrices does not assume that the number of observa-
tion sequences N is equal to the assumed number of sources K, and it is interesting to observe that
if K < N the reduction in dimension from x to a is accomplished by Z]_IUIT( € REXN where Uk
consists of the first K columns of U. This is the transformation onto the decorrelating manifold and
is the same irrespective of whether the final result is PCA, ZCA or ICA. It should be noted that
the transformation onto the decorrelating manifold is a projection, and data represented by the low
power (high index) principal components is discarded by projecting onto the manifold. It might
therefore appear that the projection could erroneously discard low variance principal components
that nonetheless correspond to (low power) independent components. Proper selection of the model
order, K, involves deciding how many linearly mixed components can be distinguished from noise,
which can be done on the basis of the (linear) covariance matrix (Everson and Roberts 1998).
The number of relevant independent components can therefore be determined before projecting
onto the decorrelating manifold and so any directions which are discarded should correspond to
noise. We emphasise that with sufficient data, the maximum likelihood unmixing matrix lies on
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the decorrelating manifold and will be located by algorithms confined to the manifold.
An important characteristic of the PCA basis (the columns of U) is that it minimises recon-
struction error. A vector x is approximated by X projecting x onto the first K columns of U

% = UgUkx, (30)
where Uk denotes the first K columns of U. The mean squared approximation error
PCA ~
iy N = (|lx - =) (31)

is minimised amongst all linear bases by the PCA basis for any K. Indeed the PCA decomposition
is easily derived by minimising this error functional with the additional constraint that the columns
of Ux are orthonormal. It is a surprising fact that this minimum reconstruction error property is
shared by all the decorrelating matrices, and in particular by the (non-orthogonal) ICA basis which
is formed by the rows of W. This is easily seen by noting that the approximation in terms of K
ICA basis functions is

% = Wiwx, (32)
where the pseudo-inverse of W is
W =UrsQ"D™. (33)
The approximation error is therefore
9 = (|- i)
= (lIx = UkEQTD™)(DQE U )x||*)

(IIx - U UEx|)?)
(
I

34
35

36

PCA)
.

37

=€

(34)
(35)
(36)
(37)

Penev and Atick (1996) have also noticed this property in connection with local feature analysis.

5.1 Algorithms

Here we examine algorithms which seek to minimise the mutual information using an unmixing
matrix W which is drawn from the class of linearly decorrelating matrices D x Q and therefore has
the form of equation (23). Since I(Da) = I(a) for any diagonal D, at first sight it appears that
we may choose D = [x. However, as the discussion in §4.1 points out, the elements of D serve as
adjustable parameters tuning a model marginal density to the densities generated by the a;. If a
“fixed” nonlinearity is to be used, it is therefore crucial to permit D to vary and to seek W on the
full manifold of decorrelating matrices.

A straightforward method is to use one of the popular minimisation schemes (Bell and Sejnowski
1995; Amari et al. 1996; MacKay 1996) to take one or several steps towards the minimum and
then to replace the current estimate of W with the nearest decorrelating matrix.

Finding the nearest decorrelating matrix requires finding the D and ¢ that minimise

W — DQWol|* (38)

When D = Ik (i.e., when an adaptive ¢ is being used) this is a simple case of the matrix Procrustes
problem (Golub and Loan 1983; Horn and Johnson 1985). The minimising @) is the orthogonal
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polar factor of WW, . That is, if WWJ =Y SZT is a SVD of W, then Q = Y ZT. When D # I,
(38) must be minimised numerically to find D and ¢ (Everson 1998).

This scheme permits estimates of W to leave the decorrelating manifold, because derivatives are
taken in the full space of K x K matrices. It might be anticipated that a more efficient algorithm
would be one which constrains W to remain on the manifold of decorrelating matrices, and we now
examine algorithms which enforce this constraint.

5.1.1 Optimising on the decorrelating manifold

When the marginal densities are modelled with an adaptive nonlinearity 1D may be held constant
and the unmixing matrix sought on Q, using the parameterisation (29); however, with fixed non-
linearities it is essential to allow D to vary. In this case the optimum is sought in terms of the
(K — 1)K /2 above-diagonal elements of S and the K elements of D.

Optimisation schemes perform best if the independent variables have approximately equal mag-
nitude. To ensure the correct scaling we write

D=%D (39)

and optimise the likelihood with respect to the elements of D (which are O(1)) along with S,,. An
initial pre-processing step is to transform the data into the whitened PCA coordinates; thus

X =x"'UuTx. (40)

The normalised log likelihood is
log £(X|D,Q) = log | det LDQ| + <Zlogpk(ak(t))> : (41)
k

The gradient of log £ with respect to D is

dlogL - _ .
81%- =D+ <¢7x(az’)mz¢2im(t)> (42)
' J
and
Qlog £ _ /v 2 (i —
50, (ila:) Dixj(t)) = Zij (43)
Using the parameterisation (29), equation (43), and
Qi
2 T = Qipdyj — Qiglpj + Qqj0pi — Qpjdyi, (44)
0Sp,

the gradient of log £ with respect to the above-diagonal elements S,, (p < ¢ < K) of the anti-
symmetric matrix is given by:

dlog L

= —QmpZmg + @mqZmp — QemZpm + QpmZym (45)
9Spq

(summation on repeated indices). With the gradient on hand, gradient descent or, more efficiently,
quasi-Newton schemes may be used.

When the nonlinearity is adapted to the unmixed marginal densities, one simply sets D = I
in (41) and (43), and the optimisation is conducted on in the K (K — 1)/2-dimensional manifold Q.
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Clearly, a natural starting guess for W is the PCA unmixing matrix given by S =0, D = Ix.
Finding the ICA unmixing matrix on the manifold of decorrelating matrices has a number of
advantages.

1. The unmixing matrix is guaranteed to be linearly decorrelating.

2. The optimum unmixing matrix is sought in the K (K — 1)/2-dimensional (or if fixed non-
linearities are used, K (K + 1)/2-dimensional) space of decorrelating matrices rather than in
the full K2-dimensional space of order K matrices. For large problems and especially if the
Hessian matrix is being used this provides considerable computational savings in locating the
optimum matrix.

3. The scaling matrix D, which does not provide any additional information, is effectively re-
moved from the numerical solution.

A potentially serious disadvantage is that with small amounts of data the optimum matrix on
Q may not coincide with the maximum likelihood ICA solution, because an unmixing matrix which
does not produce exactly linear decorrelation may more effectively minimise the mutual information.
Of course with sufficient data, a necessary condition for independence is linear decorrelation and the
optimum ICA matrix will lie on the decorrelating manifold. Nonetheless, the decorrelating matrix
is generally very close to the optimum matrix and provides a good starting point from which to

find it.

6 Rogues Gallery

The hypothesis that human faces are composed from an admixture of a small number of canonical
or basis faces was first examined by Sirovich and Kirby (1987, 1990). It has inspired much research
in the pattern recognition (Atick et al. 1995) and psychological (O’Toole et al. 1991; O’Toole
et al. 1991) communities. Much of this work has focused on eigenfaces, which are the principal
components of an ensemble of faces and are therefore mutually orthogonal. As an application
of our adaptive ICA algorithm on the decorrelating manifold we have computed the independent
components for an ensemble faces — dubbed the “Rogues Gallery” by Sirovich and Sirovich (1989).
The model we have in mind is that a particular face, x, is an admixture of K basis functions, the
coefficients of the admixture being drawn from K independent sources s. If the ensemble of faces
is subjected to ICA the rows of the unmixing matrix are estimates of the basis functions, which
(unlike the eigenfaces) need not be orthogonal.

There were 143 clean-shaven, male Caucasian faces in the original ensemble, but the ensemble
was augmented by the reflection of each face in its midline to make 286 faces in all (Kirby and
Sirovich 1990). The mean face was subtracted from each face of the ensemble before ICA. Indepen-
dent components were estimated using a quasi-Newton scheme on the decorrelating manifold with
generalised exponential modelling of the source densities. Since the likelihood surface has many
local maxima, the optimisation was run repeatedly (K 4 1 times for K assumed sources) each run
starting from a different (randomly chosen) initial decorrelating matrix. One of the initial condi-
tions always included the PCA unmixing matrix and it was found that this initial matrix always
lead to the ICA unmixing matrix with the highest likelihood. It was also always the case that the
ICA unmixing matrix had a higher likelihood than the PCA unmixing matrix. We remark that an
adaptive optimisation scheme using our generalised exponential approach was essential: several of
the unmixed variables had densities with tails lighter than Gaussian.

Principal components are naturally ordered by the associated singular value, oy, which measures
standard deviation of projection of the data onto the kth principal component: of = <(uZx)2>.
In an analogous manner we may order the ICA basis vectors by the scaling matrix ). Hereafter
we assume that the unmixing matrix is row-normalised, and denote the ICA basis vectors by wg.
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Figure 8: Independent basis functions and principal components of faces. a: The first 8 independent
component basis faces, wy from an K = 20 ICA of the faces ensemble. b: The first 8 principal components,
uy, from the same ensemble.
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Figure 9: The matrix |W(20)W(10)T| showing the inner products between the independent components basis
vectors for K = 10 and K = 20 assumed sources.

Then D? = <(ng)2> measures the mean squared projection of the data onto the kth normalised
ICA basis vector. We then order the wy, according to Dy, starting with the largest.

Figure 8 shows the first eight ICA basis vectors together with the eight principal components
from the same dataset. The wy were calculated with K = 20, i.e., it was assumed that there are 20
significant 1CA basis vectors. Although independent components have to be recalculated for each
K, we have found a fair degree of concurrence between the basis vectors calculated for different K.
For example, figure 9a shows the matrix of inner products between the basis vectors calculated with
K =10 and K = 20; i.e., |W(20)W(10)T|. The large elements on or close to the diagonal and the
small elements in the lower half of the matrix indicate that the basis vectors retain their identities
as the assumed number of sources increases.

As the figure shows, the ICA basis vectors have more locally concentrated power than the
principal components. Power is concentrated around sharp gradients or edges in the images, in
concurrence with Bell and Sejnowski’s (1997) observation that the ICA basis functions are edge
detectors. As Bartlett, Lades, and Sejnowski (1998) have found, this property may make the ICA
basis vectors useful feature detectors since the edges are literal features! We also note that, unlike
the ug, the wj are not forced to be symmetric or anti-symmetric in the vertical midline. There is
a tendency for the midline to be a line of symmetry and we anticipate that with a sufficiently large
ensemble, the wy would acquire exact symmetry.

As the assumed number of sources is increased the lower-powered independent component basis
vectors approach the principal components. This is illustrated in figure 10, which shows the matrix
of inner products between the wi, from a K = 20 source model and the first 20 principal components.
For k greater than about 12 the angle between the principal components u; and wy is small.
Bartlett, Lades, and Sejnowski (1998) have calculated independent component basis vectors for
a different ensemble of faces, and do not report this tendency for the independent components
to resemble the principal components. However, their unmixing matrix is not guaranteed to be
decorrelating. It is possible that our algorithm is getting stuck at local likelihood maxima close
to the PCA unmixing matrix, however, initialising the optimisation at randomly chosen positions
on the decorrelating manifold failed to find W with a greater likelihood than those presented here.
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Figure 10: The matrix |W(?9UJ,| showing the inner products between the independent components basis
vectors (K = 20) and the first 20 principal components.

We suspect that the proximity of the later ICA basis vectors to the principal components is due to
the fact that the independent components are constrained to lie on the decorrelating manifold, the
noisy condition (and relatively small size (7" = 286)) of our ensemble, factors which also prevent
meaningful estimates of the true number of independent sources.

7 Summary and Conclusion

We have used the likelihood landscape as a numerical tool to better understand independent com-
ponents analysis and the manner in which gradient-based algorithms work. In particular we have
tried to make plain the role that scaling of the unmixing matrix plays in adapting a “static” non-
linearity to the nonlinearities required to unmix sources with differing marginal densities. To cope
with light-tailed densities we have demonstrated a scheme that uses generalised exponential func-
tions to model the marginal densities. Despite the success of this scheme in separating a mixture
of Gaussian, Laplacian and uniform sources, additional work is required to model sources which
are heavily skewed or which have multi-modal densities.

Numerical experiments show that the manifold of decorrelating matrices lies close to the ridges
of high-likelihood unmixing matrices in the space of all unmixing matrices. We have shown how
to find the optimum ICA matrix on the manifold of decorrelating matrices and we have used
the algorithm to find independent component basis vectors for a rogues gallery. Seeking the ICA
unmixing matrix on the decorrelating manifold naturally incorporates the case in which there are
more observations, NV, than sources, K. Selection of the correct number of sources, especially with
few data, can be difficult particularly as ICA does not model observational noise (but see Attias
(1998)), however the model order may be selected before projection onto the decorrelating manifold.
In common with other authors, we note that real cocktail party problem — separating many voices
from few observations — remains to be solved (for machines).
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Finally, independent components analysis depends on minimising the mutual information be-
tween the unmixed variables, which is identical to minimising the Kullback-Leibler divergence
between the between the joint density p(a) and the product of the marginal densities [, px(ax).
The Kullback-Leibler divergence is one of many measures of disparity between densities (see, for
example, Basseville (1989)) and one might well consider using a different one. Particularly at-
tractive is the Hellinger distance which is a metric and not just a divergence. When an unmixing
matrix which makes the mutual information zero can be found, the Hellinger distance is also zero.
However, when some residual dependence between the unmixed variables remains these various
divergences will vary in their estimate of the best unmixing matrix.
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A Appendix

Here we give formulae for estimating the generalised exponential (18) parameters § and R from T
observations a(t). The normalised log likelihood is

zlogR—}—%logﬂ log2 —log'(1/R) — ﬁZ|at|R (46)

where ' = T='S>7_ . The derivative of the I with respect to 3 is

oL 1 !
— == " (47)

Setting this equal to zero gives 3 in terms of R and we can solve the one-dimensional problem

% =0 to find the maximum likelihood parameters.

L. oL | 9L dp

it 48
iR~ ok " 93 o (48)
but the second term is zero if the solution is sought along the curve defined by 2 35 = 0. Itis
straight-forward to find
oL 1
R R2 logﬂ+ v(1/R) = B lai| " log o (49)

where ¥(z) = I(2)/T'(z) is the digamma function. Since there is only one finite R for which
% is zero, this is readily and robustly accomplished. We remark that the domain of attraction
for a Newton’s method is quite small, and Newton’s method offers only a slight advantage over
straightforward bisection.
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