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Abstract

Independent Components Analysis �nds a linear transformation to variables which

are maximally statistically independent. We examine ICA from the point of view
of maximising the likelihood of the data. We elucidate how scaling of the unmixing

matrix permits a \static" nonlinearity to adapt to various marginal densities. We

demonstrate a new algorithm that uses generalised exponentials functions to model
the marginal densities and is able to separate densities with light tails.

We characterise decorrelating matrices and numerically show that the manifold

of decorrelating matrices lies along the ridges of high-likelihood unmixing matrices

in the space of all unmixing matrices. We show how to �nd the optimum ICA

matrix on the manifold of decorrelating matrices.

1 Introduction

Independent components analysis, which has enjoyed recent theoretical [2,

7, 4, 6] and empirical (e.g., [8]) attention, seeks a linear transformation to

coordinates in which the data are maximally statistically independent and not

just linearly decorrelated, as would be obtained with principal components

analysis. Viewed from another perspective, ICA is a method of separating

independent sources which have been linearly mixed to produce the data.

Despite its recent popularity, aspects of the ICA algorithms are still poorly

understood. Here we seek to better understand and improve the technique.

Consider a set of T observations, x(t) 2 RN: Independent components

analysis seeks a linear transformation W 2 RM�N to a new set of variables,

a = Wx; (1)

in which the components of a; am(t); are maximally independent in a statisti-

cal sense. The degree of independence is measured by the mutual information
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between the components of a:

I(a) =

Z
p(a) log

p(a)Q
m pm(am)

da: (2)

When the joint probability p(a) can be factored into the product of the

marginal densities pm(am); the various components of a are statistically in-

dependent and the mutual information is zero.

If the observations were generated by the noiseless linear mixing of M

independent sources sm(t); so that

x =Ms; (3)

then W is to be regarded as the (pseudo) inverse of the mixing matrix, M:

Thus successful estimation of W constitutes blind source separation.

ICA has been brought to the fore by Bell & Sejnowski's neuro-mimetic

formulation [2], which we brie
y summarise. For simplicity, we keep to the

standard assumption that M = N: Bell & Sejnowski introduce a non-linear,

component-wise mapping, y = g(a); ym = gm(am) into a space in which

the marginal densities are uniform. The linear transformation followed by

the non-linear map may be accomplished by a single layer neural network in

which the elements of W are the weights and the M neurons have transfer

functions gm:

Since the mutual information is constant under one-to-one, component-

wise changes of variables, I(a) = I(y); and since the gm are, in theory at

least, chosen to generate uniform marginal densities, pm(ym); the mutual

information I(y) is equal to the negative of the entropy of y:

I(y) = �H(y) =

Z
p(y) log p(y)dy: (4)

Any gradient-based optimisation approach to the maximum entropy, and

therefore the minimum mutual information, requires the gradient of H with

respect to the elements of W :

@H

@Wij

=
@ log jW j

@Wij

+
X
m

�
@

@Wij

logg0m(am)

�
= W�T +



zx

T
�
; (5)

where zi = �i(ai) = g00i =g
0

i: If a gradient-ascent method is applied, the es-

timates of W are updated according to �W = �@H=@W for some learning

rate �: Bell & Sejnowski drop the expectation operator in order to perform

a stochastic gradient descent to the minimum mutual information. Various

modi�cations, such as MacKay's covariant algorithm [7] and Amari's natural

gradient scheme [1], enhance the convergence rate, but the basic ingredients

remain the same. Much more e�cient optimisation is possible using, for ex-

ample, quasi-Newton methods (e.g., BFGS [9]) if the biological plausibility

of a biological implementation is sacri�ced.



2 Likelihood Landscape

Cardoso [4] and MacKay [7] have each shown that the neuro-mimetic formu-

lation is equivalent to a maximum likelihood approach. The normalised log

likelihood for the entire set of observations x(t); t = 1:::T , is

logL =
1

T

TX
t=1

logP (x(t)jW ) = log j detW j �
X
m

Hm(am); (6)

where

Hm(am) =
1

T

TX
t=1

log pm(am(t)) � �

Z
pm(am) log pm(am)dam (7)

is an estimate of the marginal entropy of the mth unmixed variable.

Note also that the mutual information is given by

I(a) =

Z
p(a) log p(a)da+

X
m

Hm(am) = H(x)� logL: (8)

Thus the mutual information is a constant, H(x); minus the log likelihood,

so that hills in the log likelihood are valleys in the mutual information.

Equation (6) requires some sort of normalisation since multiplication of

W by a diagonal matrix does not change the mutual information, but would

permit us to make the likelihood take on arbitrary values. We therefore

choose to normaliseW so that the sum of the squares of the elements in each

row is unity:
P

jW
2

ij = 1 8i:
When only two sources are mixed, the row normalisedW may be param-

eterised by two angles: W =

�
cos �1 sin �1
cos �2 sin �2

�
and the likelihood plotted as a

function of �1 and �2: Figure 1 shows the log likelihood for the mixture of a

Gaussian and a bi-exponential source with M = [2; 1; 3; 1]. Several features

deserve comment.

1. Singularities: Rows of W are linearly dependent when �1 = �2+n�;

so log j detW j and hence logL are singular.

2. Symmetries: Clearly logL is doubly periodic in �1 and �2: Addi-

tional symmetry is conferred by the fact that the likelihood unchanged under

permutation of the coordinates (here �1 and �2). Analogous symmetries are

retained in higher dimensional examples.

3. Ridges: The maximum likelihood is achieved for several (�1; �2) re-

lated by symmetry, one instance of which is marked by a star in the �gure.

The maximum likelihood lies on a ridge with steep sides and a 
at top.

Figure 1b shows a section along the ridge. The rapid convergence of ICA

algorithms is probably due to the ease in ascending the sides of the ridge;

arriving at the very best solution requires a lot of extra work. Note however,

that this is a slightly distorted view of the landscape faced by learning al-

gorithms because they generally work in terms of the full matrix W; rather
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Figure 1: Likelihood landscape for a mixture of a bi-exponential and Gaussian

sources. a: Log likelihood, log L; plotted as a function of �1 and �2: Dark gray

indicates low likelihood matrices and white indicates high likelihood matrices. The
maximum likelihood matrix (i.e., the ICA unmixing matrix) is indicated by the �:

b: log L along the \ridge" �2 = const:; passing through the maximum likelihood.

than the with row-normalised form.

4. Local maxima: The structure of the likelihood for more realistic

examples is very similar to �gure 1. The principal di�erence is that the

top of the ridges are frequently bumpy (because the marginal densities are

not strictly unimodal) and gradient-based algorithms may stick at a local

maximum.

3 Choice of squashing function

The algorithm, as outlined above, leaves open the choice of the \squashing

functions" gm; which map the transformed variables am into a space in which

their marginal densities are uniform. In fact, what is actually needed are the

functions �m(am) rather than the gm themselves.

If the marginal densities are known it is, in theory, a simple matter to

�nd the appropriate gm; since the function which is the cumulative marginal

density is the map into a space in which the density is uniform. That is

g(a) = P (a) =

Z a

�1

p(x)dx; (9)

where the subscripts m have been dropped for ease of notation. Substituting

(9) in �(a) = g00=g0 gives alternative forms for the ideal �:

�(a) =
@p

@P
=
@ log p

@a
=
p0(a)

p(a)
: (10)
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Figure 2: Likelihood for a bi-exponential/Gaussian mixture, assuming 1= cosh

sources. a: Normalised log likelihood plotted in the space of two-dimensional, row-

normalised unmixing matrices. M�1 is marked with a star. b: The log likelihood
plotted as a function of the elements D11 and D22 of a diagonal matrix multiplying

the row-normalised maximum likelihood matrix. Since the log likelihood becomes

very large and negative for large Dmm; the gray scale is � log
10
(j log Lj): The axes

are labelled with log
10

Dmm:

In practice, however, the marginal densities are not known, and a number of

forms for g and hence � have been investigated [2]. Current folklore maintains

that so long as the marginal densities are heavy tailed (platykurtic) almost

any function that squashes will do, and the generalised sigmoidal function

and the negative hyperbolic tangent are common choices. Solving (10) with

�(a) = � tanh(a) shows that using the hyperbolic tangent is equivalent to

assuming p(a) = 1=(� cosh(a)):

3.1 Learning the nonlinearity

In section 2 it was argued that, by multiplying the unmixing matrix by a

diagonal matrix D; the likelihood could be made to take on arbitrary val-

ues without changing the mutual information between the unmixed vari-

ables. The estimated mutual information is not, however, independent of

D if the unmixed densities appearing in (6) are not the true source densi-

ties. This is precisely the case faced by learning algorithms using an a priori

�xed marginal density. As �gure 2 shows, the likelihood landscape for row-

normalised unmixing matrices using p(a) = 1=(� cosh(a)) is similar in form

to the likelihood shown in �gure 1, though the ridges are not so sharp and

the maximum likelihood is only �3:99; which is to be compared with the

true maximum likelihood of �3:12: Multiplying the row-normalised mixing

matrix by a diagonal matrix,D, opens up the possibility of better �tting the

unmixed densities to 1=(� cosh(a)): Choosing W � to be the row-normalised

M�1; �gure 2b shows the log likelihood of DW � as a function ofD: it clearly

achieves a maximum for a particular choice of D.

In fact, by adjusting the overall scaling of each row of W; ICA algorithms

are \learning the nonlinearity". We may think of the diagonal terms being in-

corporated into the nonlinearity as adjustable parameters, which are learned



along with the row-normalised unmixing matrix.

Numerical experiments show that during learning the weights are adjusted

so that the variance of the unmixed Gaussian component is small, while the

width of the unmixed exponential component remains relatively large. This

means that the Gaussian component really only \feels" the linear part of

� tanh close to the origin and (10) shows that �(a) = �a is the correct

nonlinearity for a Gaussian distribution. On the other hand, the unmixed bi-

exponential component sees the nonlinearity more like a step function, which

is appropriate for a bi-exponential density.

Densities with tails lighter than Gaussian (i.e., p@ log p
@p

< 1) require a sub-

linear �; and it might be expected that the � tanh(a) nonlinearity would be

unable to cope with such marginal densities. Indeed, with � = � tanh; the

relative gradient [1], covariant [7] and BFGS variations of the ICA algorithm

all fail to separate a mixture of uniform, Gaussian and bi-exponential sources.

This point of view gives a partial explanation for the spectacular ability of

ICA algorithms to separate sources with di�erent heavy-tailed densities using

a \static" non-linearity, and their inability to unmix light-tailed sources (such

as uniform densities).

3.2 Adapting �
By re�ning the estimate of � as the calculation proceeds one might expect

to be able to estimate a more accurate W and to be able to separate sources

with di�erent densities. Unfortunately numerical experiments show that non-

parametric methods, such as kernel density estimators, yield densities which

are too noisy to permit the numerical di�erentiation required to �nd �:

In order to be able to separate light-tailed sources we have used the gen-

eralised exponential distribution:

p(aj�;R) =
R�1=R

2�(1=R)
expf��jajRg: (11)

The width of the distribution is set by 1=�; while the weight of its tails is

determined by R: Clearly p is Gaussian when R = 2; bi-exponential when

R = 1; and the uniform distribution is approximated in the limit R!1:

Rather than learn R and � along with the elements ofW; which magni�es

the size of the search space, they may be calculated for each am at any, and

perhaps every, stage of learning. A maximum likelihood estimate for R and

� may be obtained by solving a one-dimensional equation [5].

We have used the generalised exponentials in a quasi-Newton (BFGS [9])

ICA algorithm. At each stage of the minimisation the parameters Rm and

�m; describing the distribution of the mth unmixed variable were found,

permitting the calculation of � logL and its gradient. This algorithm is able

to separate a mixture of a bi-exponential source, a Gaussian source and a

uniformly distributed source. Algorithms using a static tanh nonlinearity are

unable to separate this mixture. Further details are given in [5], and we give

an example on real data below.



4 Decorrelating matrices

If an unmixing matrix can be found, the unmixed variables are, by de�nition,

independent. One consequence is that the cross-correlation between any pair

of unmixed variables is zero:

hanami �
1

T

TX
t=1

am(t)an(t) =
1

T
(am; an)t = �mnd

2

n; (12)

where (�; �)t denotes the inner product with respect to t; and dn is a scale

factor. Since all the unmixed variables are pairwise decorrelated we have

AAT = WXXTWT = D2; (13)

where A is the matrix whose mth row is am(t) and D is a diagonal matrix

of scaling factors. We will say that a decorrelating matrix for data X is a

matrix which, when applied toX; leaves the rows ofA decorrelated. Equation

(13) comprises M (M � 1)=2 relations which must be satis�ed if W is to be

a decorrelating matrix. Clearly there are many decorrelating matrices, of

which the ICA unmixing matrix is just one.

If Q 2 RM�M is an orthogonal matrix and D̂ another diagonal matrix,

D̂QD�1WXXTWTD�1QTD̂ = D̂2 (14)

so D̂QD�1W is also a decorrelating matrix. The matrix D�1W not only

decorrelates, but makes the rows of A orthonormal. It is straightforward

to produce a matrix which does this. Let X = U�V T be a singular value

decomposition of the data matrix X = [x(1);x(2); :::x(T )]; U 2 RM�M and

V 2 RT�T are orthogonal matrices and � 2 RM�T is a matrix with singular

values, �i > 0; arranged along the leading diagonal and zeros elsewhere.

Then let W0 = ��1UT: Clearly the rows of W0X = V T are orthonormal, so

the class of decorrelating matrices is characterised as

W = DQW0 = DQ��1UT: (15)

The columns of U are the familiar principal components of principal compo-

nents analysis and ��1UTX is the PCA representation of the data X; but

normalised or \whitened" so that the variance of the data projected onto

each principal component is unity.

Particularly well-known decorrelating matrices [3] are: PCA: Q = I and

D = �: In this case W simply produces the principal components representa-

tion. ZCA: Q = U and D = I: Bell and Sejnowski [3] call decorrelation with

the symmetrical decorrelating matrix WT = W the zero-phase components

analysis. ICA: No general analytic form for Q and D can be given, and the

optimum Q must be sought by minimising equation (2).

The characterisation of W (15) shows that the decorrelating manifold

is M (M + 1)=2-dimensional: the Cartesian product of the M -dimensional
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Figure 3: Decorrelating manifold. a: The manifold of (row-normalised) decorre-

lating matrices plotted on the likelihood function for the mixture of Gaussian and

bi-exponential sources. Leaves of the manifold corresponding to detQ = �1 are as
solid and dashed lines respectively. The symbols mark the locations of decorrelat-

ing matrices corresponding to PCA (�), ZCA (+) and ICA (�). b: Likelihood as

the detQ = +1 leaf of the decorrelating manifold is traversed.

manifoldD of scaling matrices and the (M �1)M=2-dimensional manifold of

orthogonal matricesQ:WhenM = 2 the manifoldof decorrelating matrices is

3-dimensional. Since multiplication by D does not change the decorrelation,

D is relatively unimportant and the manifold of row-normalised decorrelating

matrices (which lies in D � Q) may be plotted on the likelihood landscape,

as shown in �gure 3 for the Gaussian/bi-exponential mixture. The manifold

consists of two non-intersecting leaves, corresponding to detQ = �1; which
run along the tops of the ridges in the likelihood.

4.1 ICA on the decorrelating manifold

Explicit coordinates on Q are given by the matrix exponential of an anti-

symmetric matrix S:

Q = eS ; ST = �S: (16)

The above-diagonal elements of S may be used as coordinates for Q and the

diagonal elements of D are coordinates for D: Thus � logL(D;Q) may be

minimised by gradient descent or, more e�ciently, by BFGS schemes [5].

Since I(Da) = I(a) for any diagonal D; at �rst sight it appears that we

may choose D = IM : However, as the discussion in section 3.1 points out,

the elements of D serve as adjustable parameters tuning a model marginal

density to the densities generated by the am: If a \�xed" nonlinearity is to

be used, it is therefore crucial to permit D to vary and to seek W on the

full manifold D � Q of decorrelating matrices. When the marginal densities

are modelled with an adaptive nonlinearity D may be held constant and the

unmixing matrix sought on Q; using the parameterisation (16). In either

case a good starting point is the PCA unmixing matrix.
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Figure 4: Separation of two music sources and uniform noise. Top row: 150
samples of the original sources, sm(t). Bottom row: the unmixed variables, am(t).

(fsamp = 11:3kHz). To facilitate comparison both sources and the unmixed vari-
ables have been normalised to unit variance.

Finding the ICA unmixing matrix on the manifold of decorrelating ma-

trices has a number of advantages. (1) The unmixing matrix is guaranteed

to be linearly decorrelating. (2) The optimum unmixing matrix is sought

in the M (M � 1)=2-dimensional (or with �xed nonlinearities, M (M + 1)=2-

dimensional) space of decorrelating matrices rather than in the full MN -

dimensional space. For large problems and especially if the Hessian matrix is

being used this provides considerable computational savings. (3) The scaling

matrix D; which does not provide any additional information, is removed

from the numerical solution.

A potentially serious disadvantage is that with small amounts of data

the optimum matrix on Q may not coincide with the maximum likelihood

ICA solution, because an unmixing matrix which does not produce exactly

linear decorrelation may more e�ectively minimise the mutual information.

Nonetheless, the decorrelating matrix is generally very close to the optimum

matrix and provides a good starting point from which to �nd it.

5 Illustration

In conclusion we illustrate the adaptive nonlinearity and decorrelating man-

ifold approach by applying it to a mixture of three sources: uniform noise

and two fragments of music (a Beethoven string quartet and an old recording

of a blues ballad). The music sources each had unit variance and the noise

was distributed between �0:5; the elements of M were chosen at random in

[0; 1]. Figure 4 shows 150 samples of the sources together with the estimated

sources found by the adaptive, decorrelating manifold algorithm. It is clear

that the algorithm has done a good job in separating the sources: the noisy

blues recording is estimated together with its noise (plots a and d), while the



string quartet is uncontaminated (plots b and e). To the ear the recovered

sources are indistinguishable from the originals, and in particular there is no

trace of music in the unmixed noise.

Changes of scale in the am and permutation of the order of the unmixed

variables do not a�ect the mutual information, so rather than WM = I we

expect WM = PD for some diagonal matrix D and permutation matrix P .

Under the Frobenius norm, the nearest diagonal matrix to any given matrix

A is just its diagonal elements, diag(A). Consequently the error in W may

be quantitatively assessed with

�(MW ) = �(WM) = min
P
kWMP � diag(WMP )k=kWMk; (17)

where the minimum is taken over all permutation matrices, P . For perfect

unmixing�(WM) = 0: The adaptive, decorrelating manifold algorithm�nds

W with �(WM) = 0:0383.

The marginal densities of the music sources are both heavy tailed, but the

uniform noise has lighter tails than Gaussian. We �nd that the adaptive algo-

rithm is essential for separating the light tailed source: the algorithms given

in [1, 7] and the decorrelating manifold algorithm with � tanh nonlinearity

all audibly fail to separate the sources and all have �(WM) > 0:6.
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