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Abstract

Multi-Objective Evolutionary Algorithms (MOEAs) have been the subject of numer-
ous studies over the past 20 years. Recent work has highlighted the use of an active archive
of elite, non-dominated solutions to improve the optimisation speed of these algorithms.
However preserving all elite individuals is costly in time (due to the linear comparison
with all archived solutions needed before a new solution can be inserted into the archive).
Maintaining an elite population of a fixed maximum size (by clustering or other means)
alleviates this problem, but can cause retreating (or oscillitory) and shrinking estimated
Pareto fronts - which can affect the efficiency of the search process. New data structures
are introduced to facilitate the use of an unconstrained elite archive, without the need for
a linear comparison to the elite set for every new individual inserted. The general appli-
cability of these data structures is shown by their use in an Evolutionary Strategy based
MOEA and a Genetic Algorithm based MOEA. It is demonstrated that MOEAs using the
new data structures run significantly faster than standard, unconstrained archive MOEAs,
and result in estimated Pareto fronts significantly ahead of MOEAs using a constrained
archive.

It is also shown that the use of an unconstrained elite archive permits robust criteria
for algorithm termination to be used, and that the use of the data structure can also be
used to increase the speed of algorithms using e-dominance methods.

Index Terms

Optimisation, Genetic Algorithms, FEvolutionary Strategies, Multiple Objectives.

1 INTRODUCTION

Frequently a number of competing objectives have to be traded against one another whilst
seeking a viable solution to a given problem, often without any a priori knowledge of exactly
how the objectives interact with one another. For instance, in product design a firm may wish
to maximise the performance of an appliance whilst also trying to minimise its production



cost. These two objectives cannot typically be met by a single solution, so, by adjusting the
various design parameters, the firm may seek to discover what possible combinations of these
two objectives are available, given a set of constraints (for instance legal requirements and size
limits of the product).

In [1] for example, multi-objective optimisation is applied to four performance measures
of a gas turbine, in [2] different loads in trusses are the competing objectives to be minimised
and in [3] different properties of a pressurised water reactor load pattern are optimised.

The curve (for two objectives) or surface (more than two objectives) that describes the
optimal trade-off possibilities between objectives is known as the Pareto front [4]. A feasible
solution lying on the Pareto front cannot improve any objective without degrading at least
one of the others, and, given the constraints of the model, no solutions exist beyond the true
Pareto front. The goal, therefore, of multi-objective algorithms is to locate the Pareto front
of these non-dominated solutions.

Multi-Objective Evolutionary Algorithms (MOEASs) represent a popular approach to solv-
ing these types of problem by using evolutionary search techniques. MOEAs have been in
use for a considerable length of time now: Beale and Cook in 1978 used a random search
technique in an attempt to simultaneously minimise a number of objectives in an aircraft sim-
ulator [5]. However, it is the work of Schaffer in 1985 [6], which recognised the need to return
a set of solutions, that has been widely quoted as the first MOEA study [7, 8, 9]. The use of
Evolutionary Algorithms (EAs) as the tool of choice is due to such problems being typically
complex, with both a large number of parameters to be adjusted, and several objectives to
be optimised. In addition, EAs, which maintain a population of solutions, are able to explore
several parts of the Pareto front simultaneously.

Most recent investigations in the area [1, 7, 10, 11, 12| focus on a MOEA’s ability to
produce an accurate estimate of the Pareto front. Zitzler et al. [9] present a comparative
study, on six test functions introduced by Deb [13], of a number of the most widely used
MOEAs, including Fonseca and Fleming’s multiobjective EA (FFGA) [1], the Niched Pareto
Genetic Algorithm (NPGA) [11], Hajela and Lin’s weighted-sum approach (HLGA) [2], the
Vector Evaluated Genetic Algorithm (VEGA) [6] and the Nondominated Sorting Genetic
Algorithm (NSGA) [12]. Their study suggests that their Genetic Algorithm (GA) based
Strength Pareto Evolutionary Algorithm (SPEA) outperforms the other algorithms, with it
consistently recording better results as measured by the C metric [9, 14, 15] on a number of the
test functions. In an earlier paper [15] Zitzler and Thiele also demonstrated SPEA’s superior
performance in comparison to four other MOEAs on a 0/1 knapsack problem. Another MOEA
which has demonstrated significant results is the Evolutionary Strategy (ES) based Pareto
Archived Evolutionary Strategy (PAES) of Knowles and Corne [16, 17]. Both these MOEAs
incorporate elitism and recent work by Laumanns et al. [18] provides a unified model for
MOEAs with elitism (called UMMEA). The elitism within UMMEA is achieved by using an
archive set of non-dominated solutions in addition to the usual GA population (or as a source
of parents for ES perturbation). SPEA, PAES and the UMMEA all use an archive limited
to a fixed maximum number of individuals, presumably to avoid the computational costs of
maintaining a large archive.

It is shown in this paper that a consequence of restricting the number of solutions in
the elite front can be shrinking [19] and oscillating/retreating estimated Pareto fronts [20,
21, 22|. These problems also occur in SPEA, PAES and other existing MOEAs which use a
truncated elite archive. A remedy to this situation is simply to retain all the non-dominated
solutions found (as an active input to the continuing search process), as, for example, used by



Parks and Miller [3]; however, this approach can be very time consuming (as any individual
inserted into the elite archive must first be compared to every individual already present in
the archive). It is important to note that in a large number of studies an elite offline store of
solutions is maintained which is unbounded, even when truncation takes place in the active
population, therefore the linear time update costs are still incurred (in addition to the time
cost of truncation).

New data structures, called dominated and non-dominated trees are introduced in this
study that permit faster searching of the elite archive, allowing even very large active elite
sets to become feasible. It is shown that the use of the dominated and non-dominated trees
in basic ES and GA MOEAs on a number of test sets leads to faster computation time in
comparison to maintaining an unconstrained archive as a linear list. Also, the estimated
Pareto front discovered is significantly better than that found with a truncated elite archive.

In addition, the use of an unconstrained elite archive is also shown to enable the introduc-
tion of a robust algorithm termination methodology, which has until now been largely absent
from the MOEA literature.

The paper has the following structure: in Section 2 Pareto optimality is reviewed; in
Section 3 the UMMEA is briefly described. In Section 4 a brief overview of the problems of
elite set truncation is given. In Section 5 implementational considerations of the use of an
unconstrained archive are discussed, the new data structures introduced and implementation
described.

The results of a set of experiments quantifying the effects of using the data structures are
reported in Section 6, together with the performance measures used. In Section 7 a set of
robust stopping criteria are introduced, to replace the current methodology of ad hoc algorithm
termination. The paper concludes with a discussion in Section 8.

2 PARETO OPTIMALITY

Most recent work on MOEAs hinges on the notions of non-dominance and Pareto optimality,
which are now briefly reviewed.
The multi-objective optimisation problem seeks to simultaneously extremise D objectives:

yi = fi(x), i=1,...,D (1)

where each objective depends upon a vector x of P parameters or decision variables. The
parameters may also be subject to the J constraints:

ej(x) >0, j=1,...,J. (2)

Without loss of generality it is assumed that the objectives are to be minimised, so that the
multi-objective optimisation problem may be succinctly stated as:

Minimise —y = f(x)=(fi(x),f2(x),...,fp(x)) 3)
subject to e(x) = (e1(x),ez(x),...,es5(x)) >0 (4)

where x = (z1,%9,...,zp) € X and y = (y1,¥2,---,YD)-

When faced with only a single objective an optimal solution is one which minimises the
objective given the model constraints. However, when there is more than one objective to be
minimised it is clear that solutions exist for which performance on one objective cannot be



improved without sacrificing performance on at least one other. Such solutions are said to be
Pareto optimal [8] and the set of all Pareto optimal solutions is said to form the Pareto front.

The notion of dominance may be used to make Pareto optimality more precise. A decision
vector u is said to strictly dominate another v (denoted u < v) iff

filu) < fi(v) Vi=1,...,D and fi(u) < fi(v) for some i (5)
Less stringently, u weakly dominates v (denoted u <X v) iff
fZ(u) Sf,(v) Vi = 1,...,D (6)

A set of M decision vectors {w;} is said to be a non-dominated set (an estimate of the Pareto
front) if no member of the set is dominated by any other member:

w, Aw; Vi, j=1,....M (7)

3 THE UNIFIED MODEL

As evinced by a number of comparative studies [9, 14, 15| the SPEA provides an effective
methodology for multi-objective optimisation problems, as does the PAES [16, 17]. Both
algorithms can be seen as variants of the Unified Model for Multi-objective Evolutionary
Algorithms, UMMEA, introduced by Laumanns et al. [18], as is outlined in Algorithm 1.

Algorithm 1 The sequential unified multi-objective evolutionary algorithm [18]. F; denotes
the elite archive, By the general (search) population and p§ the elitism intensity at generation
t.

t:=0
(Fo, By, p§) := initialise ()
while terminate (Fy, By, t) = false
t:=t+1
F] := update (F;_1, B;_1)
F; := truncate (F})
pg = a’dapt (Fta Bt—lapg—l)
By := vary (sample (evaluate (Fy, By_1,pf)))

end

The algorithm summarises the UMMEA framework in terms of stochastic operators. The
general genetic population By is initialised, together with the elite archive Fy (generally to an
empty set). At each generation the elite archive is augmented to form F} by incorporating
those solutions in B;_; which are not dominated by any members of F;_; |J B;—1; in addition
any elements of F}_jwhich are dominated by members of B;_; are deleted from F]. For
reasons of computational efficiency the new archive F} is then truncated to create the archive
F;, usually to some fixed size. In the SPEA this truncation is achieved by clustering, and
in PAES a density based method is used. Crossover/mutation/perturbation are abstractly
represented by the wvary () operator. Individuals are selected (sample()) from F; and By
based on fitness (evaluate()) for crossover/mutation/perturbation; the ‘elitism intensity’, pf,
controlling the probability that an individual from the elite archive rather than the general
population will be selected.



4 PROBLEMS WITH CONSTRAINED ELITE SETS

4.1 Shrinking Pareto fronts

For computational efficiency many MOEAs limit the size of their elite archive. In SPEA, for
instance, this is achieved by clustering (in objective space) the individuals comprising F}, and
replacing clusters by the individual closest to the cluster centroid.

However, an artifact of truncation is that the Pareto front (as represented by the truncated
archive) can shrink, if individuals that define the boundaries of the estimated Pareto front!
are removed (referred to here as the extremal individuals). If subsequent evolution fails to
rediscover the extremal individuals repeated clustering will shrink the Pareto front and the
final estimate Pareto set will lie across a narrow subset of the true frontier.

This effect is present even in an offline ‘dormant’ estimated Pareto front (that is, one
that acts as a passive store for non-dominated individuals, which play no part in the search
process), as search will not have been directed toward the extremal values. It is interesting
to note that after the criticism [9, 10, 12] of Schaffer’'s VEGA [6] because of its bias toward
extremal values, that its replacements should in turn be biased toward search in the centre
of the front. (This is indeed supported by the results presented in Zitzler and Thiele [15] and
Zitzler et al. [9], where VEGA outperforms NPGA, FFGA and HLGA).

The shrinking front effect can be detrimental in two ways. The main consequence is
the narrow extent of the estimated front; secondly, extra search time is required in order to
rediscover the extremes of the estimated Pareto front.

These problems are easily circumvented by removing the extremal individuals from the
truncation process and passing them directly to F;. Here this is referred to as the pinning of
extremal individuals, and is also used in a recent extension to SPEA [19].

4.2 Persistent ‘frontal’ set

The elite archive is in essence a memory of where the algorithm has reached in previous
generations in its estimation of the Pareto front and should contain the ‘best’ estimate of the
Pareto front at any stage. The estimated front should ‘advance’ in the sense that no individual
in F; should be dominated by any member of an earlier set, Fp, ..., F;_1. Informally, it is said
that an individual x lies behind the front if a member of the elite set dominates x. However,
the requirement of many MOEAs that F}; be limited to M members can produce ‘retreating’
or, more commonly, ‘oscillating’ estimates of the Pareto front. In these cases members of F}
may lie behind the earlier estimates of the Pareto set. The origin of this behaviour is now
described.

An illustration of a retreating front is shown in Figure 1. Figure la illustrates an archive,
F}, with a maximum of M = 6 members. In Figure 1b a new non-dominated member (drawn
as a filled circle) has entered the set from the current population. Since there are now 7
elements in F}, one must be removed by clustering; the pair of solutions nearest each other
form a cluster of two (circled) and one of them (chosen at random) is deleted, resulting in
truncated archive F; shown in Figure 1c. If at a subsequent generation a new element enters
the full archive (Figure 1d), the clustering process will truncate the archive to the set as
shown in Figure le. This results in an archive F; (Figure 1g) containing an element that lies

! Containing what are referred to as component minima and maxima in [18], in the case of the true Pareto
set.



behind (is dominated by) elements of the original archive set (Figure 1a). Repetitions of this
process can lead to the estimated front retreating or, more commonly, oscillating as the front
advances in the MOEA search stage but retreats during truncation. This possibility was first
noted by Hanne [20] in different situation. In Hanne’s MOEA (an applied example of which is
in [23]) a ES(A + p) scheme was used, with a child replacing the parent if the parent does not
dominate the child. As such the population that Hanne used was not a Pareto archive as it
was not a non-dominated set (eq. 7); indeed, the population constructed in Hanne may have
only one Pareto solution at any generation. The oscillation highlighted by Hanne is generated
as a result of the search process as opposed to the truncation of the elite set. Laumanns
et al. [21], however, note its application to all elite archive truncation methods (but again
without empirical examples) and is used as an impetus for their development of e-dominance
and e-approximate Pareto sets.

A simple empirical example of oscillation can be shown using a ES(14+1) MOEA to optimise
the ZDT1 function of [9]. The ZDT1 function was optimised using clustering to truncate the
archive to 20 individuals; however, a dormant archive of unlimited size containing all non-
dominated individuals was also maintained. Figure 2 shows the percentage of individuals in
the truncated F; which are dominated by members of the dormant unconstrained archive. As
the number of generations progresses the number of dominated individuals in the clustered
archive increases and then oscillates around the 40% mark: clearly the search process is
being forced to rediscover portions of the front lost in the truncated archive but retained
in the unconstrained archive. (By generation 100,000 the dormant archive consisted of 95
individuals.) Since the extremal individuals were pinned, the effect seen is oscillation, rather
than shrinking or retreat.

This artifact has two main consequences. First, search time is wasted ‘rediscovering’ in-
dividuals and regions that have been eliminated by truncation. Secondly, convergence to the
true Pareto front is impaired. Numerical simulations show that this oscillation is particularly
serious when the estimated front lies close to the true front; the oscillation can prevent con-
vergence to the true front leading to poor estimates and difficulties in assessing convergence.

In the light of the artifacts discussed here, it is recommended that a secondary population
of all currently non-dominated individuals found during the evolutionary search is used ac-
tively within the search process. In terms of the UMMEA (Algorithm 1), this study advocates
dropping the truncate () operation. This set of all currently non-dominated individuals is
referred to as the frontal set F;. This approach has previously been adopted by, for exam-
ple, Murata and Ishibuchi [24] and Parks and Miller [3], and it should be noted that, while
Laumanns et al [18] recommend the truncation of the external set, one of their numerical
studies retains all non-dominated individuals. However, the issue of time cost of using an
unconstrained elite archive has not been addressed, be it in the case of an active elite archive,
or a dormant archive as recommended in [8].

5 USING AN ACTIVE FRONTAL SET
In most MOEASs using an active archive, the archive must be searched at two distinct junctures:

1. When representative individuals are selected for (e.g.) binary tournament selection (in
the case of a GA) or for perturbation (in the case of an ES).

2. When individuals are compared with F; to determine whether they dominate or are



dominated by members of F;. A data structure to facilitate searching F; which is faster
than a linear list is the dominated tree.

Since the frontal set contains all the currently non-dominated decision vectors found, it may
become very large as the search progresses. In order for an MOEA using one to be com-
putationally viable, efficient ways of selecting elements of F; for crossover, mutation and
perturbation and of storing F; to permit rapid query, insertion and deletion of its elements
must be found. These problems and their solutions are now discussed.

5.1 Selection

In a MOEA implementing an unconstrained elite archive many more individuals than neces-
sary may be available for selection in whatever evolutionary processes it uses. In this case
the manner in which the sample () operator (Algorithm 1) selects individuals becomes impor-
tant. Uniform random selection of individuals from F; artificially concentrates the search on
already densely populated regions of the front. It is therefore helpful to select a number of
representative individuals. An approach could be to use the SPEA clustering method to find
representatives, however, this proves to be too time consuming for large frontal populations.
Here Partitioned Quasi-Random Selection (PQRS) is introduced as a selection routine to be
used in conjunction with active unconstrained elite archives. Suppose that N elite individuals
are required for selection.

In PQRS one of the D objective dimensions is partitioned into (N — 1) bins of equal width
and an individual is selected at random from each of these bins. This ensures that individuals
are selected uniformly across the extent of the front in the selected dimension. The objective
dimension selected for partitioning rotates through the D dimensions with the generation,
t. The individual on the extreme of the objective dimension is always selected ensuring the
pinning discussed earlier.

An example of PQRS in a D = 2 objective problem is shown in Figure 3. Here N = 5
individuals are to be selected from a frontal population of M = 24 (where M = |F}| denotes
the current size of the frontal set). As one extremal individual is selected immediately, four
additional individuals must be selected from F;. Having selected an objective coordinate, the
frontal set is partitioned on that coordinate into (N — 1) equally spaced bins. In Figure 3 this
can be seen to be four bins for the selected dimension, each spanning 1/4 of the range of the
front on that dimension. An individual in each bin is selected by generating a random number
uniformly distributed across the range of the bin, and selecting the closest individual. If a bin
is empty (for instance due to a discontinuity in the Pareto front), the closest individual from
the entire front is used. In addition, no individual is selected twice (unless M < N).

Note that in SPEA clustering is used to reduce the archive before individuals are selected
for binary tournament selection; in contrast, this method does not reduce the frontal set
population: PQRS only selects individuals for breeding and does not remove them from Fj.
This approach is similar to that used in PAES, however the grid knowledge does not need to
be maintained and updated [17].

Rapid selection from the frontal set is enabled by maintaining D binary trees, one for
each objective dimension. This means that each selection takes O (2logy M) comparisons as
opposed to O (M) for a linear search. Since the frontal set is constantly changing this can
conveniently be implemented using self balancing trees (e.g. AVL or Red-Black trees [25]), or
doubly linked lists.



If only one elite individual is desired (for instance a ES(1+1) is being used), then objective
space is still separated into (N — 1) bins, with the particular bin (or extreme individual)
selected uniformly, before being sampled. The larger the value of N, the less the selection
process will be affected by dense areas of the archive, and the less the bias toward selecting
the extremal individual.

5.2 Efficient storage of the frontal set

The second and greater constraint on using a large active frontal set is the number of com-
parisons that must be made with individuals in the frontal set at each generation. When the
archive is small, for instance M = 20 (as in [9]), the time for a linear search of F} is negligible.
However, with no limits to the size of the frontal set in an MOEA, the linear search of 1000
individuals (for instance) before assigning an individual as non-dominated, may be simply too
costly to make the method practical. Therefore intelligent storage is needed before the frontal
set approach is viable.

5.3 DOMINATED TREES

To determine whether an individual, y = (f1(x), f2(x),- .., fp(x)), should become a member
of the frontal set, F,2 it must first be checked that y is not dominated by any element of
F. At the same time any elements of F' that are dominated by y should be deleted from
F. When the frontal set is small a simple linear search is sufficiently cheap to perform these
checks. However, as the size of the frontal set grows the cost of querying the frontal set
becomes prohibitive. In this section two data-structures are described— dominated trees and
non-dominated trees — for storing, rapidly querying, and updating the frontal set>.

Here it is convenient to regard members of the frontal set and individual(s) from the search
population as points y in D-dimensional space. Geometrically, finding individuals in F' that
dominate y amounts to finding frontal individuals that lie to the ‘south-west’ or ‘left and
below’ y. More formally, the set of dominating individuals is:

{zeF :z;<y;forall 1 <i<Dandz; <y, for at least one 1 < j < D} (8)

It would be possible to use kd-trees [26, 25| or range trees [27, 25|, but these are both suited
to querying F' for elements which lie in bounded (hyper-) rectangles. Priority trees, developed
by McCreight [28], are suited to rectangular queries in which the rectangle is unbounded
on a single side. Sun and Steuer [29] describe an alternative data structure adapted for
answering queries about domination and non-domination; which has been extended recently
by Mostaghim et al. [30].

The ‘dominates’ relation imposes a partial order on individuals. However, since the ele-
ments of F' are mutually non-dominating, this relation cannot be used directly to construct,
for example, a binary tree to enable fast searching.

Instead the dominated tree consists of a list of L = [M/D] composite points ordered by
the weakly-dominates relation, =<:

T:{CLj...jCQjcl} (9)

2Since the genetic generation plays no role here, the subscript ¢ has been dropped.
3An example implementation of dominated and non-dominated trees is available from
http://wwuw.dcs.ex.ac.uk/people/reverson/dominated-trees




Usually, the stronger condition, ¢; < ¢; iff ¢ > j, will hold. The coordinates of each compos-
ite point are defined by (up to) D elements of F', the constituent points of a composite point.
An example of a dominated tree in two dimensions is shown in figure 4.
Denote by Y; the constituent points of ¢;, namely the D-tuple defining the coordinates of
¢;; so that if
Yi= <y(1) > y(2)a ce ay(D)> (10)

then the dth coordinate of the composite point is the dth coordinate of y(d): c; = y((id).

Dominated trees are constructed to have the property that if ¢; < y then all the constituent
points of ¢; (at least) weakly dominate y:

If ¢;<y then y¥ <y vy@ ey (11)

It follows from (11) that if ¢; < c; then the constituent points of ¢; also weakly dominate
c¢;. Thus, for example, in Figure 4 the constituent points of c4,c5 and cg dominate c3. Note,
however, that they do not necessarily dominate the constituent points of ¢z, namely y3 and
Y6

It should be emphasised that the points forming the tree in Figure 4 do not form a non-
dominated set. Dominated and non-dominated trees do not require that the constituent
elements to form a non-dominated set. The dominated tree is illustrated with a general set
of two-dimensional points, because non-dominated sets of two-dimensional elements have the
peculiar property that listing the points in order of increasing first coordinate (objective), y1,
is equivalent to listing them in order of decreasing second coordinate, 5. This is easily seen
by considering two mutually non-dominating points, say, u € R? and v € R?: without loss
of generality, suppose that u; < vi. If us < uy then u < v, contradicting the fact that
they are mutually non-dominating, thus it may be concluded that us > vo. This ordering
property is special to two dimensions, and can be misleading if one tries to generalise from
sketches in two dimensions. The points and the tree illustrated in figure 4 are more akin to
the general (D > 2) case. Dominated trees also have applications to general sets (that is, sets
whose elements are not mutually non-dominating), such as answering queries about enclosing
rectangles; see, for example, [28, 31].

5.3.1 Construction

Construction of a dominated tree from M points F = {y,, }}_, is described in Algorithm 2

and proceeds as follows. The first composite point ¢y is constructed by finding the individual

Ym with maximum first coordinate; this value forms the first coordinate of the composite
point:

= 12

€11 = Max (ym,1) (12)

Thus, for example, in figure 4, ¢i;; = yi,1. This individual y,, is now associated with c;
and removed from F'. Likewise the second coordinate of ¢; is given by the maximum second
coordinate of the points remaining in F': €12 = maxy, cp\1 (Ym,2); in figure 4 ¢1 2 = ys5 2. This
procedure is repeated to construct ¢o and subsequent composite points until all M elements
of F' are associated with the tree. In general the dth coordinate of the ith composite point is
given by:

Cig= a 13
id y:LIéF}iT(Ym,d) (13)



Algorithm 2 Construction of a dominated tree

Inputs:
F={yn}M_, Vectors to form the dominated tree
1. T:=0
2: L=[M/D]
3: fore:=1,...,L
4: ford:=1,...,D
5: y = maxy, cr(Ym,a)
6: Cid *=Yd Keep pointers from y,, to and from c;
T if |[F|#1
8: F:=F\y Delete y from F
9: end
10: end
11: T:={c;2¢ci-1 2...2c1} Appendec;toT
12: end

Note that in construction of the final composite point (that is, the composite point that
dominates all other composite points) the M elements of F' may have been used before all the
D coordinates of the final composite point ¢z, have been defined. As illustrated by ¢7 in figure
4, the last remaining point in F' (y13 in figure 4) is reused to define the remaining coordinates.

If PQRS trees have been constructed, they can be used to efficiently find the successive
constituent points of each composite point.

It is clear from the construction of 7 that it possesses properties (9) and (11). Since (except
possibly for the dominating composite point) D elements of F' are used in the construction of
each composite point, the number of composite points in 7 is L = [M/D].

5.3.2 Query

Given a test point q, the properties of dominated trees can be used as follows to discover
which points in F' dominate q. Although the dominated tree is efficiently implemented as
a binary tree, the query procedure is most easily described in terms of an ordered list of L
composite points. First, the list is searched to find the indices h and [ of composite points ¢y,
and ¢; that dominate and are dominated by q respectively:

h= { ﬁn; {1@ i ¢ < q} z)ft}?ejw(i:sLe (14)
and .
= { ?nax {i : q<¢;} lotlflér;ige (15)
Also denote by ¢y the ‘least’ composite point that strictly dominates cp:
H=min{i : ¢; <cp} (16)

For the query point illustrated in Figure 4, ] = 2, h = 5 and H = 6. (Note that it is not
necessarily true that H = h + 1.) Since ¢, < q it is clear from 11 that all the constituent
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points of the composite points ¢; that dominate ¢, H < ¢ < L, also dominate q. (Note
that the constituent points of ¢y, and indeed and c¢; that only weakly dominate cj, need not
dominate q; in figure 4 ¢5 < q, but yg £ q.) Also, since q < ¢; and the constituent points
of ¢; have at least one coordinate equal to a coordinate of ¢;, it may be concluded that q
is not dominated by any of the constituent points of ¢1,...,¢;. Each constituent point of ¢;
I < 4 < H must be checked individually to determine whether it dominates q; in figure 4 the
points y3,¥6,¥4,¥s, Y9, Y10 must be individually checked.

Note that when determining whether q is to be included in F, it can be immediately
rejected if h < L because it is certainly dominated by at least one of the constituents of c,.

Since the composite points are arranged as a sorted list, determination of [ and h takes
O(logy(M /D)) domination comparisons each. Hence the total number of domination compar-
isons required to enumerate the elements in F' that dominate a query point is O(2logy(M/D)+
DK), where K is the number of points that have to be checked individually. Clearly, certain
configurations of F' and q can result in all elements of F' being checked — in linear time.
However, such arrangements are seldom encountered in practise. This rapid checking permits
very large archive sets to be efficiently maintained.

If it is determined that q is to be included in F' (because it is not dominated by any element
of F), those elements of F' which are dominated by q must be identified and deleted from F.
Queries about which elements of F' are dominated by q can be answered using the dominated
tree, however, it may be inefficient. This is because although q < ¢; for 1 <4 <[, q need
not dominate the constituent points of these ¢; and the constituent points must therefore be
checked individually. Thus in Figure 4 for example, q < ¢3 < ¢1, but y5 and y7 are not
dominated by q. The non-dominated tree is a data structure which permits this sort of query
to be answered efficiently.

Non-dominated trees are analogous to dominated trees. A non-dominated tree consists of
an ordered list of composite points:

T:{CleQj...ch} (17)

In addition non-dominated trees are constructed with the property that if y < c;, then all the
constituent points of ¢; are (at least) weakly dominated by y:

If y<c; then y<y¥ vydey (18)

An example of a non-dominated tree is shown in Figure 5. Construction and querying of
non-dominated trees is analogous to dominated trees and they are not discussed further here.

5.3.3 Insertion and deletion.

Elements are continually added and deleted from the frontal set during the course of an
optimisation. It is therefore important that the data structure used to support F' can be
modified dynamically. Online insertion of a new point y is straight-forwardly accomplished
as outlined in the Algorithm 3.

If the new point dominates the ¢z, the composite point that dominates all others, then
a new composite point, ¢/, that is created with all its coordinates defined by y (steps 1-4 in
Algorithm 3). It is clear that ¢/ < ¢z, so ¢’ may be appended to T as cp41, preserving the
ordering property (9).
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Algorithm 3 Insertion into a dominated tree.

Inputs:
T={cL=2...%¢c1} Dominated tree of L composite points
y Point to be inserted into 7
1. ify<cg
2: fork=1,...,D
3: cl ==Yk
4: end
5: T:={c <cr =<...%¢1}
6: else
T j = argmin(c; > y) Binary search
8: fork=1,...,D
9: c), := max(yg,Cj+1,k)
10: end
12: fork=L,...,j5+1
13: Ck41 := Ck Relabel
14: end
15: Cj+1Z:C’ T::{CLj...jCj_HjC’jij...jCl}
16: end

If y does not dominate ¢y, a bisection search is used to locate composite points, such that
Cj+1 %y = ¢;. A new composite point ¢’ is then constructed with coordinates determined by

¢, = max(y, Cj k) k=1,...,D (19)

By construction, ¢;;+1 = ¢ < ¢;, so ¢/ may be inserted in 7 between ¢;;; and c; while
preserving the ordering property (9). In Algorithm 3 this, and the necessary relabelling, is
accomplished by lines 12-16. Most practical implementations of ordered lists (such as binary
trees or linked lists) are not index based, so this relabelling is not necessary. The binary search
of T takes O(logy(M /D)) domination comparisons and the calculation of the coordinates of
¢’ is equivalent to another domination comparison (D comparisons), so the cost of insertion
is O(logy(M /D)) domination comparisons.

Figure 6 shows the dominated tree resulting from the insertion of a new point yi4 in the
tree shown in Figure 4. Note that the tree resulting from insertion is less than optimal in the
sense that a point (e.g., yg) may contribute to more than one composite point.

Deletion of a point y,, from the tree is slightly more complicated, because the composite
point to which yp, contributed, say c¢;, must remain (at least) weakly dominated by c;;1 after
the deletion. Assume that in the construction of T pointers are kept from each element y,,
to the composite point ¢; of which y, is a constituent.

If y,, defines the kth coordinate of c;, then, as shown in Algorithm 3, upon deletion of
Ym, the deleted coordinate of ¢; is replaced by the kth coordinate of ¢;j;1. This assignment
ensures that ¢ < ¢jy1,k, so that ¢j41 < c¢;, as required by (9). Note also that the constituent
points of ¢; after the deletion are either the constituent points of ¢; before the deletion or the
constituent points of ¢;11. Therefore, if before the deletion ¢; < y (which implies that all the
constituent points of ¢; and c¢j41 weakly dominate y), then after the deletion the constituent
points of ¢; continue to weakly dominate y, showing that property (11) is preserved.
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Algorithm 4 Deletion from a dominated tree 7.

Inputs:
T={cL=...2¢c1} Dominated tree of L composite points
Ym With ¢ = ym i Point to be deleted from 7T
¥Ym defines the kth coordinate of c;

1. ifj<L

2: Cjk = Cjt1k Use coordinate from dominating composite point
3:  else

4: for u € Y; \ ym Check the remaining constituents of c;

5: if ug > Cjk

6: Cjk = Ug

T end

8: end

9: end

Deletion of y4 from the tree shown in Figure 4 is illustrated in Figure 6. Note that if y,,
contributes to more than one composite point, then each of the composite points to which it
contributes must be dealt with in turn, beginning with the one which is dominated by all the
others. On the other hand, if y,, is the sole constituent point of ¢; (e.g., ¢13 in Figure 4) then
c; is deleted from 7 when y,, is deleted. If pointers are kept from each y;, to the composite
points to which it contributes, then deletion is achieved in constant time.

Algorithm 5 Cleaning a dominated tree 7.

Inputs:
T={cr=...2¢c1} Dominated tree of L composite points
1. j:=1
2: while 5 < |T]
3: fory €Y
4: L:=|T]|
5: T := append(delete(y, Tj+1,1.), T1,5)
6: end
7: end

5.3.4 Cleaning

Insertion and deletion operations lead to some points contributing to more than one composite
point. The dominated trees therefore contain more composite nodes than the optimum [M /D]
and hence increased time is needed to search them. This can be alleviated by periodically
‘cleaning’ the tree in the following manner. Let 7} denote the sub-tree of 7 composed of the
nodes j,...,k:

73"]6:{(% <... '_<Cj} (20)

and let the deletion operation (Algorithm 4) be denoted by delete(y,T). As described in
Algorithm 5 cleaning is achieved by successively deleting constituent nodes from all composite
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nodes except the least dominating node to which they contribute. This ensures that every
point y,, contributes to exactly one composite point. A cleaned tree is shown in Figure
6. In practise it is not efficient to clean the tree following every insertion and deletion, but
occasional cleaning may be triggered when the number of composite points exceeds a threshold,
say 2M/D. Alternatively, if PQRS trees have been constructed they may be used to efficiently
be rebuild the dominated tree ‘from scratch.’

6 EXPERIMENTS

In order to evaluate the efficiency (in terms of both time and quality of the estimated front)
of the new data structures, results of a comparison with the GA and ES MOEAs using (a)
full elite archives using PQRS and dominated trees (b) full elite archives with a standard
linear search and (c) truncated archives with clustering are presented. New multi-objective
test problems are also introduced that have the characteristic of large archive growth which
this study wishes to investigate. However, first a brief critique of the current multi-objective
test suite is given [9].
The ZDT test functions involve two objectives and have the following structure:

Minimise T (x) = (f1(z1), f2(x)),
where fo(x) =g(z2,....,zp) R (fi(z1),9(z2,...,2p)),
and X = (21,...,2pP).

Although the six ZDT functions represent many different features and levels of difficulty,
the first objective (f1) is always a function solely of the first decision parameter (in fact, for
the first four test functions, fi (z1) = z1). This simple form of f; means that when genes
describing 1 are initialised as uniformly distributed random numbers, the initial estimate of
the Pareto front extends over the full range of f;. Consequently optimisation chiefly consists
of minimising fo, rather than the combined minimisation of both objectives.

This structure also appears to produce the artifact that the growth of the frontal set is
quite limited, as shown in figures 11 and 12. As opposed to the experience of other applied
studies that have experienced much larger archive growth (e.g. [3]). In addition, all six test
functions are only two objective problems.

For the purposes of this study, where the focus is on maintaining large archives, the ZDT
functions unfortunately are arguably of limited use. However, the first three are still used in
the results section as they are known to the community at large.

In addition three new test functions are introduced, in which all objectives are dependent
on all decision parameters. These functions do exhibit large archive growth. All three are
combinations of the following five base functions, B; (x).

e Base functions .
1 p)

T — 3 €xp ((z/m)2>

(m - % (cos (107 (i/m)) + 1))2 (22)

w
®
!

-
Il
—

m

Bs (x) = Z |z — sin? (i — 1) cos® (i — 1)|

=1

N[=

(23)
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Bi(x) =3 |mi - % (cos (i — 1) cos (2(i — 1)) + 2)| (24)
i=1

m 2

Bs(x)=)_ <x, — = (sin (10007 (i/m)) + 1)) (25)
1=1
e Multi-objective functions

Fy (x) = (B (x), B2 (x)) (26)
Fy (x) = (B2 (x), B3 (x) , B4 (x)) (27)
F3 (x) = (B1 (x), B3 (x),, B4 (x) , B5 (x)) (28)

In all cases m=30 and z; € [0, 1].

Parallel coordinated graphs shown in Figure 10 of these test functions, which illustrate the
function bounds and the trade-off between objectives (with the lines crossing), on the true
Pareto front.

6.1 Comparing Pareto fronts

Comparison of Pareto front estimates is difficult as there are several ways in which a front
can be inferior or superior to another. Indeed it is unlikely that any one measure will be
sufficient to encompass all desired information when evaluating the output of an MOEA. In
this study two performance measures are used to encapsulate different properties of competing
non-dominated sets.

First an alternative to the popular C metric [9, 14, 15] is discussed.

The C metric is defined as

_|{beB:3Jac A, a=b}

where A and B are two sets of decision vectors and A,B C X .

The C metric measures the fraction of members of B which are (strictly or weakly) dom-
inated by members of A. As such it measures the quality of A with respect to B. When
C(A,B) =1 all the individuals in B are dominated by solutions in A; C(A, B) = 0 represents
the situation in which none of the individuals in B are dominated by any of those in A.

It should be noted that C(A, B) is not technically a metric, since C(4, A) # 0 and C(A4, B)
is not symmetrical in its arguments and it doesn’t satisfy the triangle inequality. Furthermore,
C has the following undesirable property: suppose that W is a non-dominating set and A C W
and B C W, then C(A, B) can take on any value in [0, 1].

In this study the following modified version of the C measure is used:

~ beB: JacA,a<b
éap = .« }

(29)

Now C(A, A) = 0 and, in addition, it measures two mutually non-dominating sets as equivalent.
That is, if A C W and B C W are each subsets of a non-dominating set W, then é(A, B) =0.

Nevertheless, C and C fail to account for the either the difference in the extent of the fronts
being compared or the uniformity of the distribution of points along the front. For example,
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Figure 8a illustrates two fronts with similar extent, but points describing A are uniformly
distributed along the front, whereas those describing B are clustered in one region. However,
C(A,B) = C(B,A) = C(A,B) = C(B,A) = 4/12, even though elements of A dominate
elements of B along the majority of their extents. In Figure 8b although B has much greater
extent, C(A, B) = C(A, B) = 2/12, whereas C(B, A) = C(B, A) = 0/12.

As some of the problems highlighted with the C and € measure show, there are a number
of properties which are usually desired of estimated Pareto fronts. These include that the
‘distance’ of the estimated Pareto front to the true Pareto front should be minimised, and that
the extent of the estimated front be maximised (a wide range of solutions in objective space
be returned). A measure which is designed to include such information is now introduced.

The second measure used in this study is similar conceptually to the performance measure
used in [18], and is a measure of the objective space volume that is dominated by one front
but not the other. Loosely V(A, B) is the fraction of the volume of the minimum hypercube
containing both fronts that is strictly dominated by members of A but is not dominated by
members of B (and therefore lies on the range [0, 1]). An illustration of this provided in Figure
9 where two continuous fronts A and B have differing extents and also dominate each other
in different region of the objective space.

V (A, B) is defined in the following manner. For any set of D-dimensional vectors Y, let
Hy denote the smallest axis-parallel hypercube containing Y:

Hy ={z€RP : q; <z <bforsomea,beY,i=1,...,D} (30)

Now denote by hy (y) : Hy — [0,1]” the normalising scaling and translation that maps
Hy onto the unit hypercube. This transformation serves to remove the effects of scaling the
objectives. Let

Dy (A) = {z €[1,00” : z < hy (a) for some a € A} (31)

be the set of points in the hypercube defined by Y which are dominated by the normalised A.
Then V (A, B) is defined as

V(A,B) =X (Dayp(A)\ Days(B)) (32)

where X (A) denotes the Lebesgue measure of A [32].

Despite this rather cumbersome description, V (4, B) and V (B, A) are easily calculated
by Monte Carlo sampling of H,(jp and counting the fraction of samples that are dominated
exclusively by A or B. In this study 50000 samples were taken for Monte Carlo estimates.

The benefit of the volume measure V is that it will reward sets that are of greater extents
when those extents are in front of the comparison set, but not when they are behind, it is not
effected by the distribution of points across a front, and it also gives information regarding
how far one set is (on average) in front of another.

Unfortunately the V measure, like the original C metric, has the property that, if W is a
non-dominating set, and A C W and B C W, both V (4, B) and V (B, A) may be positive.

6.2 Algorithm implementation

The implementation of both the ES and GA models use floating point representation of param-
eters in the individual chromosomes. In order to compare the linear search and the dominated
tree method the two versions of each MOEA were each executed 50 times on each test problem,
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with the cumulative time saved at each generation (the time spent in the methods dealing
with comparison to the archive and selection from the archive). In order to compare the un-
constrained and truncated approach, each was executed 50 times on each test problem, and
the resultant non-dominated solutions saved at the end of each run. The runs were repeated
twice; once for the same number of generations and once for the same empirical run time.
In the case of the clustered algorithm no off-line store was maintained, as maintaining this
store would take its time cost above the standard (unclustered) approach, which truncation
is designed to alleviate. Each simulation was performed using the parameters shown below:

GA

Number of generations : 5000

Search population size : |B¢| = 20

Max. archive population size (when clustered) : M =50
Crossover rate : 0.8

Mutation rate : 0.05

ES(1+1)
Number of generations : 100000

Max. archive population size (when clustered) : M =50
Mutation rate : 0.2

Single point crossover was used and the mutator variable was drawn from a Gaussian distri-
bution with 0.1 variance and zero mean. In each of the 50 different runs the MOEAs were
initialised from identical decision vector populations of size 100, with the non-dominated indi-
viduals residing in these populations forming the initial elite archive. Initialisation of decision
vectors was from U(0,1). The random number generators were identically seeded for each
of the 50 runs, so that the fronts found by the two unconstrained methods were identical.
This means that time comparisons were made on strictly identical update/selection problems.
Elitism intensity was 1.0 and the dominated and non-dominated trees were cleaned when they

exceeded 1.2M/D composite points. In all algorithms selection of elite individuals from the
archive used PQRS.

6.3 Timing results

When comparing the speed of the three algorithm types the sum of clock ticks that occurred
in the relevant methods of each algorithm (those that dealt with the comparing of a new
individual to the archive (and updating), and the selection of and individual from the archive
as a parent) was maintained, with these value transformed into seconds®.

As shown in Tables 3 and 1, the simple GA using the dominated trees were significantly
faster than the standard linear approach GAs for all six test problems. The ES dominated tree

4The machine used in these experiments was a 1.4GHz AMD Athlon processor with 256Mbytes of DDRAM.
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algorithms were significantly faster than the standard linear approach for the three new test
problems, however there was no significant difference in speed on the three ZDT functions.
The clustering algorithm was faster than both on the 3 and 4 objective problem using the
simple ES, and faster than linear or dominated tree searches on all the test functions except
F1 using the GA. This is a reflection of the size of the archive set — see figures 11 and12. Table
3 shows the generations for which one algorithm tested using the nonparametric Wilcoxon
Signed Ranks Test [33] at the 5% level (2.5% in each tail)® is found to be significantly faster
than another. As can be seen, both the unconstrained algorithms are initially faster than
the clustered approach, however, as their archives grow their time cost per generation (the
gradient of the cumulative time curves shown in Figure 13), surpasses that of the clustering
approach.

It can also be seen that in a number of cases standard linear approach is initially faster than
the dominated tree method. This is due to the time cost of maintaining the data structures
outweighing the search cost reduction compared to the linear list, when the archive population
is small. A number of additional experiments were therefore run where the time taken to
reach different archive sizes was assessed. Again 50 separate runs of the two unconstrained
approaches (for both the ES and GA MOEA) were made, with the time taken to reach archive
sizes in 50 member increments recorded for each of the test functions. As can be seen in Table
5, for the ZDT functions it is generally the case that after the archive has exceeded 50-100
members the dominated tree method is significantly faster than the linear list. A higher
threshold is experienced by the new functions introduced in this study, with the dominated
tree not being significantly faster until the archive reaches 150-250 members. This is arguably
because the test function surfaces are searched in all objective directions (unlike the ZDT
functions that principally consist of ‘pushing down’ the second objective), and as such have a
higher proportion of individuals discovered at the edges at each generation (meaning K is on
average larger).

6.4 Performance results

Table 7 shows the C performance comparison of the fronts found by the unconstrained and
truncated algorithms after 100000/5000 ES/GA generations. On all six test functions the
unconstrained approach performed significantly better than the constrained approach using
the GA over the 50 runs, both in terms of equal generation length and equal computation
time. The ES unconstrained method performed significantly better than the clustered method
using this measure on test functions F1, F2 and F3 on equal generation length, the clustered
method being significantly better on ZDT2 and ZDT3. However, when the clustered algorithm
was run for the same amount of computation time as the different dominated tree runs, the
unconstrained method was significantly better than the constrained method for all the test
functions except ZDT2 (where there was no observed significant difference between the two
methods over the 50 runs).

These results are further supported by those using the V measure (Table 9). Fronts found
by the unconstrained full archive are significantly ahead of the clustering truncated method
using the GA, for both equal generations and equal computation time. Using the ES scheme

5t-tests cannot be used as the samples cannot reasonably be assumed to be drawn from Normal distributions,
neither are the samples independent (each pair being correlated). The Wilcoxon Signed rank test does not
assume normality, and its independence assumption is only in relation to the paired values (that each pair be
independent in relation to all other pairs).
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the fronts found by the dominated tree method are significantly better than those found by
clustering for all test functions except ZDT2, where there was no significant difference between
the two methods.

7 STOPPING CRITERIA

Robust stopping criteria are largely missing from the MOEA literature. Beale and Cook [5]
include a fitness-based stopping criterion in their study, in which the algorithm is terminated
if the fittest individual has remained unchanged for 1000 consecutive generations. As Coello
[10] points out, MOEAs since Schaffer [6], which carry a set of non-dominated individuals,
are usually terminated after a fixed number of generations, or the population is monitored at
intervals and a decision made on a visual basis.

The use of an elite archive which can only ‘advance’ however allows a number of robust
stopping methodologies to be introduced. Examples of these are:

e When no individual that dominates a member of F is discovered after a given number
of consecutive generations.

This is similar to the approach taken by Beale and Cook [5], however in a MOEA there is a
set of elite solutions instead of a single elite individual. It is to be emphasised that this sort
of criterion can fail with an truncated archive which is prone to oscillation. Note that new
individuals may be found that are non-dominated by the frontal set - and therefore are inserted
into F. However, these individuals may only fill in the front (increasing its resolution), rather
than pushing it forward.

e When there has been no change in the extremal values for a given number of consecutive
generations.

The previous stopping criterion, when taken by itself, may lead to sub-optimal stopping in
that, although the front may have ceased moving forwards, it may still be moving outwards
toward the extremes. This second criterion takes this form of search into account and can
usefully be combined with the previous criterion.

e When the average distance in objective space between neighbouring individuals in F
reaches a specific threshold.

The practitioner may wish the front to be defined to a particular resolution, therefore they
may not solely wish to stop the search process after the front has finished moving, but prefer to
wait until this resolution is reached. With two objectives this can be achieved by calculating
the maximum over F of the nearest neighbour distances®. With more than two objectives a
similar termination criterion can be defined based on the maximum area of any triangle of a
Delauney tessellation [25] of F'.

In practise the third criterion alone may lead to stopping before a good estimate of the
true Pareto front has been found (if the resolution is set too coarse), however in conjunction

5This can fail in the pathological case that the true front contains isolated points in objective space.
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with the first two criteria a good estimate of the true Pareto front to any desired resolution
can be achieved.

If a practitioner prefers a small number of evenly distributed individuals to be returned
after algorithm termination, the final elite archive may be clustered using the method employed
in standard SPEA (the computational cost is not too high as it only needs to be performed
once).

The stopping criteria defined above are not readily applied to methods which do not use
an unconstrained active elite archive because, even if a dormant offline store is used, these
methods are susceptible to oscillating active estimates of the Pareto front, which may cause
spurious early termination.

8 DISCUSSION

New data structures and methods — PQRS and dominated trees — have been introduced to
facilitate faster performance when maintaining an unconstrained archive of non-dominated
solutions. Unconstrained archives themselves are necessary to prevent oscillations and retreat
of the frontal set, problems which beset MOEAs in which the elite archive is truncated. The
problem of oscillating fronts being shown in this study for the first time to exist empirically.

The dominated trees reduce the time taken using an unconstrained archive, in both simple
ES and GA MOEAs, although when the archive is relatively small (below approximately 50
members) the cost of maintaining these structures out-weighs the decreased search time. For
the test sets used in this study even when running the (typically) quicker clustering algorithm
for the same time as a simple MOEA with an unconstrained archive and dominated trees,
the unconstrained algorithm still produces superior results. The precise impact of dominated
trees on the overall run time of an algorithm will, of course, depend upon the complexity of
test function itself and the complexity of the fitness assignment /selection procedure used.

The exact complexity of the search of a dominated tree is dependant on the number of
individual composite points to be checked linearly K; as such the data structure described is
more affected by individuals that lie on the extremes of the estimated Pareto front. This is
shown empirically in Table 5, with a larger archive size needed for the test functions introduced
in this study than the ZDT functions before the data structures are seen to be significantly
faster than the linear search. It still may be the case that, at the extreme, maintenance of
all solutions may be infeasible (simply in memory requirements), as such the data structures
introduced here could be used in tandem with an unconstrained e-approximate Pareto set.

In [21] the oscillating fronts problem is addressed by the development of the e-dominance
concept and e-Pareto sets. In this approach the objective values of a solution are calculated,
but also the e-Pareto objective values. If the objectives are to be minimised these are

ys = fi(x)- (1 —e), 1=1,...,D (33)

On initialisation the objective values of the seed solutions are calculated, and the non-
dominated individuals stored in terms of their e-objectives (an initial e-Pareto set). On the
generation of new individuals for insertion into the e-Pareto set, comparison is based on the
new solution’s objective y and the stored solutions y¢. Only if the new solution is not e-
dominated by any element of the set will it be inserted into the archive, its e-objectives are
then stored and any e-dominated individuals removed. Laumanns et al. show that a result of
this is a bound on the size of the e-Pareto set. However this is at a cost; the final estimated
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front may lie a factor of (1 + €) behind the true Pareto front in each dimension. In addition,
although the overt oscillation of the Pareto set (in its e-Pareto form) is removed, oscillation
(and decreased search efficiency) will still occur; this is due to the discovery by the search
population of a solution which dominates a e-Pareto set solution (or is non-dominated), but
does not e-dominate (or is non-e-dominated by the archive), and is therefore discarded. The
empirical impact of this oscillation and that of restricting forward movements of the e-Pareto
set to steps of greater than e - f; has not been reported. If the e-dominance approach is to
be adopted, a potentially time consuming search of the e-Pareto set is still necessary when
inserting a new solution, so the data structures introduced here are just as applicable.

Current areas of research of interest to the authors include the parallel implementation of
MOEAs using dominated trees and PQRS, the use of structural information in local regions
of objective space to improve search efficiency and the use of dominated trees to facilitate
multi-objective particle swarm optimisation.

The data structures and methods introduced in this study are currently being applied to the
evolution of neural network forecasting models [34], information retrieval and the optimisation
of safety critical systems.
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Table 1: Mean execution time (in seconds) of the three archive methods, standard deviation
in parentheses. Results in bold signify significantly faster results under the Wilcoxon nonpara-
metric signed ranks test (2 tailed, 2.5% in each tail) compared to the other two algorithms.
Results in italics signify that the dominated tree algorithm is significantly faster than linear

search.

Linear Dominated tree Clustered

ZDT1 0.61 (0.06) 0.60 (0.06) 1.04 (0.08)

ZDT2 0.44 (0.06) 0.45 (0.05) 0.48 (0.07)

ES ZDT3 0.59 (0.05) 0.60 (0.06) 1.00 (0.07)
F1 7.29 (0.18) 5.62 (0.21) 48.39 (0.50)

F2 134.00 (9.56) 111.80 (7.63) 77.26 (0.69)

F3 191.82 (19.21) | 151.25 (14.71) | 78.79 (1.36)

ZDT1 3.11 (0.20) 1.79 (0.12) 1.03 (0.08)

ZDT2 2.44 (0.18) 1.53 (0.11) 0.54 (0.07)

GA 7ZDT3 2.36 (0.12) 1.27 (0.08) 1.07 (0.08)
F1 10.38 (0.82) 7.87 (0.86) 29.65 (0.65)

F2 105.07 (12.80) 81.86 (9.61) 62.94 (0.96)
F3 341.54 (38.25) | 245.61 (27.604) | 74.64 (1.961)
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Table 3: Generations (multiples of 1000) for which algorithm A is significantly faster than
algorithm B. t(A, B), calculated using the Wilcoxon nonparametric signed ranks test at the
5% level with 2.5% in each tail. Where L denotes the standard unconstrained archive with
linear search, D is the dominated tree archive and C is the clustered archive.

H(L,D) | #(L,C) | «D,L) | ¢(D,C) | ¢C,L) ¢(C, D)
ZDT1 1-48 1-100 - 1-100 - -
ZDT2 | 164 1-100 _ 1-100 - -
ES | ZDT3 | 164 1-100 - 1-100 - -
F1 15 1-100 10-100 | 1-100 - -
F2 _ 153 2-100 1-61 57-100 66-100
F3 _ 1-44 3-100 1-50 48-100 54-100
ZDT1 1-16 - 22-100 - 12-100 1-100
ZDT2 | 2, 4-10 - 22-100 - 4-100 2-100
GA [ ZDT3 | 1-15 15-19 22-100 | 20-57 | 30-100 | I-11, 71-100
F1 13 1-100 8-100 1-100 - -
F2 - 1-56 2-100 1-69 62-100 76-100
F3 _ 1-26 3-100 1-31 29-100 35-100
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Table 5: Table showing archive size beyond which the dominated tree is significantly faster
than the linear search for the various test problems for the total (absolute) time cost of the
method up to that archive size, the second column pair are for the incremental cost (the
difference between the time taken in reaching one range and the next). Significance calculated
using a Wilcoxon signed ranks test (2.5% in each tail).

Trees Sig. Faster
Cumulative || Incremental
ES | GA ES GA
ZDT1 | 150 | 150 100 | 100
ZDT2 | 150 | 150 50 50
ZDT3 | 250 | 150 100 50

F1 450 | 300 || 250 | 150
F2 550 | 400 || 200 | 150
F3 400 | 350 || 200 | 150
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Table 7: Comparison between end-of-run fronts from the unconstrained and clustered elite ES
and GA archive models, using the € measure. C(U, C) is the mean proportion of the members
of the clustered generated front dominated by members of the unconstrained generated front.
Means are over 50 runs, with standard deviation in parentheses. The first two columns relate
to the results after an equal number of generations. The third and fourth columns relate to
the results after the clustered algorithms have run for an equal time as the dominated tree
based unconstrained algorithm. Results in bold signify significantly better results under the
Wilcoxon nonparametric signed ranks test (2 tailed, 2.5% in each tail).

Equal generations Equal time
C(U,0) C(C,U) C(U,0C) C(C,U)

ZDT1 0.318 (0.142) 0.408 (0.172) 0.636 (0.173) | 0.163 (0.161)

ZDT2 0.337 (0.156) 0.465 (0.180) 0.383 (0.175) 0.413 (0.179)

ES ZDT3 0.244 (0.114) 0.382 (0.135) 0.417 (0.152) | 0.245 (0.152)
F1 0.899 (0.030) 0.005 (0.001) 0.999 (0.003) | 0.000 (0.001)

F2 0.894 (0.035) 0.001 (0.001) 0.878 (0.039) | 0.002 (0.001)

F3 0.816 (0.048) 0.003 (0.004) 0.787 (0.055) 0.005 (0006)

ZDT1 | 0.981 (0.012) 0.000 (0.000) 0.982 (0.011) | 0.000 (0.000)

ZDT2 | 0.982 (0.010) 0.000 (0.000) 0.981 (0.011) | 0.000 (0.000)

GA | ZDT3 0.984(0.011) 0.000 (0.000) 0.984 (0.011) | 0.000 (0.000)
F1 0.995 (0.010) 0.001 (0.002) 0.996 (0.010) | 0.000 (0.001)

F2 0.947 (0.025) 0.000 (0.001) 0.935 (0.030) | 0.000 (0.001)

F3 0.962 (0.029) 0.000 (0.001) 0.921 (0.032) | 0.000 (0.001)

25



Table 9: Comparison between end-of-run fronts from the unconstrained and clustered elite ES
and GA archive models, using the V measure. Where V (U, C) is the mean proportion of the
volume of the minimum hypercube containing both estimated fronts, which is dominated by
members of the unconstrained generated front but not by members of the constrained gener-
ated front. Means are over 50 runs, standard deviation in parentheses, value as a percentage.
The first two columns relate to the results after an equal number of generations. The third
and fourth columns relate to the results after the clustered algorithms have run for and equal
amount of time as the data structure based unconstrained algorithm. Results highlighted in
bold signify significantly better results under the Wilcoxon nonparametric signed ranks test
(2 tailed, 2.5% in each tail).

Equal generations Equal time
V(U,C) vV (C,U) V(U,C) V(C,U)

ZDT1 0.760% (0.360) 1.260% (4.810) 1.650% (0.530) 0.810% (4.550)

ZDT2 0.802% (0.447) 1.021% (0.618) 0.957% (0.512) 0.836% (0.549)

ES ZDT3 0.581% (0.320) 1.151% (5.530) 0.912% (0.466) 0.944% (5.374)
F1 9.287% (0.708) 0.014% (0.031) 4.601% (0.288) 0.000% (0.000)

F2 9.466% (0.669) 0.019% (0.011) 5.614% (0.413) 0.025% (0.018)

F3 11.215% (0.748) 0.224% (0.115) 8.517% (0.765) 0.300% (0.161)

7ZDT1 5.829% (0.374) 0.000 (0.000) 5.423% (0.413) 0.000 (0.000)

ZDT2 8.882% (0.762) 0.000 (0.000) 7.617% (0.666) 0.000 (0.000)

GA | ZDT3 3.612% (0.359) 0.000 (0.000) 3.713% (0.403) 0.000 (0.000)
F1 5.146% (0.439) 0.000% (0.000) 5.553% (0.400) 0.000 (0.000)

F2 8.651% (0.492) 0.004% (0.013) 8.649% (0.563) 0.006% (0.009)

F3 13.770% (0.962) 0.001% (0.002) 12.514% (0.978) | 0.046% (0.095)
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Figure 1: Example of a retreating estimated Pareto front, produced by truncation by cluster-

ing.
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Figure 2: Percentage of individuals in active clustered archive dominated by members of the
dormant unconstrained archive.
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Obj. 1, Obj.1, Obj.1, Ohj. 1,
Binl Bin2 Bin3 Bin4d

Objective 2

Objective 1

Figure 3: Two objective example of Partitioned Quasi-Random Selection, with the Objective 1
and 2 dimensions partitioned in illustration (during selection only one dimension is partitioned
at each generation). N = 5 representative individuals are required, so selection, from N—1 =4
bins, after pinning of relevant extremal value (circled).
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Figure 4: Dominated tree. Top: 13 points y,, in two dimensions and the composite points
¢; (squares) forming a dominated tree. The open circle, q marks a query point. Bottom:
Composite nodes listed as ordered by <.
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Figure 5: Non-dominated tree. The non-dominated tree representing the 13 points y,,
illustrated in figure 4.
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Figure 6: Insertion and deletion into a dominated tree. Dominated tree resulting from
the tree shown in figure 4 after the insertion of y14 and deletion of yj4.
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Figure 7: Cleaning of a dominated tree. Dominated tree resulting from ‘cleaning’ of the

tree shown in figure 6.
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Figure 8: (a) Illustrates dense and evenly distributed estimated Pareto fronts. Front A dom-
inates a larger extent of Front B, but both fronts dominate an equal number of each others’

constituent members. (b) Illustrates estimated Pareto fronts of differing extents. Front B is
of far greater extent than A, but will receive a lower C metric value.

34



Volume dominated
by front A but not B. :

Objective 2

~ Volume dominated
by front B but not A.

Objective 1

Figure 9: Two dimensional illustration of minimum surrounding hypercube volume dominated
by two fronts (hypercube boundaries marked with dashed lines).
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relating to an individual which minimises one of the objectives)
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Figure 11: Growth of archive sizes using ZDT1, ZDT2 and ZDT3 [9] and the test functions
F1, F2 and F3 introduced in this study, using a simple ES(1+1) based MOEA.
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Figure 12: Growth of archive sizes using ZDT1, ZDT2 and ZDT3 [9] and the test functions
F1, F2 and F3 introduced in this study, using a simple GA based MOEA.
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Figure 13: The average time time (in seconds) spent checking an individual against the elite
archive and updating the archive in the three different archive methods (unconstrained stan-
dard, unconstrained with the new data structures and clustered), using the GA up to 5000
generations (with the three objective problem Fj).
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