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Abstract

The General Packet Radio Service (GPRS) augments GSM
to provide packet switched data services to the mobile users.
Packet scheduling in GPRS is dynamic and several schedul-
ing techniques have been implemented, for example round
robin; however, these generally assure only best effort qual-
ity of service. In this paper we compare prominent scheduling
algorithms by simulation of web and email traffic finding that
Earliest Deadline First and First Come First Served scheduling
perform well with few users, but round robin is preferable with
large numbers of users. We introduce a novel scheduling al-
gorithm, based on reinforcement learning, for scheduling pack-
ets according to quality of service. Simulation studies show
that it outperforms a naive prioritised round robin algorithm
and can adapt to changing network conditions.

1 Introduction

Mobile communication systems have been revolutionized by
technological advances in the last decade. The General Packet
Radio Service [2, 1, 5] has augmented GSM-enabled [see, for
example, 3] mobile stations to provide packet switched data
services to the mobile user. The various data services (e.g., in-
ternet browsing, email, fax, unified messaging, etc.) and voice
require different levels of service: a few seconds delay deliv-
ering an email is unimportant, but makes web browsing an-
noying at best and conversation almost unsustainable. Despite
this clear need for prioritised scheduling, popular scheduling
algorithms, for example round robin, assure only best effort
quality of service. Though best effort service allows unbiased
servicing to users, it fails to provide value-based scheduling.

In this paper we describe a simple reinforcement learning
scheduler which provides appropriate levels of service to ac-
cording to the traffic priority. We first compare the performance
of well-known scheduling algorithms in a simulation of inter-
net traffic. We first describe a simple, prioritised round robin
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algorithm. A reinforcement learning algorithm is then used to
improve the prioritised round robin algorithm and its perform-
ance is illustrated, again with simulations of internet traffic; we
show that it affords better throughput for high priority traffic
and is able to adapt to changing network conditions.

1.1 GSM and GPRS

GSM, originally designed for voice traffic, is based on for cir-
cuit switched connections. This is achieved by a combination
of Frequency Division Multiple Access (FDMA) and Time Di-
vision Multiple Access (TDMA). Each Base Transceiver Sta-
tion (BTS) serving mobile stations in a cell is assigned a hum-
ber of single carrier channels for uplink and downlink. Each of
these frequency channels is then divided into eight time slots
comprising a TDMA frame. A mobile station is allocated a
particular time slot in successive TDMA frames forming phys-
ical channel, and a mobile station is assigned a single Traffic
Channel (TCH) for the duration of the call.

Channels allocated to GPRS are called Packet Data Channels
(PDCH), and in contrast to voice traffic, a GPRS permits a
mobile station to utilise several time slots in the same TDMA
frame. Time slot allocation is dynamic [2] and a single time
slot may be used by more than one mobile station in different
TDMA frames. Dynamic channel allocation is thus very flex-
ible, permitting a single mobile to use upto eight time slots,
while at the other extreme upto eight mobiles may use a single
time slot. This is especially useful when the traffic is bursty, as
is typical with data. Moreover, there is the potential for high
priority services to be assigned more TDMA slots in a single
TDMA frame or more frequent slots in successive TDMA
frames, thus providing a higher quality of service (QoS).

The Packet Control Unit (PCU) acts as the interface between
the GPRS packet switched network and the GSM subsystem.
Focusing on the uplink from mobile station to Base Station
Controller (BSC), traffic arriving from the mobile stations is
directed by the PCU into the packet switched network. Since
there is generally a large user population data packets do not
arrive serially, but in parallel and the PCU must schedule these
packets in such a way that users are guaranteed quality of ser-
vice and fairness.

Four QoS criteria are generally considered important for GPRS
networks (see [4] for details): precedence (priority), delay, re-



liability and throughput. In this study we focus on delay and
throughput. Delay is measured as the ratio of the number of
packets that have been delayed to the total number of packets
received. The throughput is defined as the ratio of the total
size of packets that have been serviced to the time taken for the
packets to be serviced. It is also useful to define the cell load
as the ratio of the total number of packets serviced to the total
number of packets arriving in a cell.

Three classes of QoS may be recognised:

Best effort: This level of QoS merely guarantees that re-
sources are shared fairly among the data flows. This is
the QoS provided by the round robin algorithm used by
current schedulers in the PCU.

Absolute: The absolute QoS guarantee provides a QoS to a
flow irrespective of the QoS of other flows. This offers
isolation to network services. The QoS may be specified
either deterministically or statistically, however, the model
requires a resource reservation mechanism, which is not
currently available in the GPRS protocol.

Adaptive: The adaptive QoS guarantee level of service per-
mits the QoS provided to any flow to adapt to the load
conditions of the network, potentially with reference to
upper and lower bounds. In contrast to the absolute guar-
antee, this mechanism requires adaptive feedback mech-
anism and offers fairness to the network. Our reinforce-
ment learning scheduler provides an adaptive QoS.

2 Simulation

In order to study the efficacy of scheduling algorithms we have
simulated the downlink traffic within a cell. In addition to the
scheduling discipline, the simulator requires a traffic model and
a channel model, which we describe in turn.

Traffic Model. Traffic may be broadly divided into four
classes, namely: Conversational, Streaming, Interactive, Back-
ground. We have chosen to model web traffic as an exemplar
of the interactive class, requiring a high QoS, and email traffic
for the background class, requiring a low QosS.

A cell typically involves several users (between 30 and 210 in
our simulations) connecting through GPRS. Following [7], we
group all requests at a particular instant into the appropriate
QoS category and add the totals to the to the PCU queue.

Furthermore [7], we model HTTP traffic as a two state Markov
process. An ON phase is initiated by the HTTP request for a
URL,; the OFF phase represents the quiescent period following
the retrieval of all HTTP objects. Traffic during the ON phase
is determined by the number of inline objects retrieved (dis-
tributed according to a Gamma distribution), the sizes of the
main object and inline objects, which are modelled as being
log-normally distributed, and the viewing time of each page,
which is assumed to be Weibull-distributed. All parameters are
empirically determined [7].
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Figure 1: Probability that a packet is delayed when scheduled
by Round Robin, Earliest Deadline First or First Come First
Served algorithms.

The distribution of email sizes is approximated by a Cauchy
distribution [7], while the arrival times are modelled by a Pois-
Son process.

Channel Model. Inthe work reported here we have modelled
each mobile station as being capable of using upto four of the
eight available time slots in each TMDA frame. We further
assume that four time slots in each frame are reserved for GPRS
data traffic, while the other 4 time slots maybe utilised if they
are available. We model the data rate over each channel as 21.4
kb/s. The number of available channels is modelled as being
equal to the number of mobile stations.

2.1 Standard scheduling algorithms

We compared the efficacy of the following three well known
scheduling algorithms:

First Come First Served (FCFS): Incoming packets are
scheduled according to their arrival time at the scheduler.
Clearly, high volumes sources are given effectively higher pri-
ority than low volume sources.

Round Robin (RR):  Here incoming packets are placed in
queues according to their source; packets are scheduled from
queues one at a time for each queue in turn, round robin fash-
ion. This scheduler is fair in the sense that it gives equal chance
of service among the data flows.

Earliest Deadline First (EDF): At any scheduling decision
time, the packet with the earliest deadline is scheduled. Dead-
line is calculated as the upper bound of the tolerable end-to-end
delay, and thus measures the usefulness of data packets at the
destination. Ties are broken randomly.
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Figure 2: Probability that a packet is delayed when scheduled
by RR, EDF and FCFS algorithms. Traffic per user is half that
simulated in Figure 1.

Figure 1 compares the performance of the scheduling al-
gorithms as the number of users is increased. Note that the
number of available TMDA slots is 4 times the number of users;
the traffic per user is 500 packets for email and 500 HTTP pack-
ets. Since the traffic is ‘bursty’ there is an effective increase in
overall network load as the number of users rises because there
are more collisions between bursts generated by different users.

As the figure shows, the probability of a packet being delayed
is almost constant with increasing network load. The FCFS al-
gorithm performs best except when the network is most heav-
ily loaded. FCFS might be expected to be effective when the
network is not saturated because it can always schedule imme-
diately schedule the first available packet.

At lower traffic per user (Figure 2) the algorithms all perform
similarly with an increasing probability of delayed packets as
the number of users, and thus collision of bursts, increases. At
high traffic levels (Figure 3) the algorithms all saturate with
more than approximately 80 users.

3 Reinforcement Learning

Here we give a very brief introduction to reinforcement learn-
ing (RL); readers are referred to Sutton & Barto’s expository
book [6] for an extensive discussion. Unlike a supervised learn-
ing agent, a RL agent is not told the correct action to take in a
particular situation when it is learning. Instead, the agent is
given a goal and learns by experience how best to achieve it.
More precisely, an RL agent at time step ¢ is characterised by
a state, sy € S. The state signal the agent receives repres-
ents the knowledge possessed by the agent about its environ-
ment. The particular action, a; € A(s;) taken depends upon
the policy, 7 (s¢, at), the probability of taking action a; in state
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Figure 3: Probability that a packet is delayed when scheduled
by RR, EDF and FCFS algorithms. Traffic per user is double
that simulated in Figure 1.

s¢. The policy constitutes a mapping from the state to the action
and learning the optimal policy is the essence of reinforcement
learning. While choosing actions a; = arg max, 7 (s, a) for
all ¢ will yield a sequence of actions that optimally exploit the
current estimates of a ‘good’ action, exploration is ensured by
requiring that all actions A(s) from state s have a non-zero
probability 7 (s, a).

The agent’s goal is to maximise the expected return:

Ry = Z’YTTt+T+1 @
=0

where ;1 is the reward obtained in response to the action a;
and ~ is the rate at which future rewards are discounted, 0 <
~ < 1. Of course, learning often stops after a finite number of
steps, 7.

It is generally assumed that the environment of the agent has
the Markov property, so that the state and reward at time ¢ + 1
depend only upon the state and action at time ¢:

The merit of taking an action a from a state s under a policy
m may be assessed by the action-value function, which is the
expected return under 7:

Q(s,a) = Ex{R¢|st = s,as = a} 2

=E; {Z'Ykrt+k+l | s = s,a; = a} 3)

k=0

The action-value utility may be estimated by keeping track
of the rewards accrued starting from (s, a). Here we use Q-
learning [8], a temporal differencing method for updating the
action-value function. Having taken action a; from state s, to
state s;+1 and received reward r;, 1, the estimate of the utility
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Figure 4: Probability that a packet is delayed when scheduled
by “prioritised round robin’ and RL schedulers.

Q++1(s,a) attime ¢t + 1 is updated as follows:

Qt+1(57 a’) = Qt(sv a’) + Oé[?"t+1+
7 max Qi(st41,a) — Q(st,a:)] (4)

where « is a learning rate. The the update looks one step ahead
and updates Q (s, a;) with the reward accrued from taking ac-
tion a; and the discounted maximum (estimated) return from
an action at time ¢ + 1.

3.1 RL Scheduler

Our RL scheduler is designed to give priority to flows requir-
ing high QoS at the expense of low QoS traffic; for simplicity
in this feasibility study we focus on just two QoS categories:
high and low. It builds on a naive prioritised scheduler which
consists of a pair round robin scheduling queues, one for each
QoS category into which packets are placed according to their
QoS requirement. In the naive scheduler priority is given to the
high QoS queue by scheduling two packets from it for every
packet scheduled from the low QoS queue.

While this ‘prioritised round robin” (PRR) scheduler clearly
gives priority to high QoS flows, it is not adaptive and may
waste network capacity. We therefore retain the high and low
priority RR pools, but use an RL agent to choose from which
pool to schedule at each instant.

Our RL scheduler thus has a very simple set of actions, A:
schedule a packet from either the high or the low QoS pool.
The actions are chosen using an e-greedy policy, so that the
action with the highest utility Q(s¢,a;) in the current state is
scheduled with probability 1 — ¢, the other action being chosen
with probability e(= 0.1).

In this pilot study there are only two states available to the RL
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Figure 5: Overall throughput per user versus cell load for pri-
oritised round robin and RL schedulers.

agent, namely is the packet that has been waiting longest to be
scheduled a high or low QoS packet.

The reward is the instantaneous throughput (for the current
TMDA frame) with high QoS traffic weighted by a factor \;
if 7 and r! are respectively the number of high and low QoS
packets scheduled at time ¢, the total reward is calculated as:

®)

In the experiments reported here A = 2. Clearly it would be
straight-forward to generalise the reward function to include
several QoS categories, each with an appropriate weighting.

! /
e =Ty 4+ Ary

3.2 Results

Figure 4 compares the probability of a packet suffering a delay
when scheduled with the prioritised round robin or the RL
scheduler. It is clear that the RL scheduler always schedules
packets with less average delay than naive algorithm, especially
as the number of users, and thus the cell load, increases. As
shown in Figure 5 the throughput (per user) is commensurately
higher with the RL scheduler.

Figure 6 shows the probability of packet delay for high QoS
and low QoS data flows. It is clear that the RL scheduler is
able to provide a superior service to the high QoS flow under a
wide range of cell loads; the probability of delay for high QoS
users is consistently under one half that of the low QoS users.
Increasing A in the reward (equation 5) gives greater relative
importance to the high QoS traffic, which are scheduled with
probability of delay. It should be emphasised, however, that the
RL scheduler is adaptive; it cannot offer absolute guarantees
of throughput or delay probability to the high QoS data flows.
As Figure 6 illustrates it does adapt to different network condi-
tions to provide a proportionately better service to high priority
users.
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Figure 6: Delay probability versus cell load for high and low
QoS flows using RL schedulers.

Figure 6 illustrates that the RL scheduler can automatically set
an operating point for a range of network conditions. In figure
7, we illustrate how the RL scheduler can dynamically adapt to
changing network load. The figure shows the transition from
a high traffic situation at times before t = 0.75 x 10°, to a
markedly lower overall throughput after + = 0.75 x 10°. As
can be seen from the lower panel, the RL scheduler is able to
adapt to the lower overall load and consistently schedule high
QoS packets with a lower probability of delay. The scheduler is
also able to cope with changes in the ratio of high to low QoS
traffic.

4 Conclusion

We have presented an assessment of popular, simple scheduling
algorithms for GPRS traffic. We find that although the FCFS
and EDF schedulers perform well under some conditions as
simple round robin scheme is robust over a wide range of cell
loads.

We have also presented a simple reinforcement learning sched-
uler to differentially schedule data flows with differing QoS re-
quirements. Simulations show that the RL scheduler is capable
of preferentially scheduling high priority traffic over a wide
range of network loads, and is capable of dynamically adapting
to changing network loads and conditions. In this pilot study
we have only examined two types of traffic (HTTP and email)
together with two QoS classes, but it is straight-forward to ex-
tend the RL scheduler to cope with additional QoS classes. A
more exciting development will be to extend the state of the
RL agent to include additional information such as the num-
ber of packets in each of the RR pools or origin of data pack-
ets. Finally we remark that although we have concentrated on
throughput as the reward, QoS criteria often include several ob-
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Figure 7: Adaption to changing network conditions. Top panel:
packet size versus arrival time as the traffic density drops ab-
ruptly at ¢ = 0.75 x 10°. Bottom panel: Delay probability
versus time.

jectives and the development of multi-objective reinforcement
learning schedulers will be important to provide QoS guaran-
tees for QPRS and 3G technologies.
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