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Abstract--The uncertainty of classification outcomes is of 

crucial importance for many safety critical applications including, 
for example, medical diagnostics. In such applications the 
uncertainty of classification can be reliably estimated within a 
Bayesian model averaging technique that allows the use of prior 
information. Decision Tree (DT) classification models used within 
such a technique gives experts additional information by making 
this classification scheme observable. The use of the Markov 
Chain Monte Carlo (MCMC) methodology of stochastic sampling 
makes the Bayesian DT technique feasible to perform. However, 
in practice, the MCMC technique may become stuck in a 
particular DT which is far away from a region with a maximal 
posterior. Sampling such DTs causes bias in the posterior 
estimates, and as a result the evaluation of classification 
uncertainty may be incorrect. In a particular case, the negative 
effect of such sampling may be reduced by giving additional prior 
information on the shape of DTs. In this paper we describe a new 
approach based on sweeping the DTs without additional priors on 
the favorite shape of DTs. The performances of Bayesian DT 
techniques with the standard and sweeping strategies are 
compared on a synthetic data as well as on real datasets. 
Quantitatively evaluating the uncertainty in terms of entropy of 
class posterior probabilities, we found that the sweeping strategy 
is superior to the standard strategy.  
 

Index Terms--Classification, Probability, Trees, Uncertainty.  

I. INTRODUCTION 

he uncertainty of classification outcomes is of crucial 
importance for many safety critical applications such as 

medical diagnostics and prediction of survival of patient after 
injuries. In such applications Bayesian model averaging 
provide reliable estimates of the classification uncertainty. The 
use of Decision Tree (DT) classification models within a 
Bayesian averaging framework gives experts additional 
information by making the classification scheme observable 
[1, 2]. 
 The main idea of using DT classification models is to 
recursively partition data points in an axis-parallel manner. 
Such models provide natural feature selection and uncover the 
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most important features for the classification. The resultant DT 
classification models are easily interpretable by users. 

Generally, a DT is a hierarchical system consisting of 
splitting and terminal nodes. DTs are binary if the splitting 
nodes ask a specific question and then divide the data points 
into two disjoint subsets. The terminal node assigns all data 
points falling in that node to the class whose points are 
prevalent. Within a Bayesian framework, the class posterior 
distribution is calculated for each terminal node, which makes 
the Bayesian integration computationally expensive [1, 2]. 

Breiman et al. [1] provided the Bayesian generalization of 
tree models required to evaluate the posterior distribution. To 
make the Bayesian averaging DTs a feasible approach, 
Chipman et al. [3] have suggested the use of the Markov Chain 
Monte Carlo (MCMC) technique, making a stochastic sample 
from the posterior distribution.  

Sampling across DT models of variable dimensionality, the 
above technique exploits a Reversible Jump (RJ) extension 
suggested by Green [4]. When prior information is not 
distorted and the number of samples is reasonably large, the RJ 
MCMC technique, making birth, death, change-question, and 
change-rule moves, explores the posterior distribution and as a 
result provides accurate estimates of the posterior. However, in 
practice the lack of prior information brings bias in the 
posterior estimates, and as a result the evaluation of 
classification uncertainty may be incorrect [5]. 

Within the RJ MCMC technique, the prior on the number of 
splitting nodes should be given properly. Otherwise, most 
samples may be taken from the posterior calculated for DTs 
that are located far away from a region containing the desired 
DT models. Likewise, when the prior on the number of splits 
is assigned to be uniform, the minimal number of data points 
allowed to be at nodes may be set inappropriately small. In this 
case, the DTs will grow excessively and most of the samples 
will be taken from the posterior distribution calculated for 
over-fitted DTs. As a result, the use of inappropriately 
assigned priors leads to poor results [6]. 

Clearly, the lack of prior knowledge on the favored DT 
structure, which often happens in practice, increases the 
uncertainty in results of the Bayesian averaging DTs. In this 
paper we aim to decrease the uncertainty of classification 
outcomes by using a new Bayesian strategy of sampling DT 
models. The main idea behind this strategy is to explicitly 
assign the prior probability of further splitting DT nodes 
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dependent on the range of values within which the number of 
data points will be not less than a given number.  

The classification uncertainty of the Bayesian DT 
techniques with the standard and sweeping strategies is 
evaluated in terms of entropy of class posterior probabilities as 
described in [7]. The evaluations are made on an artificial 
problem and some real datasets taken from the UCI Machine 
Learning Repository [8] as well as on real trauma dataset taken 
from the London Emergency Centre. 

The remaining part of the paper is organized as follows. 
Sections II and III describe the standard and suggested 
Bayesian DT techniques. Then section IV describes the 
experiments conducted to compare the performance and the 
classification uncertainty of these techniques. Finally, section 
V concludes the paper.  

II. THE BAYESIAN DECISION TREE TECHNIQUE  

A. The Basis of Bayesian Model Averaging 
In general, the predictive distribution we are interested in is 

written as an integral over parameters θθθθ of the classification 
model 
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where y is the predicted class (1, …, C), x = (x1, …, xm) is the 
m-dimensional input vector, and D denotes the given training 
data. 

The integral (1) can be analytically calculated only in simple 
cases. In practice, part of the integrand in (1), which is the 
posterior density of θθθθ conditioned on the data D, p(θθθθ | D), 
cannot usually be evaluated. However if values θθθθ (1), …, θθθθ (N) 
are drawn from the posterior distribution p(θθθθ | D), we can write  
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This is the basis of the MCMC technique for approximating 
integrals [5]. To perform the approximation, we need to 
generate random samples from p(θθθθ | D) by running a Markov 
Chain until it has converged to a stationary distribution. After 
this we can draw samples from this Markov Chain and 
estimate the predictive posterior density (2). 

Let us now define a classification problem presented by data 
(xi, yi), i = 1, …, n, where n is the number of data points and yi 
∈ {1, …, C} is a categorical response. Using DTs for 
classification, we need to determine the probability ϕij with 
which a datum x is assigned by terminal node i = 1, …, k to the 
jth class, where k is the number of terminal nodes in the DT. 
Initially we can assign a (C – 1)-dimensional Dirichlet prior 
for each terminal node so that p(ϕϕϕϕi | θθθθ) = DiC-1(ϕϕϕϕi | αααα), where ϕϕϕϕi 

= (ϕi1, …, ϕiC), θθθθ is the vector of DT parameters, and αααα = (α1, 
…, αC) is a prior vector of constants given for all the classes. 

The DT parameters are defined as θθθθ = (si
pos, si

var, si
rule), i = 1, 

…, k – 1, where si
pos, si

var and si
rule define the position, 

predictor and rule of each splitting node, respectively. For 
these parameters the priors can be specified as follows. First 
we can define a maximal number of splitting nodes, say, smax = 
n – 1, so },...,1{ maxss pos

i ∈ . Second we draw any of the m 

predictors from a uniform discrete distribution U(1, …, m) and 
assign },...,1{var msi ∈ . Finally the candidate value for the 

splitting variable xj = si
var is drawn from a uniform discrete 

distribution U(xj
(1), …, xj

(N)), where N is the total number of 
possible splitting rules for predictor xj, either categorical or 
continuous. 

Such priors allow the exploring of DTs which partition data 
in as many ways as possible, and therefore we can assume that 
each DT with the same number of terminal nodes is equally 
likely [5]. For this case the prior for a complete DT is 
described as follows 
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Having set the priors on the parameters ϕϕϕϕ and θθθθ, we can 

determine the marginal likelihood for the data given the 
classification tree. In the general case this likelihood can be 
written as a multinomial Dirichlet distribution [5]:   
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where ni is the number of data points falling in the ith terminal 
node of which mij points are of class j and  Γ is a Gamma 
function.   

B. Sampling Large Decision Trees 
To allow sampling DT models of variable dimensionality, 

the MCMC technique exploits the Reversible Jump extension 
[4]. This extension allows the MCMC technique to sample 
large DTs induced from real-world data. To implement the RJ 
MCMC technique Chipman et al. [3] and Denison et al. [5] 
have suggested exploring the posterior probability by using the 
following types of moves. 

Birth. Randomly split the data points falling in one of the 
terminal nodes by a new splitting node with the variable and 
rule drawn from the corresponding priors. 

Death. Randomly pick a splitting node with two terminal 
nodes and assign it to be one terminal with the united data 
points. 

Change-split. Randomly pick a splitting node and assign it a 
new splitting variable and rule drawn from the corresponding 
priors.  

Change-rule. Randomly pick a splitting node and assign it a 
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new rule drawn from a given prior.  
The first two moves, birth and death, are reversible and 

change the dimensionality of θθθθ as described in [4]. The 
remaining moves provide jumps within the current 
dimensionality of θθθθ. Note that the change-split move is 
included to make “large” jumps which potentially increase the 
chance of sampling from a maximal posterior whilst the 
change-rule move does “local” jumps.     

For the birth moves, the proposal ratio R is written 
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where the )|( �'�q  and )|'( ��q  are the proposed distributions, 

θθθθ´ and θθθθ are (k + 1) and k-dimensional vectors of DT 
parameters, respectively, and p(θθθθ) and p(θθθθ´) are the 
probabilities of the DT with parameters θθθθ and θθθθ´: 
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where )( var
isN  is the total number of possible splitting rules 

for variable si
var, Sk is the number of ways of constructing a DT 

with k terminal nodes, and K is the maximal number of 
terminal nodes, K = n  – 1.   

For binary DTs, as given from graph theory, the number Sk 
is the Catalan number 
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which for large k becomes astronomically large, e.g., for k ≥ 
25, Sk ≥ (4.8)12.  

The proposal distributions are as follows 
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where DQ1 = DQ + 1 is the number of splitting nodes whose 
branches are both terminal nodes.  

Then the proposal ratio for a birth is given by 
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The number DQ1 in Eq. 10 is dependent on the DT structure 

and it is clear that DQ1 <  k ∀ k = 1, …, K. Analyzing Eq. 10, 
we can also assume dk+1 = bk. Then letting the DTs grow, i.e., k 
→ K, and considering Sk+1 > Sk, we can see that the value of R 

→ c, where c is a constant lying between 0 and 1.  
Alternatively, for the death moves the proposal ratio is 

written as 
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We can see that under the assumptions made for the birth 
moves, the right side in this equation is equal or more than 1, 
i.e., R ≥ 1.   

C. The Use of Knowledge of the Favored Structure 
For a case when there is knowledge of the favored structure 

of the DT, Chipman et al. [3] suggested a generalization of 
prior (3) by assuming that the prior probability of further split 
of the terminal nodes to be dependent on how many splits have 
already been made above them. For example, for the ith 
terminal node the probability of its splitting is written as  
 

δγ −+= )1()( isplit dip , (12) 

 
where di is the number of splits made above i and γ, δ ≥ 0 are 
given constants.  

We can see that the larger δ, the more the prior favors 
“bushy” trees. For δ = 0 each DT with the same number of 
terminal nodes appears with the same prior probability.  

D. The Difficulties of Sampling Large Decision Trees 
When DTs are induced from real-world data, the number of 

splitting nodes can be very large. In such cases the size of DTs 
can rationally decrease by defining a minimal number of data 
points, pmin, allowed to be in the splitting nodes [3, 5]. If the 
number of data points in new partitions made after the birth or 
change moves becomes less than a given number pmin, such 
moves are assigned unavailable, and the RJ MCMC algorithm 
resamples such moves.  

When the moves are assigned unavailable, this distorts the 
proposal probabilities pb, pd, and pc given for the birth, death, 
and change moves, respectively. The larger the DT, the 
smaller the number of data points falling in the splitting nodes, 
and correspondingly the larger is the probability with which 
moves become unavailable. Resampling the unavailable moves 
makes the balance between the proposal probabilities biased.  

To show that the balance of proposal probabilities can be 
biased, let us assume an example with probabilities pb, pd, and 
pc set equal to 0.2, 0.2, and 0.6, respectively, note that pb + pd 
+ pc = 1. Let the DTs be large so that the birth and change 
moves are assigned unavailable with probabilities pbu and pcu 
equal to 0.1 and 0.3, respectively. As a result, the birth and 
change moves are made with probabilities equal to (pb – pbu) 
and (pc – pcu), respectively. Let now emulate 10000 moves 
with the given proposal probabilities. The resultant 
probabilities are shown in Fig. 1. From this figure we can see 
that after resampling the unavailable proposals the 
probabilities of the birth and death moves become equal 
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approximately 0.17 and 0.32, i.e., the death moves are made 
with a probability which is significantly larger than a 
probability originally set equal 0.2. 

 

Fig. 1. The proposal probabilities for the birth, death, and change moves 
denoted by the first, second, and third groups, respectively. The left hand bars 
in each group denote the proposal probabilities set equal to 0.2, 0.2, and 0.6, 
respectively. The right hand bars in these groups denote the resultant 
probabilities with which the birth, death, and change moves are made in 
reality if the birth and change moves were assigned unavailable with 
probabilities 0.1 and 0.3, respectively.   

 
The disproportion in the balance between the probabilities 

of birth and death moves is dependent on the size of DTs 
averaged over samples. Clearly, at the beginning of burn-in 
phase the disproportion is close to zero, and to the end of the 
burn-in phase, when the size and form of DTs are stabilized, 
its value becomes maximal. 

The DTs grow very quickly during the first burn-in samples 
because an increase in log likelihood value for the birth moves 
is much larger than that for the others. For this reason almost 
every new partition of data is accepted. Once a DT has grown 
the change moves are accepted with a very small probability 
and, as a result, the RJ MCMC algorithm tends to get stuck at 
a particular DT structure instead of exploring all possible 
structures.  

Because DTs are hierarchical structures, the changes at the 
nodes located at the upper levels can significantly change the 
location of data points at the lower levels. For this reason there 
is a very small probability of changing and then accepting a 
DT located near a root node. Therefore the RJ MCMC 
algorithm collects the DTs in which the splitting nodes located 
far from a root node were changed. These nodes typically 
contain small numbers of data points. Subsequently, the value 
of log likelihood is not changed much, and such moves are 
frequently accepted. As a result, the RJ MCMC algorithm 
cannot explore a full posterior distribution properly. 

One way to extend the search space is to restrict DT sizes 
during a given number of the first burn-in samples as described 
in [5]. Indeed, under such a restriction, this strategy gives more 
chances of finding DTs of a smaller size which could be 
competitive in term of the log likelihood values with the larger 

DTs. The restricting strategy, however, requires setting up in 
an ad hoc manner the additional parameters such as the size of 
DTs and the number of the first burn-in samples. Sadly, in 
practice, it often happens that after the limitation period the 
DTs grow quickly again and this strategy does not improve the 
performance. 

Alternatively to the above approach based on the explicit 
limitation of DT size, the search space can be extended by 
using a restarting strategy as Chipman et al. have suggested in 
[3]. Clearly, both these strategies cannot guarantee that most of 
DTs will be sampled from a model space region with a 
maximal posterior. In the next section we describe our 
approach based on sweeping the DTs. 

III. THE BAYESIAN AVERAGING WITH A SWEEPING STRATEGY 

In this section we describe our approach to decreasing the 
uncertainty of classification outcomes within the Bayesian 
averaging over DT models. The main idea of this approach is 
to assign the prior probability of further splitting DT nodes to 
be dependent on the range of values within which the number 
of data points will be not less than a given number of points, 
pmin. Such a prior is explicit because at the current partition the 
range of such values is unknown.  

Formally, the probability Ps(i, j) of further splitting at the ith 
partition level and variable j can be written as  
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where ),(

min
jix  and ),(
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jix are the minimal and maximal values of 

variable j at the ith partition level. 
Observing Eq. (13), we can see that ),1(

max
),(

max
jji xx ≤  and 

),1(
max

),(
min

jji xx ≥  for all the partition levels i > 1. On the other hand 

there is partition level k at which the number of data points 
becomes less than a given number pmin. Therefore, we can 
conclude that the prior probability of splitting Ps ranges 
between 0 and 1 for any variable j and the partition levels i: 1 
≤ i < k.   

From Eq. (13) it follows that for the first level of partition, 
probability Ps is equal to 1.0 for any variable j. Let us now 
assume that the first partition split the original data set into two 
non-empty parts. Each of these parts contains less data points 
than the original data set, and consequently for the (i = 2)th 
partition either ),1(

max
),(

max
jji xx <  or ),1(

max
),(

min
jji xx >  for new splitting 

variable j. In any case, numerator in (13) decreases, and 
probability Ps becomes less than 1.0. We can see that each new 
partition makes values of numerator and consequently 
probability (13) smaller. So the probability of further splitting 
nodes is dependent on the level i of partitioning data set.  

The above prior favors splitting the terminal nodes which 
contain a large number of data points. This is clearly a desired 
property of the RJ MCMC technique because it allows 
accelerating the convergence of Markov chain. As a result of 
using prior (13), the RJ MCMC technique of sampling DTs 
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can explore an area of a maximal posterior in more detail. 
However, prior (13) is dependent not only on the level of 

partition but also on the distribution of data points in the 
partitions. Analyzing the data set at the ith partition, we can 
see that value of probability Ps is dependent on the distribution 
of these data. For this reason the prior (13) cannot be 
implemented explicitly without the estimates of the 
distribution of data points in each partition.    

To make the birth and change moves within prior (13), the 
new splitting values si

rule,new for the ith node and variable j are 
assigned as follows. For the birth and change-split moves the 
new value si

rule,new is drawn from a uniform distribution: 
 

),(~ ,1
max

,1
min

, jjnewrule
i xxUs .  (14) 

 
The above prior is “uninformative” and used when no 

information on preferable values of si
rule is available. As we 

can see, the use of a uniform distribution for drawing new rule 
si

rule,new, proposed at the level i > 1, can cause the partitions 
containing less the data points than pmin. However, within our 
technique such proposals can be avoided. 

 For the change-split moves, drawing si
rule,new follows after 

taking new variable si
var,new: 

 
},{~ k

var,new
i SUs   (15) 

  
where Sk = {1, …, m}\si

var is the set of features excluding 
variable si

var currently used at the ith node. 
For the change-rule moves, the value si

rule,new is drawn from 
a Gaussian with a given variance σj: 
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j
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i

newrule
i sNs σ , (16) 

 
where j =  si

var is the variable used at the ith node. 
Because DTs have hierarchical structure, the change moves 

(especially change-split moves) applied to the first partition 
levels can heavily modify the shape of the DT, and as a result, 
its bottom partitions can contain less the data points than pmin. 
As mentioned in section II, within the Bayesian DT techniques 
[3, 5] such moves are assigned unavailable.  

Within our approach after birth or change move there arise 
three possible cases. In the first case, the number of data points 
in each new partition is larger than pmin. The second case is 
where the number of data points in one new partition is larger 
than pmin. The third case is where the number of data points in 
two or more new partitions is larger than pmin. These three 
cases are processed as follows. 

For the first case, no further actions are made, and the RJ 
MCMC algorithm runs as usual. 

For the second case, the node containing unacceptable 
number of data points is removed from the resultant DT. If the 
move was of birth type, then the RJ MCMC resamples the DT. 
Otherwise, the algorithm performs the death move. 

For the last case, the RG MCMC algorithm resamples the 
DT. 

As we can see, within our approach the terminal node, 
which after making the birth or change moves contains less 
than pmin data points, is removed from the DT. Clearly, 
removing such unacceptable nodes turns the random search in 
a direction in which the RJ MCMC algorithm has more 
chances to find a maximum of the posterior amongst shorter 
DTs. As in this process the unacceptable nodes are removed, 
we named such a strategy sweeping. 

After change move the resultant DT can contain more than 
one nodes splitting less than pmin data points. However this can 
happen at the beginning of burn-in phase, when the DTs grow, 
and this unlikely happen, when the DTs have grown.    

As an example, Fig. 2 provides the resultant probabilities 
estimated on 10000 moves for a case when the original 
probabilities of the birth, death, and change moves were set 
equal 0.2, 0.2, and 0.6, respectively, as assumed at the 
example given in section II. The probabilities of the 
unacceptable birth and change moves were set equal to 0.07 
and 0.2. These values are less than those that were set in the 
previous example because the DTs induced with a sweeping 
strategy are shorter than those induced with the standard 
strategy. The shorter DTs, the more data points fall at their 
splitting nodes, and less the probabilities pbu and pcu are. In 
addition, 1/10th of the unacceptable change moves was set 
assigned to the third option, mentioned above, for which two 
or more new partitions contain less than pmin data points. 

From Fig. 2 we can see that after resampling the 
unacceptable birth moves and reassigning the unacceptable 
change moves, the resultant probabilities of the birth and death 
moves become equal approximately 0.17 and 0.3, i.e., the 
values of these probabilities are very similar to those that 
shown in Fig. 1. 

 
Fig. 2. The proposal probabilities for the birth, death, and change moves 
denoted by the first, second, and third groups, respectively. The left hand bars 
in each group denote the proposal probabilities set equal to 0.2, 0.2, and 0.6, 
respectively. The right hand bars in these groups denote the resultant 
probabilities with which the birth, death, and change moves are made in 
reality when the unacceptable birth moves are redone and the unacceptable 
change moves are reassigned with probabilities 0.07 and 0.2, respectively.   

 
Next we describe the experimental results obtained with the 

suggested strategy of the Bayesian averaging over DTs. These 
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results are then compared with those that have been obtained 
with the standard Bayesian DT technique described in [5]. 

IV. EXPERIMENTAL RESULTS 

For experimental evaluation of the proposal Bayesian 
MCMC strategy we used the following data sets. The first is an 
artificial exclusive OR problem (XOR3), in which the output y 
= sign(x1x2), where x1, x2 ~ U(−0.5, 0.5) and x3 ~ N(0, 0.2) is a 
noise variable. Three other problems are taken from the UCI 
Machine Learning Repository [8], and the last is a real 
problem for which it is required to predict survival probability 
of patient after injury. Table I lists the number of classes C, 
number of variables m, and number of patterns n for these data 
sets.  
 

TABLE I 
THE CHARACTERISTICS OF DATASETS 

# Data C m n 

1 XOR3 2 3 1000 
2 Ionosphere 2 33 351 
3 Votes 2 16 435 
4 Wisconsin 2 9 683 
5 Injury 2 18 1468 

 
 
The first, XOR3, problem is resolved with the DTs 

consisting of three nodes. The pruning factor pmin was set equal 
to 5. The proposal probabilities for the death, birth, change-
split and change-rules are set to be 0.1, 0.1, 0.1, and 0.7, 
respectively. The number of burn-in, post burn-in samples, and 
the sampling rate were 50000, 10000, and 7, respectively. 

The resultant Bayesian DTs perform quite well, recognizing 
100.0% of the test examples. The acceptance rate was 0.25 for 
burn-in and 0.25 for post burn-in. The average number of DT 
nodes and 2σ interval within 5 fold cross-validation were 3.8 
and 0.4, respectively.  

Fig. 3 depicts samples of log likelihood and numbers of DT 
nodes as well as the densities of DT nodes for burn-in and post 
burn-in phases. From the top left plot of this figure we can see 
that the Markov chain very quickly converges to the stationary 
value of log likelihood near to zero. During post burn-in the 
values of log likelihood slightly oscillate around zero as 
depicted in Fig. 3.   

Table II provides the performance rates of the standard 
Bayesian DT strategy (BDT1) and our Bayesian DT technique 
with a sweeping strategy (BDT2), calculated for all the 5 data 
sets within 5 fold cross-validation. Both these techniques ran 
with the same proposal probabilities and the value pmin.  

As we can see from Table II, both BDT1 and BDT2 
strategies reveal the same performance on the test data. It is 
important to note that in these experiments the prior 
information, such as the preferable number of nodes and the 
minimal number pmin, has not been available. The number pmin 
was set equal to 3 for the first four domain problems XOR3, 
Ionosphere, Votes, and Wisconsin, and equal to 5 for the last 

relatively large Injury problem.  
 

 
Fig. 3. Synthetic XOR data: Samples of log likelihood and DT size during 
burn-in (the left side) and post burn-in (the right side) phases. The bottom 
plots depict the distributions of DT sizes.   

 
 

TABLE II 
THE PERFORMANCE OF BDT1 AND BDT2 

# Data BDT1, % BDT2, % 

1 XOR3 100.0±0.0 100.0±0.0 
2 Ionosphere 91.1±6.7 91.1±7.4 
3 Votes 95.4±5.1 96.6±5.1 
4 Wisconsin 96.2±3.8 96.0±3.5 
5 Injury 84.1±3.0 84.6±5.2 

 
 
The classification uncertainty of the BDT1 and BDT2 

techniques is compared in terms of the sum entropy as 
described in [7]. The entropy E is summed over class posterior 
probabilities Pij, calculated for the ith test datum and the jth 
class as follows   

 

,)log(
1 1
��

= =

−=
t

i
ij

C

j
ij PPE  (17) 

 
where t is the number of the test examples. 

Table III provides the values of entropy E calculated for 
evaluating of classification uncertainty of the BDT1 and BDT2 
on the test data within the 5 fold-cross validation.  

 
 

TABLE III 
THE CLASSIFICATION UNCERTAINTY IN TERM OF ENTROPY 

# Data BDT1 BDT2 

1 XOR3 2.7±1.5 0.72±1.5 
2 Ionosphere 165.7±4.2 14.4±5.6 
3 Votes 48.2±4.7 9.7±2.9 
4 Wisconsin 143±2.9 11.4±6.8 
5 Injury 179.8±10.4 95.0±7.6 
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From Table III we can see that in terms of the classification 
uncertainty the proposal strategy BDT2 is significantly 
superior to the BDT1.  

Table IV shows the average number of nodes in DTs and 2σ 
intervals calculated for the BDT1 and BDT2. 

 
TABLE IV 

THE NUMBER OF NODES IN DECISION TREES 

# Data BDT1 BDT2 

1 XOR3 18.5±3.9 3.8±0.4 
2 Ionosphere 16.9±1.6 11.9±2.4 
3 Votes 11.4±3.4 7.2±1.2 
4 Wisconsin 13.4±0.9 9.0±1.7 
5 Injury 43.1±5.4 25.0±1.8 

 
From Table IV we can see that on all the data sets the BDT2 

strategy, providing the same performances, produces much 
shorter DTs than the BDT1 strategy. Clearly, this is a desired 
property of the proposed Bayesian DT technique.  

V. CONCLUSION 

The use of the RJ MCMC methodology of stochastic 
sampling from the posterior distribution makes Bayesian DT 
techniques feasible. However, exploring the space of DTs 
parameters, existing techniques may prefer sampling DTs from 
the local maxima of the posterior instead of the properly 
representing the posterior. This affects the evaluation of the 
posterior distribution and, as a result, causes an increase in the 
classification uncertainty. This negative effect can be reduced 
by averaging the DTs obtained in different starts [3] or by 
restricting the size of DTs during burn-in phase [5].  

As an alternative way of reducing the negative effect, we 
have suggested the Bayesian DT technique using the sweeping 
strategy. Within this strategy, DTs are modified after birth or 
change moves by removing the splitting nodes containing 
fewer data points than acceptable.  

We have compared the performances of the Bayesian DT 
techniques with the standard and the sweeping strategies on a 
synthetic dataset as well as on some datasets from the Machine 
Learning Repository and real injury data. Quantitatively 
evaluating the uncertainty in terms of entropy, we have found 
that our Bayesian DT technique using the sweeping strategy is 
superior to the standard Bayesian DT technique. We also 
observe that the sweeping strategy provides much shorter DTs.  

Thus we conclude that our Bayesian strategy of averaging 
DTs is able decreasing the classification uncertainty without 
affecting classification accuracy on the problems examined. 
Clearly this is a very desirable property for classifiers used in 
safety-critical systems in which classification uncertainty is of 
crucial importance. 
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