MAS3006

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE & MATHEMATICS

DEPARTMENT OF MATHEMATICAL SCIENCES

COMPLEX ANALYSIS

31 May 2005

2:15 p.m. - 4:15 p.m. Duration: 2 hours

Examiner: Dr M. Saïdi

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline.

Calculators labelled as approved by the Department of Mathematical Sciences may be used.

SECTION A

- 1. (a) Is the set $H := \{z : \text{Im } z > 0\}$ open, closed, neither or both? Justify your answer. (10)
 - (b) Determine the subset of the complex plane on which the function $f(z) = \frac{e^z}{(z^2 + 2)}$ is analytic. (5)
 - (c) Let z = x + iy and $f(z) = (2x + y^2) + i(x^2 y^2)$. Determine the points z = x + iy for which the derivative f'(z) exists. (5)
 - (d) Let γ be the circle of centre 0 and radius 1, traversed once anticlockwise. Prove that

$$\left| \int_{\gamma} \frac{\sin z \, dz}{z^2} \right| \le 2\pi e \; . \tag{5}$$

(e) Evaluate the integral
$$\int_{\gamma} \frac{(z+2)}{(z-1)} dz$$
 where γ is the circle with centre 0 and radius 2, traversed once anticlockwise. (5)

- (f) Find the radius of convergence of the following series $\sum_{n=0}^{\infty} \frac{z^n}{e^n}$. (5)
- (g) Compute the Taylor series of the function $f(z) = ze^{z^2}$ around z = 0 and indicate the radius of convergence of this series. (5)
- (h) Compute the integral $\int_{\gamma} \frac{z \, dz}{(z^2 z(1+i) + i)}$ where γ is the circle of centre 0 and radius 2. (10)

[50]

Page 2 of 3 MAS3006/continued ...

SECTION B

- 2. Let $f(z) = \frac{1}{(e^z 1)}$.
 - (a) Show that f(z) has a simple pole at z = 0. (7)
 - (b) Let

$$f(z) = \frac{b}{z} + a_0 + a_1 z + a_2 z^2 + \dots$$

be the Laurent expansion of f around 0. Compute the terms b, a_0 and a_1 . (12)

(c) Evaluate $\int_{\gamma} f(z) dz$ where γ is a circle of centre 0 and radius r > 0, traversed once anticlockwise. (6)

[25]

3. Let
$$f(z) = \frac{z^2}{1+z^4}$$
.

(a) Determine the poles of F which lie in the upper-half plane H = {z : Im(z) > 0} and compute the residues of f at these poles.
(9)

(b) Show that
$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}.$$
 (16)

[25]

[25]

- 4. (a) Suppose that f is an analytic function on the open disc $D = \{z : |z| < 1\}$ and that $\operatorname{Re}(f(z)) = 3$ for all $z \in D$. Show that f is constant in D. (5)
 - (b) Let f be analytic inside and on a simple closed curve γ . Suppose that f = 0 on γ . Show that f = 0 inside γ . (5)
 - (c) Compute the Taylor series of $F(z) = \frac{1}{z}$ around $z_0 = 1$ and its radius of convergence. (5)
 - (d) Show that $\int_{\gamma} \frac{5z-2}{z(z-1)} dz = 10\pi i$, where γ is any circle of radius greater than 1 and centre 0. (10)

Page 3 of 3 MAS3006/END OF PAPER

