Complex analysis: my exam questions

These are the questions on complex analysis that I sat in my undergraduate exams, many, many years ago.

• State Cauchy's formula for the *n*th derivative of a holomorphic function. State and prove Morera's theorem.

Suppose f_n is a sequence of holomorphic functions on an open set Ω converging pointwise to a function f, and such that $|f(z)| \leq M$ for all $z \in \Omega$. Show that f is holomorphic on Ω and that $\frac{d^k}{dz^k} f_n$ converges to $\frac{d^k}{dz^k} f_n$ converges to

$$\frac{d}{dz^k}f$$

• Evaluate by contour integration

(i)
$$\int_{0}^{2\pi} \frac{\sin^2 t}{(a+b\cos t)} dt, \quad 0 < b < a.$$

(ii)
$$\int_0^\infty \frac{(\log t)^n}{1+t^4} \, dt, \qquad n = 0, 1, 2.$$

- Let $D = \{z \in \mathbf{C} : |z| < 1\}$ and suppose that f is holomorphic on an open neighbourhood of \overline{D} . Show that each of the following implies that f is constant on \overline{D} .
 - (i) f'(z) = 0 whenever $z \in D$,
 - (ii) |f(z)| is constant for $z \in D$,
 - (iii) $f(z_n)$ is constant where $\{z_n : n \in \mathbb{N}\} \subset D$ is a sequence converging to 0,
 - (iv) $|f(0)| = \sup\{|f(z)| : z \in \overline{D}\},\$
 - (i) $|f(0)| \ge \sup\{|f(z)| : |z| = 1\}.$
- (a) Show that the equation

$$\left|\frac{z-\alpha}{z-\beta}\right| = \lambda$$

where $\lambda \in \mathbf{R}$, $\lambda > 0$ and α , $\beta \in \mathbf{C}$ with $\alpha \neq \beta$ represents a circle or straight line, and that, conversely, any circle or straight line may be so represented.

Define a Möbius transformation, and show that the image in \mathbf{C} of a cicrle or straight line in \mathbf{C} under a Möbius is either a circle, or a circle woth one point removed, or a straight line. (b) Find a conformal mapping of $\{z : |z| < 1\} \cap \{z : |z - \frac{1}{2}| > \frac{1}{2}\}$ onto an annulus.

RJC 5/3/2013