
Complex analysis: Problems

1. Find the real part, the imaginary part, the absolute value, the principal
argument and the complex conjugate of the following complex numbers:

(a) z1 = 12− 5i, (b) z2 =
19− 8i

3 + 4i
, (c) z3 = e2−7πi/6.

2. (a) Sketch all solutions of z6 = 8 in the complex plane and write them
in the form a+ bi.

(b) Find all solutions of 2z2 + (1 + i)/z2 = 0 in polar form and sketch
them in the complex plane.

3. Prove that if z, w ∈ C then

|z + w| ≥ |z| − |w|.

(This is an incredibly useful inequality which I urge you to remember.)

4. (a) Let w be a complex number with w /∈ R. Mark the complex
numbers 0, w, |w| and w + |w| on the complex plane, and prove
that they form the vertices of a rhombus. Deduce, geometrically,
that Arg(w + |w|) = 1

2
Arg(w) and that there is a positive real

number t such that z = t(w + |w|) is a solution of z2 = w.

(b) Solve the following equations

(a) z2 = 5− 12i, (b) z2 = 4− 3i, (c) z2 = 3 + 3i

in the form z = ±(x+ yi).

(c) Solve the quadratic equation z2 + 7iz − 13− i = 0.

(d) Find all complex solutions of

z3 − (4 + 9i)z − 3 + 11i = 0

given that z = 1 + i is one solution.

5. A root of unity is a complex number z satisfying zn = 1 for some
positive integer n. Prove that if z and w are roots of unity then so are
z−1 and zw.

6. Prove that there is no function f : C→ C satisfying both the following
properties
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(i) f(z)2 = z for all z ∈ C,

(ii) f(zw) = f(z)f(w) for all z, w ∈ C.

However prove that there is more than one function which satisfies (i),
and there is more than one function which satisfies (ii).

7. Prove that for nonzero complex numbers z and w,

Arg(zw)− Arg(z)− Arg(w) ∈ {−2π, 0, 2π}

and that each of these three values can occur.

8. (Cocycle relation for arguments.) For nonzero complex numbers z and
w define

c(z, w) = Arg(zw)− Arg(z)− Arg(w).

Prove that for nonzero comples z, w and u that

c(z, w) + c(zw, u) = c(z, wu) + c(w, u)

holds.

9. Prove that for real x and y,

| cos(x+ iy)|2 = cos2 x+ sinh2 y

and find a similar formula for | sin(x+ iy)|2.

10. Prove that the set {
z ∈ C :

∣∣∣∣ z + i

z − 1

∣∣∣∣ = 2
}

is a circle, and find its centre and radius.

11. Which of the following subsets of C are open, which are closed? Justify
your answers.

(a) {z ∈ C : 0 < Re(z) < 1, −0 ≤ Im(z) ≤ 1},
(b) {z ∈ C : 1 < |z| ≤ 2},
(c) {yi : y ∈ R}.

12. Let U and V be open subsets of C. Prove that U∪V and U∩V are also
open subsets of C. Also prove that if (Un) is a sequence of open subsets
of C then

⋃∞
n=1 Un is open. If all the Un are open is it necessarily the

case that
⋂∞
n=1 Un is open?
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13. For each of the following subsets of C decide whether it is open, and if
so whether it is a domain. Justify your answers.

(a) D(−1, 1) ∪D(1, 1),

(b) D(−1, 1) ∪D(1, 1),

(c) D(−1, 1) ∪D(1, 1) ∪ {0},
(d) D(−1, 1) ∪D(1, 1) ∪D(0, 1/100).

(NB here D(a, r) denotes the open disc (and D(a, r) the closed disc)
with centre a and radius r.)

14. Let A be a closed subset of C, and let (an) be a sequence of points of
A converging to a complex number a. Prove that a ∈ A. (Hint: show
that a cannot be an exterior point of A).

15. Let U be an open subset of C, and let a ∈ U . Let V be the set of all
w ∈ U that can be joined to a by a sequence of line segments contained
within U . Prove that V is also an open subset of C.

16. Let (xn) and (yn) be real sequences, and x and y be real numbers. Let
zn = xn + iyn and z = x + iy. Prove that |zn − z| → 0 if and only if
both xn → x and yn → y.

17. For each of the following sequences z1, z2, z3, . . ., find its limit or prove
that it does not converge.

(a) zn =
n2 − in+ 3

(1− i)n2 − (1 + 3i)n+ 3 + 2i
,

(b) zn = i3n + (cosn)/n,

(c) zn = (2−2i
3

)n.

18. (a) Determine

lim
z→i

z2 + 3iz + 4

z2 + 1
.

(b) Prove that the function f(z) = |z| is continuous at every point
z ∈ C.

(c) Prove that the function f : C \ {0} → C, f(z) = z/|z| is contin-
uous. Describe the function (which values does it take? Which z
give the same value for f(z)?). Does the limit lim

z→0
f(z) exist?
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19. (Continuity via open sets.) Let U be an open subset of C and let
f : U → C be a function. Prove that f is continuous if and only if for
every open subset V of C, the set f−1(V ), which is defined by

f−1(V ) = {z ∈ U : f(z) ∈ V }

is an open subset of C.

20. Let

f(z) =

{
z5/|z|4 if z 6= 0,

0 if z = 0.

Prove that the Cauchy-Riemann equations for f hold at the point z = 0,
but that f is not differentiable at z = 0.

21. Let f(z) = f(x+ iy) = xy.

(a) Check where the Cauchy-Riemann equations hold for f .

(b) Is f differentiable at any point z 6= 0?

(c) Show that f is differentiable at 0 and find f ′(0).

22. Let f be a holomorphic function on C such that Re f(z) = Im f(z) for
all z. Show that f is constant.

23. As ever, write f(x+ iy) = u(x, y) + iv(x, y) and suppose u and v have
continuous second partial derivatives in a domain D. If f is holomor-
phic on D, show that u satisfies Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

A function satisfying Laplace’s equation is called harmonic. Show that
v is also harmonic.

24. In each case find a holomorphic function f on the domain D with
Re(f(x+ iy)) = u(x, y):

(a) D = C, u(x, y) = x4 + y4 + xy3 − x3y − 6x2y2;

(b) D = C, u(x, y) = sin x cosh y;

(c) D = C \ {0}, u(x, y) = (x+ y)/(x2 + y2).
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25. Determine where the following functions are holomorphic and calculate
their derivatives:

(a) f(z) =
z2 + 2iz − 3 + 2i

z − i
; (b) f(z) = sin(e1/z);

(c) f(z) = ez+
1
z ; (d) f(z) =

z

ez + 1
.

26. Define

f(z) = exp
(

1

2
Log(z)

)
where Log(z) denotes the principal logarithm. Prove that f(z)2 = z
for all z ∈ C but that f is not continuous at −1. However, show that
on the “slit plane”

U = C \ {x ∈ R : x ≤ 0}

f is holomorphic. (You may assume that U is a domain, and that Log
is holomorphic on U .)

(This illustrates that a “principal square root” function is holomorphic
on U but can’t be extended holomorphically to the whole complex
plane. The same is true for “power” functions z 7→ za when a is not
an integer.)

27. Sketch the following paths in C:

(a) γ(t) = t2 + it, t ∈ [−1, 1];

(b) γ(t) = t2 + it2, t ∈ [0, 1];

(c) γ(t) = 2 cos(t) + 3i sin(t), t ∈ [0, 2π].

28. Consider the path
γa(t) = e(−1/5+i)t

for t ∈ [0, a]. Sketch it for a = 4π. What kind of curve is this? What
is its length. What is the the limit of its length as a tends to ∞?

29. (Reparameterization) Let γ : [a, b] → C be a smooth path, and f a
holomorphic function defined on γ. Let φ : [c, d]→ [a, b] be a function
with a continuous derivative satisfying φ(c) = a and φ(d) = b. Define
δ = γ ◦ φ : [c, d] → C. Then δ is a path in C with the same image as
γ. Prove that ∫

δ
f(z) dz =

∫
γ
f(z) dz.
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30. (Integration by parts) Let C be a closed contour, and let f and g be
holomorphic functions defined on C. Prove that∫

C
f(z)g′(z) dz = −

∫
C
f ′(z)g(z) dz.

What if C is a contour that isn’t closed?

31. Evaluate
∫
γ

Re(z) dz for the following contours γ from 0 to 1 + i:

(a) the straight line from 0 to 1 + i;

(b) the straight line from 0 to 1 followed by the straight line from 1
to 1 + i.

32. Evaluate the integral
∫
γ
f(z) dz where:

(a) f(z) = z and γ is the unit circle taken anticlockwise;

(b) f(z) = Log z and γ is the semicircular arc γ(t) = 3eit, t ∈ [−π
2
, π
2
];

(c) f(z) = sin z and γ is the line segment from 3− 2i to 3 + 2i;

(d) f(z) = (1 + z)2/z and γ is the unit circle taken anticlockwise;

(e) f(z) = (1 + z)2/z and γ is the circle with centre 2 and radius 1,
traversed anticlockwise.

33. Let γ : [a, b]→ C \ {0} be a path. Define

G(u) =
∫ u

a

γ′(t)

γ(t)
dt.

Prove that γ(u) exp(−G(u)) is independent of u, and deduce that

exp

(∫
γ

dz

z

)
=
γ(b)

γ(a)
.

Conclude that if γ is a closed contour in C \ {0} then

1

2πi

∫
γ

dz

z

is an integer.

34. Calculate
∫
γ

dz

z
for the following paths from 3 + 4i to 3− 4i:
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(a) the major arc of the circle with centre 0 and radius 5 going anti-
clockwise from 3 + 4i to 3− 4i;

(b) the straight line from 3 + 4i to 3− 4i.

35. Let C be the circle with centre 0 and radius R. Show that if R > 1
then ∣∣∣∣∫

C

ez

z3 + z
dz
∣∣∣∣ ≤ 2πeR

R2 − 1
.

36. Let C be the circle with centre 0 and radius R. Prove that∣∣∣∣∫
C

z

z4 + 4z2 + 3
dz

∣∣∣∣ ≤ 2πR2

(R2 − 1)(R2 − 3)

provided that R is sufficently large.

37. Which of the following domains are star domains? Justify your answers,
giving a star centre for each domain that is a star domain.

(a) {z ∈ C : |z| > 1};
(b) {x+ iy : x, y ∈ R, either y 6= 0 or |x| < 1};
(c) {z ∈ C : Re(z) > 0} ∪ {z ∈ C : |z| < 1}.

38. Is there a star domain with only one star centre?

39. Evaluate ∫
C

sin πz

(z + 1)6
dz

where C is the circle with centre 0 and radius 2, traversed once anti-
clockwise.

40. Evaluate ∫
C

z2 + z + 1

z2(z − 1)
dz

where C is the circle with centre 0 and radius 2, traversed once anti-
clockwise. (Hint: use partial fractions.)

41. (The Poisson integral formula) Let f be holomorphic on a domain con-
taining the set D(0, 1) and let γ be the unit circle. Let w ∈ D(0, 1).
Prove that

f(w) =
1− |w|2

2πi

∫
γ

f(z)

(z − w)(1− wz)
dz
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and deduce that

f(reiθ) =
1− r2

2π

∫ 2π

0

f(eit)

1− 2r cos(θ − t) + r2
dt

whenever 0 ≤ r < 1 and θ ∈ R.

42. (Liouville’s theorem and Cauchy’s estimates)

(a) Let f be an entire function with |f(z)| > 2013 for all z ∈ C. Prove
that f is constant.

(b) Let f be an entire function. Suppose that there exist constants
A, B ≥ 0 such that

|f(z)| ≤ A+B|z|
1
3

for all z ∈ C. Prove that f must be constant. Deduce that there
is no entire function f such that f(z)3 = z for all z.

(c) Let f be an entire function. Suppose that s

|f(z)| ≤ |z|
7
2

for all z with |z| ≥ 1. Prove that f is a polynomial of degree at
most 3. Also prove that f(z) = α0 +α1z+α2z

2 +α3z
3 where each

|αj| ≤ 1.

43. (a) Let P (X) =
m∑
k=0

akX
k be a polynomial with real coefficients.

Prove that if z0 ∈ C satisfies P (z0) = 0 then P (z0) = 0.

(b) Deduce that every nonzero real polynomial P (X) is a product of
real polynomials each of degree at most 2.

44. Determine the radius of convergence of the following power series:

(a)
∞∑
n=0

n!zn; (b)
∞∑
n=1

sin(n)

nn
zn; (c)

∞∑
n=0

(2n)!3

(3n)!2
zn; (d)

∞∑
n=0

z2n

(2 + i)n
.

45. What is the largest open disc on which the series

∞∑
n=1

(z − 2)n

3nn

converges? Let f(z) be the holomorphic function given by this power
series on that disc. Determine f ′(0) and f ′(1).
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46. Find the Taylor series around z = 0 of the following functions. Also
find the radius of convergence of each.

(a) f(z) = sin((1− i)z); (b) f(z) =
1

1 + 3iz
;

(c) f(z) =
z3

(1− z)2
.

47. For any complex number α, define

fα(z) = exp(αLog(z)).

Prove that fα is holomorphic on the slit plane U = C\{x ∈ R : x ≤ 0}
and that f ′α(z) = αfα−1(z). Also find the coefficients cn in the Taylor
series:

fα(z + 1) =
∞∑
n=0

cnz
n.

48. Find the first few terms (up to the z3 term) in the Laurent series of

f(z) =
sin z

1− cos z

valid in some annulus {z ∈ C : 0 < |z| < r}. What is the residue of f
at 0?

49. Prove that there is no non-constant function f holomorphic on U =
C \ {0} with the property that f(z) = f(2z) for all z ∈ U . However
show that there is a nonzero holomorphic function g on U satisfying
g(2z) =

√
2 zg(z). (Hint: consider Laurent series.)

50. Find the Laurent expansions of the function f in the stated annular
domains:

(a) f(z) = (z − 2)−2(z + 1)−1 for 0 < |z| < 1;

(b) f(z) = (z − 2)−2(z + 1)−1 for 1 < |z| < 2;

(c) f(z) = (z − 2)−2(z + 1)−1 for |z| > 2;

(d) f(z) = sin(2/z) for |z| > 0;

(e) f(z) = e−z/(1− z) for 0 < |z| < 1.
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51. Determine the nature of the singularity (removable, pole, or essential)
at 0 of the following functions. In case of a pole determine its order.

(a) f(z) =
ez − 1

tan z
; (b) f(z) = sin(1/z);

(c)
z2

cosh(z3)− 1
; (d) f(z) =

1− cosh z

z − sinh z
.

52. Let f be a holomorphic function with an isolated singularity at a ∈ C.
Suppose also that

lim
z→a

(z − a)f(z) = 0.

Without using Laurent’s theorem, prove that g defined by

g(z) =

{
(z − a)2f(z) if z 6= a

0 if z = a

is holomorphic at a. Applying Taylor’s theorem to g at a, prove that
f has a removable singularity at a.

53. Let f be holomorphic in C \ {0}. Assume that
∫
C
f(z) dz = 0 where C

is the unit circle. Decide whether the following statements are true or
false. For each one give a proof or a counterexample.

(a) f has a removable singularity at 0;

(b) f cannot have a simple pole at 0;

(c) f has a multiple pole at 0;

(d) f cannot have an essential singularity at 0.

54. Prove Jordan’s inequality:

sin t >
2t

π

for 0 < t < π
2
.

55. Evaluate the following integrals using the calculus of residues:

(a)
∫ 2π

0
cos8 t dt (b)

∫ π

0

cos2 t

5 + 3 cos t
dt,

(c)
∫ ∞
−∞

dx

x2 + 6x+ 13
, (d)

∫ ∞
0

dx

(x2 + 4)(x2 + 9)
,
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(e)
∫ ∞
0

x2 dx

(x2 + 1)3
, (f)

∫ ∞
−∞

sinx

x(x2 + 1)
dx,

(h)
∫ ∞
−∞

x sinx

x2 + 1
dx, (g)

∫ ∞
0

1− cosx

x2
dx,

(i)
∫ ∞
0

dx

x2013 + 1
, (j)

∫ ∞
0

x68 dx

x99 + 1
.

56. In the lectures, I evaluate
∫ ∞
0

sinx dx/x by integrating eiz/z over an

indented semicircular contour in the upper half plane. What would
have gone wrong if instead I’d tried to prove it by integrating e−iz/z
over the same contour?

57. In the lectures, I evaluate
∫ ∞
0

sinx dx/x by integrating eiz/z over a

large semicircle indented to avoid the pole at zero. This necessitated
using Jordan’s inequality to estimate the integral over the large semi-
circular arc. Show that one can avoid Jordan’s lemma by using a dif-
ferent contour: take the contour to be the rectangle with vertices ±R
and ±R + iR but again indented to avoid zero.

58. Evaluate
∑∞
n=1 1/n4 by the same method used for

∑∞
n=1 1/n2 in the

lectures. Why cannot the same method be used to evaluate
∑∞
n=1 1/n3?

59. By integrating

f(z) =
1

z3 cos(πz)

over a square SN (where N ∈ N) with vertices at N(1 + i), N(−1 + i),
N(−1− i) and N(1− i) prove that

∞∑
n=0

(−1)n

(2n+ 1)3
=

1

13
− 1

33
+

1

53
− 1

73
+ · · · = π3

32
.

60. Calculate ∫ ∞
0

x3e−x cosx dx and
∫ ∞
0

x3e−x sinx dx

by integrating f(z) = z3e−z along the boundary of the sector |z| ≤ R,
0 ≤ arg(z) ≤ π

4
.

61. (Maximum Modulus Theorem, weak version) Let f be holomorphic in
a domain U . Let a ∈ U . Show that there cannot exist ε > 0 such that
D(a, ε) ⊆ U and such that |f(z)| < |f(a)| whenever 0 < |z − a| < ε.
In other words, |f | cannot have a strict local maximum.
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62. (Rouché’s theorem: here we count all zeros according to multiplicity.)

(a) How many zeroes has the polynomial

p(z) = z5 + 3iz4 + 3iz2 + 3

in the disc D(0, 2)?

(b) How many zeroes has the polynomial

q(z) = z5 − 5z4 + z2 − 9z + 1

in the annulus 1 < |z| < 2.

(c) How many zeroes has

f(z) = ez − 3z2013

in the disc D(0, 1).
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