Coding Theory: Problem sheet 1

This problem sheet is not for assessment: solutions will be posted on the web in due course

- 1. The binary repetition code of length n consists of the words $000 \cdots 00$ and $111 \cdots 11$. Let the probability of receiving each bit incorrectly be p, and suppose that these events are independent. What is the probability that "majority vote" decodes a block incorrectly when n = 5 and when n = 7? Evaluate these probabilities numerically (to three significant figures) in both cases for $p = 0 \cdot 1$, $p = 0 \cdot 05$ and $p = 0 \cdot 01$.
- 2. Let $\Omega = \{0, 1\}$. Let $\mathbf{a} \in \Omega^n$. We define the *weight* of \mathbf{a} to be the number of ones in \mathbf{a} , and denote it as $w(\mathbf{a})$. [For example, w(01100111) = 5.] Prove that $w(\mathbf{a}) = d(000 \cdots 00, \mathbf{a})$.

For $\mathbf{a}, \mathbf{b} \in \Omega^n$ define $\mathbf{a} \bullet \mathbf{b}$ as the word whose *i*-th letter is $a_i b_i$. [This means that $\mathbf{a} \bullet \mathbf{b}$ has a 1 where both \mathbf{a} and \mathbf{b} have 1s and a 0 otherwise; for example, $01100111 \bullet 10101010 = 00100010$.] Prove that $d(\mathbf{a}, \mathbf{b}) = w(\mathbf{a}) + w(\mathbf{b}) - 2w(\mathbf{a} \bullet \mathbf{b})$.

3. Let Ω be an alphabet of size q. Prove that if C is a (3, M, 2)-code over Ω , then $M \leq q^2$. Find a (3, 4, 2)-code with $\Omega = \{0, 1\}$ and a (3, 9, 2)-code with $\Omega = \{0, 1, 2\}$. (This is a special case of the *Singleton bound*.)

[Hint: consider the first two letters in each of the codewords.]

4. Recall that the binary parity check code P_n is the set of all words of length n over $\{0,1\}$ containing an even number of 1s. Prove that $d(\mathbf{a},\mathbf{b})$ is even for all $\mathbf{a},\mathbf{b} \in P_n$.

Let C be a code of length m over $\{0,1\}$. We construct a new code C^+ of length m+1 as follows. For each $\mathbf{a}=a_1a_2\cdots a_m\in C$ define $\mathbf{a}^+=a_1a_2\cdots a_ma_{m+1}$ where a_{m+1} is chosen to ensure that \mathbf{a}^+ contains an even number of 1s. [For example if $\mathbf{a}=1101$ then $\mathbf{a}^+=11011$]. Let C^+ be the set of the \mathbf{a}^+ for $\mathbf{a}\in C$. It's clear that the codes C and C^+ have the same size. Compute C^+ for the code $C=\{00000,00111,11100,11011\}$. Prove that if $\mathbf{a},\mathbf{b}\in C$

$$d(\mathbf{a}^+, \mathbf{b}^+) = \begin{cases} d(\mathbf{a}, \mathbf{b}) & \text{if } d(\mathbf{a}, \mathbf{b}) \text{ is even,} \\ d(\mathbf{a}, \mathbf{b}) + 1 & \text{if } d(\mathbf{a}, \mathbf{b}) \text{ is odd.} \end{cases}$$

Deduce that if d(C) is odd, then $d(C^+) = d(C) + 1$.

(We say that C^+ is obtained from C by adding an overall parity check.)

- 5. Let C be a code with minimum distance d(C), and suppose that $d(C) \ge r + 1$. Prove that C detects r errors.
- 6. Recall that a *perfect* code is one giving equality in the sphere-packing bound. Prove that there is no perfect 2-error correcting code of length n over $\{0,1\}$ with $6 \le n \le 10$. (Hint: how many words would such a code have?)
 - Prove that there is no perfect 2-error correcting code of length n over $\{0,1,2\}$ with $5 \le n \le 10$. (As a challenge, think about the case n=11).
- 7. In each case, construct, if possible, an (n, M, d)-code over $\Omega = \{0, 1\}$ with the following parameter sets (n, M, d): (7, 2, 7), (5, 3, 4), (6, 4, 4), (4, 7, 2), (8, 29, 3). If, in any case, there is no such code, explain why not.
- 8. Find a (4, 9, 3)-code over $\Omega = \{0, 1, 2\}$.
- 9. (Challenge problem) Prove that there is a $(3, q^2, 2)$ -code over any finite alphabet Ω of size q.

RJC 2/10/2007