Coding Theory: Problem sheet 3

Solutions must be submitted by 12pm on Thursday 15 November 2007

1. Find the cosets and coset leaders of the linear code over Z_{2} with the following generator matrix:

$$
A=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Using coset decoding decode 01001 and 11110.
2. Find the cosets and coset leaders of the linear code over Z_{3} with the following generator matrix:

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

Using coset decoding decode 1212 and 2101.
3. Let C be a linear code of length n over Z_{p}. We say that that C is selforthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$ for all $\mathbf{a}, \mathbf{b} \in C$. (This is equivalent to $C \subseteq C^{\perp}$.) Let A be a generator matrix for C. Prove that C is self-orthogonal if and only if $A A^{t}=0$. (Here A^{t} denotes the transpose of the matrix A.)
If $p=2$ or $p=3$ and C is self-orthogonal, prove that each word of C has weight divisible by p.
On the other hand prove that there is a self-orthogonal linear code of length 2 over Z_{5} having a word whose weight is not divisible by 5 . [18]
4. The MAPLE syntax for producing the reduced echelon form of a matrix A computed modulo a prime p is
> Gaussjord(A) mod p ;
if one is using the old linalg package or
> ReducedRowEchelonForm(A) mod p;
if one is using the new LinearAlgebra package (such is progress).

Using MAPLE, find a generator matrix in standard form, for a code equivalent to the code over Z_{3} with generator matrix

$$
A=\left(\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \tag{12}\\
1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

5. Find the minimum weight of the linear code over Z_{2} with the following parity-check matrix:

$$
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \tag{10}\\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

6. Find the minimum weight of the linear code over Z_{3} with the following parity-check matrix:

$$
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \tag{10}\\
0 & 1 & 0 & 2 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

7. Consider the linear code over Z_{2} with parity-check matrix

$$
H=\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Assuming that no more than one error has occurred in each word, correct, where possible, the following received words: (i) 10101010, (ii) 11010100, (iii) 11001011.
8. Find coset leaders and their syndromes for the code in the previous question. Please do not calculate all cosets but go through in turn all words of weights 0,1 and 2 , calculating their syndromes, until you have all vectors of length 4 as syndromes.
9. (Challenge problem) Let C be a self-orthogonal linear code over Z_{2} with generator matrix A. Prove that if all rows of A have weights divisible by 4 then all words in C have weights divisible by 4 .

RJC 23/10/2007

