Coding Theory: Problem sheet 4

Solutions must be submitted by 12pm on Thursday 29 November 2007

- 1. Write down parity check matrices for the Hamming code $\operatorname{Ham}(2,4)$ and the extended Hamming code $\operatorname{Ham}(2,4)^+$ over Z_2 . [4]
- 2. Let C be the Hamming code over Z_5 with parity-check matrix

$$\left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 3 & 4 \end{array}\right).$$

Decode the following words with respect to C: (i) 231022, (ii) 040404, (iii) 134233.

3. Find the minimum distance of the linear code C over \mathbb{Z}_2 with generator matrix

[Hint: find a parity check matrix for the code.]

Prove that $C \neq C^{\perp}$ but that C is equivalent to C^{\perp} . [10]

- 4. Recall that a linear code C is self-dual if $C = C^{\perp}$. Prove that the extended Hamming code $\operatorname{Ham}(2,3)^{+}$ is self-dual. [6]
- 5. Let

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 & 1 & 2 \\ 1 & 2 & 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 & 2 & 1 \\ 1 & 1 & 1 & 2 & 0 & 2 \\ 1 & 2 & 1 & 1 & 2 & 0 \end{pmatrix}.$$

be a matrix with entries in \mathbb{Z}_3 . Check that $A = A^t$ and that $A^2 = -I_6$. Prove that

is the generator matrix of a self-dual code C over Z_3 . Also prove that the weight of each word of C is a multiple of 3. [12]

- 6. Determine whether the Hamming code Ham(3,2) over Z_3 is equivalent to a cyclic code. [Hint: what are the cyclic codes of that length?] [8]
- 7. Let C be the cyclic code of length 15 over Z_2 with generator polynomial x^4+x^3+1 . Prove that C is equivalent to the Hamming code Ham(2,4). [Hint: find a parity-check matrix of C.]
- 8. Factorize $x^8 1$ into irreducible factors over Z_3 . Hence describe all cyclic codes of length 8 and dimension 4 over Z_3 , in each case listing the generator polynomial. [10]
- 9. Factorize $x^6 1$ into irreducible factors over Z_5 . Hence describe all cyclic codes of length 6 over Z_5 , in each case listing the dimension and generator polynomial. [10]
- 10. The MAPLE syntax for factorizing a polynomial f into irreducible factors modulo a prime p is

> Factor(f) mod p;

(note the capital F). Using MAPLE describe all cyclic codes of length n over Z_p of length n (in each case listing the dimension and generator polynomial) for the following values of n and p: (i) (n,p)=(11,2), (ii) (n,p)=(17,2), (iii) (n,p)=(23,2), (iv) (n,p)=(11,3), (v) (n,p)=(16,3). (For (v) just determine the number of cyclic codes of each possible dimension; omit their generator polynomials — there are a lot of them!)

- 11. Let $f(x) = 1 + x + x^2 + \cdots + x^{n-1}$ and let $g(x) \in Z_p[x]$. Prove that g(x)f(x) = g(1)f(x) when both sides are regarded as elements of the truncated polynomial ring $Z_p[x]_n$. Hence prove that if C is a cyclic code then either C or C^{\perp} contains the all-one word. [12]
- 12. (Challenge problem) Consider the code in question 5. Prove that C has minimum weight 6. Prove that the code C^- obtained from C by deleting the first entry of each word is a perfect 2-error correcting code of length 11 over Z_3 .