Equivalence of codes

Let C be a code of length n over an alphabet Ω. There are two simple types of operation we may do to Ω^{n} which preserve Hamming distances. Such operations take the code C to codes with the same number of words and same minimum distances: these are called equivalent codes.

Type I

We permute the letters in each word in Ω^{n} in the same way.

For example, let $\Omega=\{0,1,2\}$ and $n=5$, and consider the following operation: swap the first and third letters and the second and fifth letters. If we call this operation Φ, then $\Phi(01221)=21021$ and $\Phi(10012)=02110$. In general $d(\Phi(\mathbf{a}), \Phi(\mathbf{b}))=$ $d(\mathbf{a}, \mathbf{b})$. If $C \subseteq \Omega^{n}$, then applying Φ to each word in C yields a code over Ω with the same length, the same number of words and the same minimum distance.

For example,

$$
C: \begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 & 2 \\
1 & 0 & 1 & 2 & 1 \\
1 & 1 & 2 & 0 & 2 \\
1 & 2 & 0 & 1 & 0
\end{array} \longrightarrow \Phi(C): \begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
2 & 2 & 0 & 2 & 2 \\
1 & 1 & 1 & 2 & 0 \\
2 & 2 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 2
\end{array}
$$

Type II

We pick a position in the code, and a permutation of the letters in Ω. Given a word a $\in \Omega^{n}$ we apply that permutation to the letter in the given place.

For example, let $\Omega=\{0,1,2\}$ and $n=5$, and apply the permutation

$$
0 \mapsto 2, \quad 1 \mapsto 0, \quad 2 \mapsto 1 .
$$

to the fourth letter in the word. If we call this operation Ψ, then $\Psi(01221)=01211$ and $\Psi(10012)=$ 10002. In general $d(\Psi(\mathbf{a}), \Psi(\mathbf{b}))=d(\mathbf{a}, \mathbf{b})$. If $C \subseteq \Omega^{n}$, then applying Ψ to each word in C yields a code over Ω with the same length, the same number of words and the same minimum distance.

For example,

$C:$| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 |
| 0 | 2 | 2 | 2 | 2 |
| 1 | 0 | 1 | 2 | 1 |
| 1 | 1 | 2 | 0 | 2 |
| 1 | 2 | 0 | 1 | 0 |$\quad \Psi(C):$| 0 | 0 | 0 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 2 | 2 | 1 | 2 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 2 | 2 | 2 |
| 1 | 2 | 0 | 0 | 0 |

If we can convert codes C_{1} to C_{2} by a sequence of operations of types I and II we say that C_{1} and C_{2} are equivalent.

Suppose that $C \subseteq \Omega^{n}$ is a code, and $0 \in \Omega$. Then C is equivalent to a code C^{\prime} having $00 \cdots 0$ as a word. We achieve this by a sequence of operations of type II. Fix a word a. Pick out the first nonzero entry a in a, if it has one, and swap 0 and a in that position. Repeat, until the word becomes all-zero. For example, with $\Omega=\{0,1,2,3\}:$

	3	1	0	3	1	0	0	1	0	0		0
2	1	0	2	1	0	2	1	0	2	1		
0	2	3	1	2	3	1	2	3	1	2		3
3	0	2	3	0	2	3	3	2	3	3		2
1	2	2	0	2	2	0	2	2	0			2
3	1	1	3	1	1	3	1	1				

