Equivalence of codes

Let *C* be a code of length *n* over an alphabet Ω . There are two simple types of operation we may do to Ω^n which preserve Hamming distances. Such operations take the code *C* to codes with the same number of words and same minimum distances: these are called *equivalent* codes.

Type I

We permute the letters in each word in Ω^n in the same way.

For example, let $\Omega = \{0, 1, 2\}$ and n = 5, and consider the following operation: swap the first and third letters and the second and fifth letters. If we call this operation Φ , then $\Phi(01221) = 21021$ and $\Phi(10012) = 02110$. In general $d(\Phi(a), \Phi(b)) =$ d(a, b). If $C \subseteq \Omega^n$, then applying Φ to each word in *C* yields a code over Ω with the same length, the same number of words and the same minimum distance.

For example,

	0	0	0	0	0	$\longrightarrow \Phi(C)$:	0	0	0	0	0
	0	1	1	1	1		1	1	0	1	1
	0	2	2	2	2		2	2	0	2	2
	1	0	1	2	1		1	1	1	2	0
	1	1	2	0	2		2	2	1	0	1
	1	2	0	1	0		0	0	1	1	2

Type II

We pick a position in the code, and a permutation of the letters in Ω . Given a word $\mathbf{a} \in \Omega^n$ we apply that permutation to the letter in the given place.

For example, let $\Omega = \{0, 1, 2\}$ and n = 5, and apply the permutation

 $0\mapsto 2,\quad 1\mapsto 0,\qquad 2\mapsto 1.$

to the fourth letter in the word. If we call this operation Ψ , then $\Psi(01221) = 01211$ and $\Psi(10012) = 10002$. In general $d(\Psi(a), \Psi(b)) = d(a, b)$. If $C \subseteq \Omega^n$, then applying Ψ to each word in *C* yields a code over Ω with the same length, the same number of words and the same minimum distance.

For example,

If we can convert codes C_1 to C_2 by a sequence of operations of types I and II we say that C_1 and C_2 are *equivalent*.

Suppose that $C \subseteq \Omega^n$ is a code, and $0 \in \Omega$. Then *C* is equivalent to a code *C'* having $00 \cdots 0$ as a word. We achieve this by a sequence of operations of type II. Fix a word a. Pick out the first nonzero entry *a* in a, if it has one, and swap 0 and *a* in that position. Repeat, until the word becomes all-zero. For example, with $\Omega = \{0, 1, 2, 3\}$: