MAS3004

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE & MATHEMATICS

DEPARTMENT OF MATHEMATICAL SCIENCES

CODING THEORY

June 2002 9:30 a.m. -12:30 p.m.

Duration: 2 hours

Examiner: Robin Chapman

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline.

Calculators labelled as approved by the Department of Mathematical Sciences may be used.

SECTION A

1. (a) Let \mathbf{a} , \mathbf{b} , $\mathbf{c} \in (Z_p)^n$. Define the Hamming distance $d(\mathbf{a}, \mathbf{b})$ and the weight $w(\mathbf{c})$. Show that $d(\mathbf{a}, \mathbf{b}) = w(\mathbf{a} - \mathbf{b})$.

Let C be a code over the alphabet Z_p . Define the *minimum distance* and the *minimum weight* of C, and show that they are equal.

(10)

(8)

- (b) Let \mathbf{a} , $\mathbf{b} \in (Z_p)^n$. Define the dot product $\mathbf{a} \cdot \mathbf{b}$ of \mathbf{a} and \mathbf{b} . For p=2 and for p=3, show that $\mathbf{a} \cdot \mathbf{a} = 0$ if and only if $w(\mathbf{a})$ is a multiple of p. Show however, that the corresponding statement for p=5 is false.
- (c) Recall that each word in the ISBN code has the form $a_1 a_2 \cdots a_{10}$ where the digits a_j satisfy

$$\sum_{j=1}^{10} j a_j \equiv 0 \pmod{11}.$$

Complete the following ISBNs (which are of real books):

- (i) 074755099?; (ii) 009943511?; (iii) 184?154652. (9)
- (d) Let C be a linear code over Z_p with parity-check matrix H. What is the *syndrome* of a word $\mathbf{a} \in (Z_p)^n$? Show that two words \mathbf{a} and \mathbf{b} have the same syndrome if and only if they lie in the same coset of C in $(Z_p)^n$.

Consider the binary linear code with parity-check matrix

On the assumption that no more than one error has occurred in each word, correct, where possible, the following received words:

- (i) 01101110;
- (ii) 10011010;
- (iii) 10011001.

(13)

[40]

SECTION B

- 2. Let Ω denote an alphabet with q letters.
 - (a) Let C be a (n, M, d) code over Ω . Prove the Singleton bound:

$$M \le q^{n-d+1}.$$

(3)

(b) Let C be a (n, M, 2e + 1) code over Ω . Prove the *sphere packing bound*:

$$q^n \ge M \sum_{j=0}^e \binom{n}{j} (q-1)^j.$$

(7)

- (c) Determine whether (n,M,d)-codes exist over $\Omega=\{0,1\}$ for the following values of (n,M,d). In each case either give a code or prove that no such code exists.
 - (i) (n, M, d) = (8, 16, 4);
 - (ii) (n, M, d) = (10, 32, 5);
 - (iii) (n, M, d) = (16, 16, 8).

[If a code you give is linear, you may give its generating matrix or parity-check matrix instead of listing its words.]

(10)

[20]

3. (a) Give the definition of the *Hamming codes* over Z_p . Describe how to decode a Hamming code, on the assumption that no more that one error can occur in each word.

Let C_1 be the Hamming code over Z_5 with parity-check matrix

$$\left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 3 & 4 \end{array}\right).$$

Decode the following words

(i) 102030;

(ii) 334121. (10)

(b) Consider the linear code C_2 over Z_{11} with parity-check matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1^2 & 2^2 & 3^2 & 4^2 & 5^2 & 6^2 & 7^2 \\ 1^3 & 2^3 & 3^3 & 4^3 & 5^3 & 6^3 & 7^3 \end{pmatrix}.$$

Decode the following words, if possible, on the assumption that no more than two errors occur in each word. [Here X denotes the "digit" 10. For convenience the syndrome, with respect to the matrix H, is also given.]

- (i) 37202XX with syndrome $(1932)^t$;
- (ii) 5729643 with syndrome $(3491)^t$. (10)

[20]

(10)

(4)

- 4. (a) What is a cyclic code over Z_p ? Describe the correspondence between $(Z_p)^n$ and the truncated polynomial ring $Z_p[x]_n$ and show that this correspondence takes cyclic codes to ideals of $Z_p[x]_n$. What is the generator polynomial of a cyclic code, and show that the generator polynomial of a cyclic code of length n is a factor of $x^n 1$ in $F_p[x]$.
 - (b) Let $f(x) = 1 + x + x^2 + \cdots + x^{n-1}$ and let $g(x) \in Z_p[x]$. Regarded as elements of $Z_p[x]_n$, show that g(x)f(x) = g(1)f(x). Deduce that if C is a binary cyclic code having a word of odd weight then C contains the all-one word $111\cdots 1$.
 - (c) Factorize x^8-1 into irreducible factors over Z_3 . Hence determine, by listing the generator polynomial of each, all cyclic [8,5] codes over Z_3 .

(6) [**20**]

- 5. (a) Let C be a linear code of length n over Z_2 . Define the weight enumerator $W_C(z)$ of C. Show that $W_C(z) = z^n W_C(1/z)$ if and only if C contains the all-one word $111\cdots 1$. (4)
 - (b) The MacWilliams identity states that

$$W_C(z) = \frac{(1+z)^n}{2^{n-k}} W_{C^{\perp}} \left(\frac{1-z}{1+z}\right)$$

where C is a binary linear [n, k]-code and C^{\perp} is its dual. Use the MacWilliams identity to calculate the number of words of weight 2 in the binary linear code with generator matrix

$$G = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right).$$

(6)

(c) A binary self-dual code C of length n is a binary linear [n, n/2]-code satisfying $C = C^{\perp}$. Show that if C is a binary self-dual code then all its words have even weight and that C contains the all-one word $111\cdots 1$.

Now suppose that C is a binary self-dual [12,6,4]-code. Using the MacWilliams identity find $W_C(z)$. [You may find the formula $(1+z)^{12-k}(1-z)^k = 1 + (12-2k)z + (2k^2-24k+66)z^2 + \cdots$ useful.]

(10) [**20**]