MAS3004

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE & MATHEMATICS

DEPARTMENT OF MATHEMATICAL SCIENCES

CODING THEORY

June 2004 9:30 a.m. – 11:30 p.m. Duration: 2 hours

Examiner: Robin Chapman

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Calculators labelled as approved by the Department of Mathematical Sciences may be used.

SECTION A

- 1. (a) Let \mathbf{a} , \mathbf{b} , $\mathbf{c} \in (Z_p)^n$. Define the Hamming distance $d(\mathbf{a}, \mathbf{b})$ and the weight $w(\mathbf{c})$. Prove that $d(\mathbf{a}, \mathbf{b}) = w(\mathbf{a} \mathbf{b})$. (7)
 - (b) For each of the following parameter systems (n, M, d), determine whether there is a (n, M, d)-code over Z_2 . You should justify your answers, but may use standard results without proof provided they are stated clearly.

(i)
$$(5, 16, 2)$$
; (ii) $(9, 4, 6)$; (iii) $(10, 20, 5)$. (13)

(c) Recall that each word $a_1 a_2 \cdots a_{10}$ in the ISBN code satisfies

$$\sum_{j=1}^{10} j a_j \equiv 0 \pmod{11}.$$

Hence complete the following ISBNs:

(i) 052145761?; (ii) 05213666?X; (iii) 0?87962549.

Also prove that if two unequal digits are transposed in a valid ISBN then the result is an invalid ISBN. (18)

(d) Consider the binary linear code C with parity-check matrix

On the assumption that no more than one error has occurred in each word, correct, where possible, the following received words:

- (i) 0000111001;
- (ii) 1110100111;
- (iii) 0011010100.

(12)

[50]

SECTION B

2.	(a)	What is a linear code over Z_p ?	
		Let C be a linear code over Z_p . What is a generator matrix for C ? What is the dual code C^{\perp} of C ?	
		Prove that if C is a linear code with generator matrix $G = (I_k A)$ where A is a k -by- $(n-k)$ matrix, then $(-A^T I_{n-k})$ is a generator matrix for C^{\perp} .	(9)
	(b)	A linear code C over Z_p is self-dual if and only if $C = C^{\perp}$. Prove that each self-dual code has even length, and that if C is a self-dual code over Z_p with generator matrix $G = (I_k \ A)$ (where A is a square k -by- k matrix) then $AA^T = -I_k$.	(8)
	(c)	Prove that if $p=2$ or $p=3$ then the weights of all words in a self-dual code C are divisible by p . Give an example of a self-dual $[4,2]$ -code over Z_7 and confirm that it has words of weight not divisible by 7.	(8) [25]
3.	(a)	What is a cyclic code over Z_p ? Describe the correspondence between $(Z_p)^n$ and the truncated polynomial ring $Z_p[x]_n$ and prove that this correspondence takes cyclic codes to ideals of $Z_p[x]_n$. What is the generator polynomial of a cyclic code? Prove that the generator polynomial of a cyclic code of length n is a factor of $x^n - 1$ in $Z_p[x]$.	(10)
	(b)	Let $f(x) = 1 + x + x^2 + \cdots + x^{n-1}$ and let $g(x) \in Z_p[x]$. Regarded as elements of $Z_p[x]_n$, prove that $g(x)f(x) = g(1)f(x)$. Hence prove that if C is a cyclic code over Z_p then either C contains that all-one word $\mathbf{v} = 111 \cdots 1$ or that the all-one word is orthogonal to C , that is, $\mathbf{a} \cdot \mathbf{v} = 0$ for all $\mathbf{a} \in C$.	(8)
	(c)	Factorize $x^{12} - 1$ into irreducible factors over Z_3 . Hence determine, by listing the generator polynomial of each, all cyclic [12, 8] codes over Z_3 . (You may leave these generator polynomials in factored form.)	(7) [25]

- 4. (a) Let C be a linear code of length n over Z_2 . Define the weight enumerator $W_C(z)$ of C. Prove that $W_C(z) = z^n W_C(1/z)$ if and only if C contains the all-one word $111\cdots 1$. (5)
 - (b) The MacWilliams identity states that

$$W_C(z) = \frac{(1+z)^n}{2^{n-k}} W_{C^{\perp}} \left(\frac{1-z}{1+z}\right)$$

where C is a binary linear [n,k]-code and C^{\perp} is its dual.

Use the MacWilliams identity to calculate the number of words of weight 3 in the binary linear code with generator matrix

$$G = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right).$$

(8)

(c) A binary self-dual code C of length n is a linear [n, n/2]-code over Z_2 satisfying $C = C^{\perp}$. Prove that if C is a binary self-dual code then all its words have even weight and that C contains the all-one word $111 \cdots 1$.

Now suppose that C is a binary self-dual [16, 8]-code, all of whose words have weights divisible by 4. Use the MacWilliams identity to find $W_C(z)$. [You may find the formula $(1+z)^{16-k}(1-z)^k = 1 + (16-2k)z + (2k^2-32k+120)z^2 + \cdots$ useful.]

(12) [**25**]