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We consider cyclic codes of length n over Zp. We use the truncated
polynomial ring Zp[X]n, which consists of polynomials in X over Zp subject to
the extra stipulation that Xn = 1 (and so Xn+1 = X, Xn+2 = X2, . . . , X2n =
Xn = 1 etc.).

We recall some polynomial jargon. Let f = a0 +a1X +a2X
2 + · · ·+adX

d

be a typical polynomial. If ad 6= 0 we call ad the leading coefficient of f ,
adX

d the leading term of f and d the degree of f . If the leading coefficient
of f is 1 we say that f is monic.

Recall the bijection Φ : (Zp)
n → Zp[X]n taking (a0, a1, . . . , an−1) to a0 +

a1X + · · ·+ an−1X
n−1. Also recall that C is a cyclic code if and only if Φ(C)

is an ideal of Zp[X]n, that is

• if f1, f2 ∈ Φ(C) then f1 + f2 ∈ Φ(C), and

• if f ∈ Φ(C) and g ∈ Zp[X]n then gf ∈ Φ(C).

This means that the problem of classifying cyclic codes of length n over Zp

is equivalent to classifying ideals of Zp[X]n.
A principal ideal over Zp[X]n is a set of the form

〈g〉 = {hg : h ∈ Zp[X]n}.

It is plain that this is an ideal. The main result is that all ideals of Zp[X]n
are principal, and even more is true.

Theorem 1 Let I be an ideal of Zp[X]n. Then I = 〈g〉 where g is a monic
polynomial and g is a factor of Xn − 1. This g is uniquely determined.

Proof We first assume that I contains some nonzero polynomial. If f ∈ I
is nonzero with leading coefficient a, then m = bf is monic where b is the
reciprocal of a in Zp. Also m has the same degree as f and m ∈ I. Thus if I
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contains a nonzero polynomial, it contains a monic polynomial of the same
degree.

Let g be a monic polynomial of least degree in I. By the above I cannot
contain any polynomial of lower degree. If f ∈ Zp[X] then there are poly-
nomials u and v in Zp[X] such that f = ug + v and either v = 0 or v has
smaller degree than g. In particular, when f ∈ I then also v = f +(−u)g ∈ I
and this means that v must be zero. So f ∈ I means that f = ug ∈ 〈g〉.
Consequently I ⊆ 〈g〉. But as g ∈ I then hg ∈ I for all h ∈ Zp[X]n and so
〈g〉 ⊆ I. We conclude that I = 〈g〉 and so I is principal.

Next, there are polynomials u and v such that Xn−1 = ug+v and either
v = 0 or v has smaller degree than g. Inside Zp[X]n, Xn − 1 = 0 and so
v = −ug ∈ I. Again, this is impossible unless v = 0. Thus Xn − 1 = ug:
that is, g is a factor of Xn − 1.

To show that g is unique, suppose that g1 is monic, g1 is a factor of Xn−1
and I = 〈g1〉. Then g is a factor of g1 and g1 is a factor of g: thus there are
polynomials u and v (which must be monic) with g1 = ug and g = vg1. Then
f = uvg and so uv = 1 which implies u = v = 1 (as u and v are monic),
equivalently g = g1.

We have assumed that I contains a nonzero polynomial. If it doesn’t then
I = {0} (a rather uninteresting ideal!) but if we take g = Xn − 1 (which is
zero inside Zp[X]n) then the result still holds. 2

If C is a cyclic code we call the unique monic g dividing Xn − 1 and
satisfying φ(C) = 〈g〉 the generator polynomial of g.

Theorem 2 Let C be a cyclic code with generator polynomial g of degree d.
Then C has dimension n− d and generator matrix

G =



b0 b1 b2 · · · bd 0 0 · · · 0
0 b0 b1 · · · bd−1 bd 0 · · · 0
0 0 b0 · · · bd−2 bd−1 bd · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · b0 b1 b2
. . . bd


where

g(X) =
d∑

j=0

bjX
j.

Proof Clearly the matrix G has linearly independent rows. For the mo-
ment, let C ′ denote the code generated by the rows of G. Certainly C ′ has
dimension n − d. If gj is the j-the row of G, then Φ(gj) = Xj−1g ∈ 〈g〉 so
certainly C ′ ⊆ C.
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For the reverse inclusion write Xn − 1 = gh. Then h has degree n − d.
Let f ∈ Zp[X]. We can write f = uh + v where u and v are polynomials
with v zero or its degree is less than that of h, namely n − d. Thus v =
c0 + c1X + · · ·+ cn−d−1X

n−d−1. Thus

fg = uhg + vg = (Xn − 1)g + vg.

Inside Zp[X]n, Xn − 1 = 0, and so

fg = vg =
n−d−1∑

j=0

cjX
jg =

n−d−1∑
j=0

cjΦ(gj+1) = Φ(x)

where
x = (c0 c1 c2 · · · cn−d−1)G ∈ C ′.

Hence fg ∈ Φ(C ′). If a ∈ C then Φ(a) = fg for some polynomial f , and so
Φ(a) = Φ(x) for some x ∈ C ′. Thus a = x ∈ C ′. We conclude that C ⊆ C ′

and so C = C ′. 2

If C is a cyclic [n, k]-code with generator polynomial g then g has degree
n − k. Also Xn − 1 = gh where h has degree h. We call h the parity-check
polynomial of C.

Theorem 3 Let C be a cyclic [n, k]-code with generator polynomial g and
parity-check polynomial h. Then Φ(C) consists of those polynomials f ∈
Zp[X] with the property that hf = 0 in Zp[X]. Also

H =



ck ck−1 ck−2 · · · c0 0 0 · · · 0
0 ck ck−1 · · · c1 c0 0 · · · 0
0 0 ck · · · c2 c1 c0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · ck ck−1 ck−2
. . . c0


is a parity-check matrix for C where

h(X) =
k∑

j=0

cjX
j.

Proof Note that Φ(C) = 〈g〉. If f ∈ 〈g〉 then f = ug for some polynomial
and so hf = ugh = u(Xn − 1) = 0 in Zp[X]n. Conversely if hf = 0 in
Zp[X]n then hf = v(Xn−1) for some polynomial v and so hf = vgh whence
f = vg ∈ 〈g〉.
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Let f = a0 +a1X + · · ·+an−1X
n−1 ∈ Zp[X]n. If we expand out hf inside

Zp[X]n we find that the coefficient of Xk is

cka0 + ck−1a1 + · · ·+ c0ak = c · a

where c = ckck−1 · · · c00 · · · 0 and a = a0a1 · · · an−1. If a ∈ C then f ∈
φ(C) = 〈g〉 and so fh = 0; consequently c · a = 0 and so c ∈ C⊥. Thus
the top row of H lies in C⊥. As C is cyclic, so is C⊥ and so all rows of H
lie in C⊥. It is clear that the rows of H are linearly independent, so H is a
generator matrix for a code C ′ of dimension d with C ′ ⊆ C⊥. As these codes
have the same dimension, C ′ = C⊥: H is a generator matrix for C⊥, that is
H is a parity-check matrix for C. 2

A polynomial over Zp is irreducible if it has degree at least one and is
not a product of polynomials of smaller degree. A theorem of algebra states
that each monic polynomial in Zp[X] can be written in a unique fashion as a
product of irreducible monic polynomials (the proof is basically the same as
that concerning unique prime factorization of integers). If we group together
identical irreducible polynomials we find that an arbitrary monic polynomial
m can be written as

f = qr1
1 qr2

2 · · · qrk
k

where the qj are distinct irreducible monic polynomials and the rj are positive
integers. As a further consequence of the unique factorization theorem, each
factor of f has the form

g = qs1
1 qs2

2 · · · qsk
k

where 0 ≤ sj ≤ rj. This means that if we can factorize f into irreducibles
then we can write down all its factors. In particular, taking f = Xn − 1
allows us to find all possible generator polynomials of cyclic [n, k]-codes.
Algorithms for factorizing polynomials into irreducibles are beyond the scope
of this course, but they are implemented in MAPLE. In particular

> Factor(f) mod p;

factorizes the polynomial f over Zp.
My thanks to Erol Chartan for pointing out an error in the original ver-

sion.
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