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An alphabet is a finite set Ω. A word over Ω is a finite string a = a1a2 · · · an

of letters ai ∈ Ω. Its length is n. The set of all words of length n over Ω is
denoted by Ωn. If a, b ∈ Ωn the Hamming distance d(a,b) is the number of
subscripts j with aj 6= bj.

Theorem 1 The Hamming distance satisfies

1. d(a, a) = 0 for all a,

2. d(a,b) > 0 for all a, b with a 6= b,

3. d(a,b) = d(b, a) for all a, b,

4. d(a, c) ≤ d(a,b) + d(b, c) for all a, b, c.

A code of length n over an alphabet Ω is a subset of Ωn. Its elements are
called codewords. Its minimum distance is the least value of d(a,b) where a
and b range over distinct codewords. the minimum distance of a code C is
denoted by d(C). An (n, k, d)-code over Ω is a subset of Ωn consisting of k
words with minimum distance d.

The notion of equivalence of codes is better conveyed by example than
by a brief definition. There are various maps φ : Ωn → Ωn which preserve
Hamming distance: d(φ(a), φ(b)) = d(a,b). One class of φ is obtained
by taking a permutation σ of {1, . . . , n} and setting φ(a1 · · · ai · · · an) =
aσ(1) · · · aσ(i) · · · aσ(n). Another is got by taking a permutation τ of Ω and
a fixed k with 1 ≤ k ≤ n and setting setting φ(a1 · · · ak−1akak+1 · · · an) =
a1 · · · ak−1τ(ak)ak+1 · · · an). If C ⊆ Ωn then the image C ′ of C under a se-
quence of operations of these two types is said to be a code equivalent to C.
Then C ′ has the same number of words and the same minimum distance
as C. See the slides for examples; the above description makes the concept
sound more difficult than it really is.
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Minimum distance decoding of a code C ⊆ Ωn decodes a received word
b ∈ Ωn with an a ∈ C minimizing d(a,b). A code C is an e-error-correcting
code if minimum distance decoding works correctly whenever at most e errors
are made, that is if for all a ∈ C and b ∈ Ωn with d(a,b) ≤ e then the only
c ∈ C with d(c,b) is c = a.

Theorem 2 A code C is e-error-correcting if and only if d(C) ≥ 2e + 1.

A code C is e-error-detecting if and only if for all a ∈ C and b ∈ C with
0 < d(a,b) ≤ e then b /∈ C.

Theorem 3 A code C is e-error-detecting if and only if d(C) ≥ e + 1.

Theorem 4 (Sphere packing bound) If the code C ⊆ Ωn is an e-error-
correcting code then it has at most

qn∑e
j=0

(
n
j

)
(q − 1)j

(∗)

words where q = |Ω|.

A perfect e-error-correcting code is one having precisely the number of
words in (∗).

Theorem 5 (Singleton bound) If C is an (n, k, d) code over Ω then

k ≤ qn−d+1

where q = |Ω|.

For a positive integer n, Zn denotes the set {0, 1, . . . , n − 1} equipped
with the operations of addition, subtraction and multiplication modulo n.
Always Zn is a commutative ring, but when n = p is prime Zp is also a field :
every nonzero element a ∈ Zp has a reciprocal b with ab = 1.

From now on we always let p denote a prime number.
We can regard a word a = a1 · · · an ∈ (Zp)

n as a row vector (a1, . . . , an).
In this way (Zp)

n is a vector space over the field Zp. The weight w(a) of
a ∈ (Zp)

n is the number of nonzero symbols in a.

Theorem 6

w(a) = d(a, 00 · · · 0) and d(a,b) = w(a− b)

for all a, b ∈ (Zp)
n.
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A linear code of length n over Zp is a vector subspace of (Zp)
n, that is

C ⊆ (Zp)
n if and only if

1. C is nonempty,

2. if a, b ∈ C then a + b ∈ C and

3. if λ ∈ Zp and a ∈ C then λa ∈ C.

However the last of these conditions is redundant. The minimum distance of
a linear code is the least weight of its nonzero elements.

Theorem 7 The minimum weight of a linear code equals its minimum dis-
tance.

Each linear code C, being a vector space has a basis a1, . . . , ak, that is
the elements of C are the sums

∑k
i=1 λiai and that each element of C has

precisely one representation in this form. Then C has dimension k as a
vector space and has pk codewords. An [n, k, d]-linear code is a linear code
of length n, dimension k and minimum distance d. A generator matrix for a
linear code C is a matrix A whose rows form a basis for C. Then the code
C is the set of all vectors xA where x runs through (Zp)

k. One can use A
to transform a word x ∈ (Zp)

k into a codeword xA in C by multiplication
by A.

Theorem 8 If A is a generator matrix for a linear code C then any matrix
A′ obtained from A by elementary row operations is also a generator matrix
for C.

We say that a generator matrix A is in standard form if A = (I | B)
where I is an identity matrix.

Theorem 9 If A is a generator matrix for a linear code C then any matrix
A′ obtained from A by permuting its columns or multiplying its columns by
nonzero scalars is a generator matrix for a code C ′ equivalent to C.

By reducing a generator matrix to reduced echelon form then permuting
its columns one can obtain a generator matrix A′ for an equivalent code
C ′ with A′ in standard form. If A = (I | B) is in standard form, then
xA = (x | xB) consists of the message x with some extra digits xB appended;
these are called check digits.

If C ⊆ (Zp)
n is a linear code then a coset of C is a set a+C = {a+c : c ∈

C} where a ∈ (Zp)
n. Each element of (Zp)

n is in exactly one coset. Choose
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a word of least weight in each coset and call it a coset leader. Coset decoding
decodes a received message b as b− e where e is the coset leader of b + C.
Coset decoding performs correctly if b − a is a coset leader where a and b
are the sent and received messages.

Theorem 10 A linear code C is e-error-correcting if and only if every word
of weight at most e is a coset leader.

For a = a1 · · · an and b = b1 · · · bn define their dot product as a · b =
a1b1 + · · ·+ anbn = abt. If C ⊆ (Zp)

n is a linear code, its dual is

C⊥ = {x ∈ (Zp)
n : x · c = 0 for all c ∈ C}.

Theorem 11 Let C be a linear code of length n and dimension k. Then C⊥

is a linear code of length n and dimension n− k. Also (C⊥)⊥ = C.

A generator matrix for C⊥ is called a parity-check matrix for C. Then a
generator matrix for C is a parity-check matrix for C⊥. If H is a parity-check
matrix for C then C = {x ∈ (Zp)

n : Hxt = 0}.

Theorem 12 If A = (I | B) is a generator matrix for C in standard form,
then H = (−Bt | I) is a parity-check matrix for C.

Let H be a parity check matrix for a linear code C. For x ∈ (Zp)
n its

syndrome is Hxt. Two words have the same syndrome if and only if they
lie in the same coset of C. Syndrome decoding works by first precomputing
and tabulating the syndrome of each coset leader, then decoding a received
word b by computing its syndrome Hbt, then identifying the coset leader
e with Het = Hbt and then decoding b as b − e. Syndrome decoding is
theoretically equivalent to coset decoding, but is more efficient in practice.

For a prime p and positive integer r the Hamming code Ham(p, r) is
defined to be the code with parity check matrix H with r rows and where
each nonzero column vector whose top nonzero entry is 1 occurs exactly once
as a column of H. Then Ham(p, r) has length (pr − 1)/(p − 1) dimension
(pr − 1)/(p− 1)− r and is a perfect 1-error-correcting code.

Theorem 13 Let C be a linear code with parity check matrix H. Then C
has minimum weight k if and only if the smallest set of linearly dependent
columns of H has size k.

A cyclic code of length n over Zp is a linear code C over Zp with the
additional property:
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• if a0a1a2 · · · an−1 ∈ C then its cyclic shift an−1a0a1 · · · an−2 ∈ C.

To study cyclic codes we introduce the ring Zp[x]n (this is not a standard
notation). It consists of all polynomials

a0 + a1x + a2x
2 + · · ·+ an−1x

n−1.

The addition is just like that of ordinary polynomials, noting that since the
coefficients lie in Zp, addition is done on them modulo p. Multiplication
is done similarly to the usual multiplication of polynomials with the extra
stipulation that xn = 1 (so that xn+1 = x, xn+2 = x2 etc). As in example, in
Z5[x]3 we have

(1 + 3x + x2)(1 + 2x2) = 1 + 3x + 3x2 + 6x3 + 2x4

= 1 + 3x + 3x2 + 6 + 2x

= 7 + 5x + 3x2 = 2 + 3x2.

There is a map Φ : (Zp)
n → Zp[x]n defined by

Φ(a0a1a2 · · · an−1) = a0 + a1x + a2x
2 · · ·+ an−1x

n−1.

Then Φ is a bijection, Φ(a + b) = Φ(a) + Φ(b) and Φ(ca) = cΦ(a) for a,
b ∈ (Zp)

n and c ∈ Zp. Most importantly, for a = a0a1a2 . . . an−1 and its
cyclic shift a′ = an−1a0a1 . . . an−2 we have

Φ(a′) = xΦ(a). (†)

An ideal of Zp[x]n is a nonempty subset I of Zp[x]n satisfying

• if f , g ∈ I then f + g ∈ I,

• if f ∈ I and h ∈ Zp[x]n then hf ∈ I.

Theorem 14 Let C be a subset of (Zp)
n. Then C is a cyclic code if and

only if Φ(C) is an ideal of Zp[X]n.

The proof of this theorem uses (†) crucially. The importance of this result
lies in the fact that there is a complete theory of ideals of rings like Zp[x]n.
Indeed every ideal in this ring is principal. A principal ideal in Zp[x]n is an
ideal of the form

〈f〉 = {hf : h ∈ Zp[x]n}.

Recall that a monic polynomial is a polynomial whose leading coefficient is 1.
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Theorem 15 Let I be an ideal of Zp[x]n. Then I = 〈f〉 is a principal ideal
where f is a monic polynomial which is a factor of the polynomial xn − 1
over Zp. This polynomial f is uniquely determined by the ideal I.

If C is a cyclic code, the we call the polynomial f prescribed by the above
theorem the generator polynomial of C. If f(X) =

∑d
j=0 ajx

j has degree d
then ad = 1 and C has generator matrix

a0 a1 a2 · · · ad−1 1 0 0 · · · 0
0 a0 a1 · · · ad−2 ad−1 1 0 · · · 0
0 0 a0 · · · ad−3 ad−2 ad−1 1 · · · 0

. . . . . .

0 0 0 · · · a0 a1 a2 a3 · · · 1


with n−d rows. Hence C has dimension n−d. The parity-check polynomial
of C is g = (xn − 1)/f . Then g =

∑n−d
j=0 bjx

j where bn−d = 1 and C has
parity-check matrix

1 bn−d−1 bn−d−2 · · · b1 b0 0 0 · · · 0
0 1 bn−d−1 · · · b2 b1 b0 0 · · · 0
0 0 1 · · · b3 b2 b1 b0 · · · 0

. . . . . .

0 0 0 · · · 1 bn−d−1 bn−d−2 bn−d−3 · · · b0

 .

The weight enumerator of a code C of length n over Zp is the polynomial

WC(z) =
n∑

k=0

Akz
k

where Ak is the number of words in C having weight k. We can rewrite this
definition as

WC(z) =
∑
a∈C

zw(a).

Theorem 16 (MacWilliams identity) Let C be a linear code of length n
over Z2. Then

WC⊥(z) =
(1 + z)n

|C|
WC

(
1− z

1 + z

)
.

Alternatively

WC(z) =
|C|(1 + z)n

2n
WC⊥

(
1− z

1 + z

)
.
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