MAT3004: Coding Theory Rings

A (commutative) ring R is a set R together with operations of addition and multiplication on R, that is, given $a, b \in R$ there are elements a + b, $ab \in R$, satisfying the following conditions:

- **A1** a+b=b+a for all $a, b \in R$. (The commutative law for addition.)
- **A2** (a+b)+c=a+(b+c) for all $a, b, c \in R$. (The associative law for addition.)
- **A3** There is an element $0 \in R$ such that a + 0 = a for all $a \in R$. (There is an additive identity.)
- **A4** For each $a \in R$ there is an element $-a \in R$ with a + (-a) = 0. (There exist additive inverses.)
- M1 ab = ba for all $a, b \in R$. (The commutative law for multiplication.)
- **M2** (ab)c = a(bc) for all $a, b, c \in R$. (The associative law for multiplication.)
- **M3** There is an element $1 \in R$ such that 1a = a for all $a \in R$. (There is a multiplicative identity.)
- **D** a(b+c) = ab + ac for all $a, b, c \in R$. (The distributive law.)

A field is a (commutative) ring in which each nonzero element has a reciprocal. That is: if $a \neq 0$ there is $b \in R$ with ab = 1 (in this case we write a^{-1} for b).

RJC 11/2/2001