
Proving irrationality: an alternative approach

The usual proof that
√

2 is irrational, and its generalization to other square roots, cube
roots, etc., of integers involves a lot of messing about with divisibility conditions. I here
outline an alternative approach which some may find more appealing.

Let’s start, as always, with
√

2, and assume (to obtain a contradiction) that
√

2 is
rational; put

√
2 = a/b with a and b positive integers. The key to this proof is that if r

and s are integers then

r + s
√

2 = r + s
a

b
=

rb + sa

b
(1)

is also a rational with denominator b. This puts a severe restriction on what sort of numbers
can be expressed in this form. If we can find integers r and s with 0 < r + s

√
2 < 1/b

then we would have a contradiction since the number r + s
√

2 can’t be a rational with
denominator b.

To find such r and s we look at numbers of the form (
√

2− 1)n. We calculate

(
√

2− 1)1 =
√

2− 1

(
√

2− 1)2 = 3− 2
√

2

(
√

2− 1)3 = 5
√

2− 7

(
√

2− 1)4 = 17− 12
√

2

(
√

2− 1)5 = 29
√

2− 41

and so on. It seems as if we can write (
√

2 − 1)n = rn + sn

√
2 for integers rn and sn for

each positive integer n. This can be easily proved by induction (exercise!) or directly,
by expanding (

√
2 − 1)n by the binomial theorem. But why are we doing this? Well√

2− 1 = 0 · 4142 · · ·, in particular 0 <
√

2− 1 < 1. It follows that for n large enough we
have 0 < (

√
2− 1)n < 1/b. Hence

0 < rn + sn

√
2 = rn + sn

a

b
<

1

b

and so 0 < rnb + sna < 1 which is impossible since rnb + sna is an integer. Again we
conclude that

√
2 is irrational.

We can play the same game with other square roots. Suppose m is a positive integer,
but not a perfect square. Again suppose that

√
m = a/b with a and b positive integers.

Again if r and s are integers then r+s
√

m is a rational with denominator b. This time, since
m isn’t a perfect square we consider powers of

√
m− t where t is the natural number with

t <
√

m < t+1. (For instance if m = 77 we would let t = 8.) Again (
√

m−t)n = rn+sn

√
m

with rn and sn integers, and if n is large enough we have 0 < (
√

m − t)n < 1/b and so
0 < rnb + sna < 1 giving the contradiction that shows that

√
m cannot be rational.

Now let’s look at cube roots. Take first 3
√

2 and suppose that it is rational, say 3
√

2 = a/b
with a, b natural numbers. Noting that 0 < 3

√
2− 1 < 1 we may decide to consider powers

of this number. We calculate

(
3
√

2− 1)1 =
3
√

2− 1

1



(
3
√

2− 1)2 =
3
√

4− 2
3
√

2 + 1

(
3
√

2− 1)3 = −3
3
√

4 + 3
3
√

2 + 1

(
3
√

2− 1)4 = 6
3
√

4− 2
3
√

2− 7

(
3
√

2− 1)5 = −8
3
√

4− 5
3
√

2 + 19

and so on. I hope that you can convince yourself that ( 3
√

2−1)n = rn +sn
3
√

2+ tn
3
√

4 where
rn, sn and tn are integers. Hence

(
3
√

2− 1)n =
rnb

2 + snab + tna
2

b2
=

cn

b2

where cn is an integer. But since 3
√

2 − 1 = 0 · 2599 · · · then for n large enough we have
0 < ( 3

√
2 − 1)n = cn/b < 1/b which is impossible as cn is an integer. This contradiction

means that 3
√

2 is irrational. Now this argument can easily be extended to numbers of the
form k

√
m provided that m isn’t a k-th power of an integer already. If this isn’t the case

then r < k
√

m < r + 1 for some integer r, and we consider powers of ( k
√

m− r).
This approach works for other types of irrationals as well, not just k-th roots of integers.

For example let ξ = 2 cos 2π/9(= 2 cos 40◦). Putting θ = 2π/9 into the identity cos 3θ =
4 cos3 θ − 3 cos θ we get −1

2
= 1

2
(ξ3 − 3ξ) and so ξ3 − 3ξ + 1 = 0, or ξ3 = 3ξ − 1. Now

ξ = 1 · 5320 · · · and so we may be tempted to consider powers of (ξ − 1) since this lies in
the interval (0, 1). Now

(ξ − 1)1 = ξ − 1

(ξ − 1)2 = ξ2 − 2ξ + 1

(ξ − 1)3 = ξ3 − 3ξ2 + 3ξ − 1 = −3ξ2 + 6ξ − 2

(ξ − 1)4 = (ξ − 1)(−3ξ2 + 6ξ − 2) = −3ξ3 + 9ξ2 − 8ξ + 2 = 9ξ2 − 17ξ + 5

(ξ − 1)5 = (ξ − 1)(9ξ2 − 17ξ + 5) = 9ξ3 − 26ξ2 + 22ξ − 5 = −26ξ2 + 49ξ − 14

and so on. I hope that you can prove by induction that (ξ− 1)n = rn + snξ + tnξ
2 for some

integers rn, sn and tn. If ξ = a/b is rational, then (ξ − 1)n = cn/b
2 with cn an integer and

again this is impossible for large enough n. Now one can extend this argument again to
show that if ξk + u1ξ

k−1 + · · · + un−1ξ + un = 0 with the ujs integers, then if ξ isn’t an
integer, then ξ must be irrational.
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