(a) Solve the congruence

 $99x \equiv 1 \pmod{367}$.

[5 marks]

- (b) Prove that there are infinitely many primes p satisfying $p \equiv 5 \pmod{6}$. [4 marks]
- (c) Find four solutions of $a^2 + b^2 = 22345$ with $a, b \in \mathbb{N}$ and a < b. (Note that $22345 = 5 \times 41 \times 109$.) [8 marks]
- (d) Either
 - (i) Prove that if p is prime and $p \equiv 1 \pmod{4}$ then the congruence $x^2 \equiv -1 \pmod{p}$ has a solution. (You may use Wilson's theorem.)

or

(ii) Prove that if p is prime and $p \equiv 3 \pmod{4}$ then the congruence $x^2 \equiv -1 \pmod{p}$ has no solution. (You may use Fermat's little theorem.)

[6 marks]

(e) Using the pigeonhole principle or otherwise, prove that if p is an odd prime and there is $c \in \mathbf{Z}$ with $c^2 \equiv -2 \pmod{p}$ then $p = a^2 + 2b^2$ for some $a, b \in \mathbf{Z}$.

RJC 28/1/2009