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Let N denote the set of positive integers and Z denote the set of all
integers.

Let a and b be integers. We say that a divides b (or a is a divisor of b, or
a is a factor of b, or b is a multiple of a, or b is divisible by a) if there is an
integer ¢ with b = ac. We write a | b to denote that a divides b and a tb if a
does not divide b.

A prime number or just a prime is a number p € N such that

e p>1, and

e if a € N is a divisor of p then a =1 or a = p.

Theorem 1 Fvery integer n > 2 has the form py---py where the p; are
prime.

Proof We use induction. The base case is n = 2 which is a prime. In
general assume that all numbers from 2 to n have prime factorizations; we
claim n+ 1 does too. If n+1 is prime, all is well; otherwise n+ 1 = ab where
a>1land b>1. Thusa<n+1and b<n+1 and so a and b have prime
factorizations, by the inductive hypothesis. Putting these together gives a
prime factorization for n + 1. By induction each integer n > 2 has a prime
factorization. OJ

Theorem 2 (Euclid) There are infinitely many primes.

Proof It suffices to prove that for each n € N, there is a prime p > n. Let
N =n!+ 1. Then N has a prime factorization, so it has a prime factor p.
We claim that p > n. Otherwise p < n and so p must divide n!, but p cannot
divide both the consecutive numbers n! and n! + 1 — contradiction. Hence
we must have p > n. 0



Fora,b € Z and n € N we say that a is congruent to b modulo nif n | (a—
b). We write a = b (mod n) when a is congruent to b modulo n. Congruences
respect the operations of addition, subtraction and multiplication, but not
division.

Given n, each integer is congruent to exactly one of the numbers 0, 1,
2,...,n — 1 modulo n. Similarly each integer is congruent to exactly one
number a with —n/2 < a < n/2 modulo n.

Theorem 3 There are infinitely many primes p such that p =3 (mod 4).

Proof It suffices to prove that for each n € N, there is a prime p > n
with p = 3 (mod 4). Let N = 4(n!) — 1. Then N has a prime factorization:
N = pip2 - - pn. We claim that one of the p; satisfies p; = 3 (mod 4). As N
is odd, none of the p; have p; = 0 or p; = 2 (mod 4) so they all have have
pi =1 or p; =3 (mod 4). But they can’t all have p; = 1 (mod 4) since then
N=1x1x---x1=1(mod4) but N=4(n!)—1=-1=3 (mod 4). So
at least one of the p; satisfies p; = 3 (mod 4). Let’s write this p; as p.

We claim that p > n. Otherwise p < n and so p must divide n! and so
also 4(n!), but p cannot divide both the consecutive numbers 4(n!) — 1 and
4(n!) — contradiction. Hence we must have p > n. O

The Euclidean algorithm takes a, b € N and finds their greatest common
divisor. More precisely it finds r, s € Z such that g = ra + sb is a divisor of
both a and b; any common divisor of a and b must also divide ra + sb = g so
then g is the largest possible common divisor of a and b. We write ged(a, b)
for the greatest common divisor of a and b. We say that a and b are coprime
if ged(a,b) = 1.

To perform the Euclidean algorithm we may assume that a > b. Define
a1 = a and ay = b. We produce a sequence ay, as, . . ., ag of positive integers
ending when ay, | a;—1. If at some stage we have reached a; but a; { a;_1 we
define a1 by a;+1 = aj_1 — gja;, where 0 < a;4; < a;, that is the remainder
when a;_; is divided by a;. As ay > a3 > a4 > --- > 0 the sequence must
terminate. Set g = ay if the sequence terminates at a;. Then g | ax_; and
g | ax obviously. It follows that ¢ | ax_2, g | ax_3 and so on. Eventually we
get g | az and g | a;. Thus g is a common factor of a and b.

TO find integers r and s such that g = ra+ sb we keep track at each stage
of r; and s; such that a; = r;a + s;b. We start with r; =1, 59y =0, 7, =0
and sy = 1. Then define recursively 7,1 = 7,_1 —q;7; and s;41 = sj_1 — ¢;5;.
Then it’s easy to check that a; = r;a + s;0 for all j. Set r = 7, and s = 5.
Then g = ra + sb. If h is a common factor of a and b it divides ra and sb
and so also g = ra + sb. Thus g really is the greatest common divisor of a

and b.



Consider a congruence
ar =b (mod n). (%)

When ged(a,n) = 1 this congruence has a unique solution modulo n. To
see this, by the Euclidean algorithm, there are r and s with 1 = ged(a,n) =
ra+ sn. Thus ra =1 (mod n) and so

r=1lx=rax=rb (mod n)
and this really is a solution as
a(rb) = (ra)b=1b=">b (mod n).
In particular for prime p consider the congruence
ar =1 (mod p). (1)

As ged(a, p) = 1 unless p | a then when p t a there is a unique solution to (7).
Call a solution a reciprocal of a modulo p.

Theorem 4 (Euclid’s lemma) If p | ab with p prime then either p | a or
plb.

Proof If pta then a has a reciprocal ¢ modulo p: ca =1 (mod p). Thus
b=1b=cab=c0=0 (mod p),
that is p | b. O
One can extend this: if p | ajas - - - a, then p divides at least one of the a;.
Theorem 5 If a> =1 (mod p) with p prime, then a = +1 (mod p).

Proof If a> =1 (mod p) then p | (a®> — 1), that is p | (a — 1)(a + 1). By
Euclid’s lemma, either p | (a — 1) or a | (a + 1), that is either a = 1 (mod p)
or a = —1 (mod p). O

Theorem 6 (Wilson) If p is prime then (p — 1)! = —1 (mod p).

Proof Pair up the numbers 1, 2,...,p— 1 with their reciprocals modulo p.
By the previous theorem only the numbers 1 and p — 1 are paired with
themselves. The numbers 2, 3,...,p — 2 fall into pairs whose products are 1

modulo p. Hence
(p—2)!=2x3x---x(p—2)=1 (mod p).
Multiplying by p — 1 gives
p—D!'=p—1=-1 (mod p).



Theorem 7 (Unique factorization) If p;---p; = q1---q where each p;
and q; is prime, and py <pa < -+ <pjand ¢ < g < - < gy then j =k
and p; = q; for each 1.

Proof If p; = ¢ then py---p; = q2 - - ¢ are two prime factorizations of a
smaller number, and an appeal to strong induction settles the result. Hence
we only need show that p; = ¢; and we do that by assuming p; # ¢; and
deriving a contradiction.

Suppose that p; # ¢;. Either p; < ¢; or p; > ¢;. Well consider only the
case where p; < ¢q; as the other can be done by swapping the roles of the ps
and gs. Aspy | (p1---p;) then py | (¢1---qx). By the comment after Euclid’s
lemma, p; | ¢; for some i. But p; < ¢; < ¢; and ¢; is prime. So ¢; cannot
have the factor p; as 1 < p; < ¢;. This is a contradiction. O]

Theorem 8 (Fermat’s little theorem) Let p be prime, and p t a. Then
a’~' =1 (mod p).

Proof Consider the list of numbers a, 2a, 3a,...,(p—1)a. For 1 <k <p-—1
the congruence ax = j (mod p) has a unique solution modulo p. Thus «, 2a,
3a,...,(p— 1)a are congruent modulo p to 1, 2, 3,...,p — 1 in some order.
Taking the product gives

a(2a)(3a)---(p—1)a)=1x2x3x---x(p—1) (mod p)

that is
(p—Dla* ' =(p—1)! (mod p).

By Wilson’s theorem

—a?"' = -1 (mod p).

Now negate! O

Theorem 9 Let p be prime. The congruence > = —1 (mod p) is soluble if
and only if p=2 or p=1 (mod 4).

Proof If p =2 then x =1 is a solution. Then we may suppose p odd so
that p =1 or 3 (mod 4).

The easier case is p = 3 (mod 4). Write p = 4k + 3. If 22 = —1 (mod p)
then

$4k+2 — ((L’2)2k+1 = (_1>2k+1 — (mod p).
But 4k + 2 = p — 1 and by Fermat’s little theorem, 2P~* = 1 (mod p). This
is a contradiction. So 2 = —1 (mod p) is insoluble.
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The other case is p = 1 (mod 4). Write p = 4k + 1. We claim that
x = (2k)! is a solution. By Wilson’s theorem

-1 = (p— 1! = (4k)!

= 1Xx2x3x---x(2k)x(2k+1)x (2k+2) x -+ x (4k)

= I1x2x3x---x2k)x(p=-2k)x(p—2k+1)x---x(p—1)
= 1X2XxX3x--%x(2k) x (=2k) x (—=(2k—1)) x --- x (1)

= (—1)*1x2x3x-x(2k) x (2k) x 2k —1) x ---x 1

= (2k)!* (mod p).

O]
Given a prime number p = 1 (mod 4) although the theorem gives a for-
mula for a solution of 22 = —1 (mod p), this formula is completely impractical

save for very small p since it requires almost p/2 muliplications modulo p.
Here is a more practical approach. Set p = 4k + 1. Pick a number a at ran-
dom between 1 and p — 1 and compute b = a* (mod p) (using the repeated
squaring trick). Then b* = a** = a?~! =1 (mod p). Thus b* = 41 (mod p).
If ¥ = —1 (mod p) we have won! Otherwise start again with a new a. It
can be proved (although I won’t here) that we win with probability %, SO on
average we expect to need two tries.

Theorem 10 There are infinitely many primes p such that p =1 (mod 4).

Proof It suffices to prove that for each n € N, there is a prime p > n with
p =1 (mod 4). Let N = 4(n!)®> + 1. Then N has a prime factorization and
so a prime factor p. As N is odd p is odd. Also (2(n!))? = —1 (mod p). By
the previous theorem p =1 (mod 4).

We claim that p > n. Otherwise p < n and so p must divide n! and
so also 4(n!)?, but p cannot divide both the consecutive numbers 4(n!)? and
4(n!)? + 1 — contradiction. Hence we must have p > n. 0J

Define Sy = {a?+b* : a,b € Z}, the set of sums of two squares of integers.

A Gaussian integer is a complex number of the form a = a + bi where a,
b € Z. 1t’s easy to see that if & and (§ are Gaussian integers then so are a+ (3,
a— 3 and aff. If a = a + bi is a Gaussian integer, then |a|? = a® + b? € Ss.
Thus S, is the set of all |a]? as a ranges over the Gaussian integers. This is
a very handy observation!

Theorem 11 Ifm, n € Sy then mn € 5.



Proof If m,n € S, then m = |a|? and n = |3|* for some Gaussian integers
a and (. Then af is a Gaussian integer and

mn = |af*|B]* = |ap]* € S,.

O

Theorem 12 Ifp is prime and p = 3 (mod 4) then p | (a® +b*) implies that
plaandp|b.

Proof Letp =3 (mod 4) and suppose p | (a®+b?), that is b* = —a? (mod p).
If p 1 a then there is ¢ € Z with ca = 1 (mod p). Then (cb)? = —(ca)? = —
(mod p) which is impossible as the congruence 2 = —1 (mod p) is insoluble.

This contradiction proves that p | a. Similarly p | b. O

Theorem 13 Ifp =1 (mod 4) then p € Ss.
Proof There is ¢ € Z with ¢? = —1 (mod p). Let
A={(a,b):a,beZ,0<a,b</p}

Then A is a set of integer points in the plane. As ,/p is not an integer, then
there is an integer k with &k < /p < k4 1. Then (a,b) € A if and only if
a and b are integers between 0 and k inclusive. Thus A contains (k + 1)?
points. As (k + 1) > p, by the pigeonhole principle there are distinct
points (a,b1), (az,bs) € A such that a; + ¢by = ay + ¢by (mod p). Let
a=a; —ay and b = by — by. Then (a,b) # (0,0) and a = ¢b (mod p). Thus
a’? +b? = A2b* +b? = 0 (mod p). Thus a® + b* = mp where m is a positive
integer. All we need now to prove is that m = 1.

As0<a; < pand 0 <ay < ,/pthen —/p <a=a —a; <,/pand
so a® < p. Similarly b? < p. Hence mp = a® + b? < 2p and we conclude that
m = 1. U

Theorem 14 Let n = p'py*---p* with p1 < py < --- < pi prime then
n € Sy if and only if r; is even for every i with p; =3 (mod 4).

Proof Suppose that n € Sy and that p = p; = 3 (mod 4). We need to
prove that r = r; is even. Note that n = p"m where p f m. We argue by
induction on r that r is] even. If r = 0 there is nothing to prove. If r > 0,
write p = a® + b? with a, b € Z. By Theorem 12 p | @ and p | b. Thus
P 2m = ¢+ d* where ¢ = a/p € Z and d = b/p € Z. By the inductive



hypothesis r — 2 is even. Hence r is even. Thus the given condition on n is
necessary for n to lie in Ss.

Conversely suppose that n = pi'py? - - - p;* with the p; prime and with r;
is even whenever p; = 3 (mod 4). Then n is a product of squares p? and
primes p; with p; = 2 or p; = 1 (mod 4). Of course 2 =12 +1? € S, and as
all these factors lie in S5 so does n as Ss is closed under multiplication. [



