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Let N denote the set of positive integers and Z denote the set of all
integers.

Let a and b be integers. We say that a divides b (or a is a divisor of b, or
a is a factor of b, or b is a multiple of a, or b is divisible by a) if there is an
integer c with b = ac. We write a | b to denote that a divides b and a - b if a
does not divide b.

A prime number or just a prime is a number p ∈ N such that

• p > 1, and

• if a ∈ N is a divisor of p then a = 1 or a = p.

Theorem 1 Every integer n ≥ 2 has the form p1 · · · pk where the pi are
prime.

Proof We use induction. The base case is n = 2 which is a prime. In
general assume that all numbers from 2 to n have prime factorizations; we
claim n+1 does too. If n+1 is prime, all is well; otherwise n+1 = ab where
a > 1 and b > 1. Thus a < n + 1 and b < n + 1 and so a and b have prime
factorizations, by the inductive hypothesis. Putting these together gives a
prime factorization for n + 1. By induction each integer n ≥ 2 has a prime
factorization. �

Theorem 2 (Euclid) There are infinitely many primes.

Proof It suffices to prove that for each n ∈ N , there is a prime p > n. Let
N = n! + 1. Then N has a prime factorization, so it has a prime factor p.
We claim that p > n. Otherwise p ≤ n and so p must divide n!, but p cannot
divide both the consecutive numbers n! and n! + 1 — contradiction. Hence
we must have p > n. �
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For a, b ∈ Z and n ∈ N we say that a is congruent to b modulo n if n | (a−
b). We write a ≡ b (mod n) when a is congruent to b modulo n. Congruences
respect the operations of addition, subtraction and multiplication, but not
division.

Given n, each integer is congruent to exactly one of the numbers 0, 1,
2, . . . , n − 1 modulo n. Similarly each integer is congruent to exactly one
number a with −n/2 < a ≤ n/2 modulo n.

Theorem 3 There are infinitely many primes p such that p ≡ 3 (mod 4).

Proof It suffices to prove that for each n ∈ N, there is a prime p > n
with p ≡ 3 (mod 4). Let N = 4(n!)− 1. Then N has a prime factorization:
N = p1p2 · · · pn. We claim that one of the pi satisfies pi ≡ 3 (mod 4). As N
is odd, none of the pi have pi ≡ 0 or pi ≡ 2 (mod 4) so they all have have
pi ≡ 1 or pi ≡ 3 (mod 4). But they can’t all have pi ≡ 1 (mod 4) since then
N ≡ 1× 1× · · · × 1 = 1 (mod 4) but N = 4(n!)− 1 ≡ −1 ≡ 3 (mod 4). So
at least one of the pi satisfies pi ≡ 3 (mod 4). Let’s write this pi as p.

We claim that p > n. Otherwise p ≤ n and so p must divide n! and so
also 4(n!), but p cannot divide both the consecutive numbers 4(n!) − 1 and
4(n!) — contradiction. Hence we must have p > n. �

The Euclidean algorithm takes a, b ∈ N and finds their greatest common
divisor. More precisely it finds r, s ∈ Z such that g = ra + sb is a divisor of
both a and b; any common divisor of a and b must also divide ra + sb = g so
then g is the largest possible common divisor of a and b. We write gcd(a, b)
for the greatest common divisor of a and b. We say that a and b are coprime
if gcd(a, b) = 1.

To perform the Euclidean algorithm we may assume that a ≥ b. Define
a1 = a and a2 = b. We produce a sequence a1, a2, . . . , ak of positive integers
ending when ak | ak−1. If at some stage we have reached aj but aj - aj−1 we
define aj+1 by aj+1 = aj−1− qjaj, where 0 < aj+1 < aj, that is the remainder
when aj−1 is divided by aj. As a2 > a3 > a4 > · · · > 0 the sequence must
terminate. Set g = ak if the sequence terminates at ak. Then g | ak−1 and
g | ak obviously. It follows that g | ak−2, g | ak−3 and so on. Eventually we
get g | a2 and g | a1. Thus g is a common factor of a and b.

TO find integers r and s such that g = ra+sb we keep track at each stage
of rj and sj such that aj = rja + sjb. We start with r1 = 1, s1 = 0, r2 = 0
and s2 = 1. Then define recursively rj+1 = rj−1−qjrj and sj+1 = sj−1−qjsj.
Then it’s easy to check that aj = rja + sjb for all j. Set r = rk and s = sk.
Then g = ra + sb. If h is a common factor of a and b it divides ra and sb
and so also g = ra + sb. Thus g really is the greatest common divisor of a
and b.
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Consider a congruence

ax ≡ b (mod n). (∗)

When gcd(a, n) = 1 this congruence has a unique solution modulo n. To
see this, by the Euclidean algorithm, there are r and s with 1 = gcd(a, n) =
ra + sn. Thus ra ≡ 1 (mod n) and so

x = 1x ≡ rax ≡ rb (mod n)

and this really is a solution as

a(rb) = (ra)b ≡ 1b = b (mod n).

In particular for prime p consider the congruence

ax ≡ 1 (mod p). (†)

As gcd(a, p) = 1 unless p | a then when p - a there is a unique solution to (†).
Call a solution a reciprocal of a modulo p.

Theorem 4 (Euclid’s lemma) If p | ab with p prime then either p | a or
p | b.

Proof If p - a then a has a reciprocal c modulo p: ca ≡ 1 (mod p). Thus

b = 1b ≡ cab ≡ c0 = 0 (mod p),

that is p | b. �

One can extend this: if p | a1a2 · · · an then p divides at least one of the ai.

Theorem 5 If a2 ≡ 1 (mod p) with p prime, then a ≡ ±1 (mod p).

Proof If a2 ≡ 1 (mod p) then p | (a2 − 1), that is p | (a − 1)(a + 1). By
Euclid’s lemma, either p | (a− 1) or a | (a + 1), that is either a ≡ 1 (mod p)
or a ≡ −1 (mod p). �

Theorem 6 (Wilson) If p is prime then (p− 1)! ≡ −1 (mod p).

Proof Pair up the numbers 1, 2, . . . , p− 1 with their reciprocals modulo p.
By the previous theorem only the numbers 1 and p − 1 are paired with
themselves. The numbers 2, 3, . . . , p− 2 fall into pairs whose products are 1
modulo p. Hence

(p− 2)! = 2× 3× · · · × (p− 2) ≡ 1 (mod p).

Multiplying by p− 1 gives

(p− 1)! ≡ p− 1 ≡ −1 (mod p).

�
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Theorem 7 (Unique factorization) If p1 · · · pj = q1 · · · qk where each pi

and qi is prime, and p1 ≤ p2 ≤ · · · ≤ pj and q1 ≤ q2 ≤ · · · ≤ qk then j = k
and pi = qi for each i.

Proof If p1 = q1 then p2 · · · pj = q2 · · · qk are two prime factorizations of a
smaller number, and an appeal to strong induction settles the result. Hence
we only need show that p1 = q1 and we do that by assuming p1 6= q1 and
deriving a contradiction.

Suppose that p1 6= q1. Either p1 < q1 or p1 > q1. Well consider only the
case where p1 < q1 as the other can be done by swapping the rôles of the ps
and qs. As p1 | (p1 · · · pj) then p1 | (q1 · · · qk). By the comment after Euclid’s
lemma, p1 | qi for some i. But p1 < q1 ≤ qi and qi is prime. So qi cannot
have the factor p1 as 1 < p1 < qi. This is a contradiction. �

Theorem 8 (Fermat’s little theorem) Let p be prime, and p - a. Then
ap−1 ≡ 1 (mod p).

Proof Consider the list of numbers a, 2a, 3a, . . . , (p−1)a. For 1 ≤ k ≤ p−1
the congruence ax ≡ j (mod p) has a unique solution modulo p. Thus a, 2a,
3a, . . . , (p − 1)a are congruent modulo p to 1, 2, 3, . . . , p − 1 in some order.
Taking the product gives

a(2a)(3a) · · · ((p− 1)a) ≡ 1× 2× 3× · · · × (p− 1) (mod p)

that is
(p− 1)!ap−1 ≡ (p− 1)! (mod p).

By Wilson’s theorem
−ap−1 ≡ −1 (mod p).

Now negate! �

Theorem 9 Let p be prime. The congruence x2 ≡ −1 (mod p) is soluble if
and only if p = 2 or p ≡ 1 (mod 4).

Proof If p = 2 then x = 1 is a solution. Then we may suppose p odd so
that p ≡ 1 or 3 (mod 4).

The easier case is p ≡ 3 (mod 4). Write p = 4k + 3. If x2 ≡ −1 (mod p)
then

x4k+2 = (x2)2k+1 ≡ (−1)2k+1 = −1 (mod p).

But 4k + 2 = p− 1 and by Fermat’s little theorem, xp−1 ≡ 1 (mod p). This
is a contradiction. So x2 ≡ −1 (mod p) is insoluble.
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The other case is p ≡ 1 (mod 4). Write p = 4k + 1. We claim that
x = (2k)! is a solution. By Wilson’s theorem

−1 ≡ (p− 1)! = (4k)!

= 1× 2× 3× · · · × (2k)× (2k + 1)× (2k + 2)× · · · × (4k)

= 1× 2× 3× · · · × (2k)× (p− 2k)× (p− 2k + 1)× · · · × (p− 1)

≡ 1× 2× 3× · · · × (2k)× (−2k)× (−(2k − 1))× · · · × (−1)

= (−1)2k1× 2× 3× · · · × (2k)× (2k)× (2k − 1)× · · · × 1

= (2k)!2 (mod p).

�

Given a prime number p ≡ 1 (mod 4) although the theorem gives a for-
mula for a solution of x2 ≡ −1 (mod p), this formula is completely impractical
save for very small p since it requires almost p/2 muliplications modulo p.
Here is a more practical approach. Set p = 4k + 1. Pick a number a at ran-
dom between 1 and p − 1 and compute b ≡ ak (mod p) (using the repeated
squaring trick). Then b4 ≡ a4k = ap−1 ≡ 1 (mod p). Thus b2 ≡ ±1 (mod p).
If b2 ≡ −1 (mod p) we have won! Otherwise start again with a new a. It
can be proved (although I won’t here) that we win with probability 1

2
, so on

average we expect to need two tries.

Theorem 10 There are infinitely many primes p such that p ≡ 1 (mod 4).

Proof It suffices to prove that for each n ∈ N, there is a prime p > n with
p ≡ 1 (mod 4). Let N = 4(n!)2 + 1. Then N has a prime factorization and
so a prime factor p. As N is odd p is odd. Also (2(n!))2 ≡ −1 (mod p). By
the previous theorem p ≡ 1 (mod 4).

We claim that p > n. Otherwise p ≤ n and so p must divide n! and
so also 4(n!)2, but p cannot divide both the consecutive numbers 4(n!)2 and
4(n!)2 + 1 — contradiction. Hence we must have p > n. �

Define S2 = {a2+b2 : a, b ∈ Z}, the set of sums of two squares of integers.
A Gaussian integer is a complex number of the form α = a + bi where a,

b ∈ Z. It’s easy to see that if α and β are Gaussian integers then so are α+β,
α− β and αβ. If α = a + bi is a Gaussian integer, then |α|2 = a2 + b2 ∈ S2.
Thus S2 is the set of all |α|2 as α ranges over the Gaussian integers. This is
a very handy observation!

Theorem 11 If m, n ∈ S2 then mn ∈ S2.

5



Proof If m, n ∈ S2 then m = |α|2 and n = |β|2 for some Gaussian integers
α and β. Then αβ is a Gaussian integer and

mn = |α|2|β|2 = |αβ|2 ∈ S2.

�

Theorem 12 If p is prime and p ≡ 3 (mod 4) then p | (a2 + b2) implies that
p | a and p | b.

Proof Let p ≡ 3 (mod 4) and suppose p | (a2+b2), that is b2 ≡ −a2 (mod p).
If p - a then there is c ∈ Z with ca ≡ 1 (mod p). Then (cb)2 ≡ −(ca)2 ≡ −1
(mod p) which is impossible as the congruence x2 ≡ −1 (mod p) is insoluble.
This contradiction proves that p | a. Similarly p | b. �

Theorem 13 If p ≡ 1 (mod 4) then p ∈ S2.

Proof There is c ∈ Z with c2 ≡ −1 (mod p). Let

A = {(a, b) : a, b ∈ Z, 0 ≤ a, b <
√

p}.

Then A is a set of integer points in the plane. As
√

p is not an integer, then
there is an integer k with k <

√
p < k + 1. Then (a, b) ∈ A if and only if

a and b are integers between 0 and k inclusive. Thus A contains (k + 1)2

points. As (k + 1)2 > p, by the pigeonhole principle there are distinct
points (a1, b1), (a2, b2) ∈ A such that a1 + cb1 ≡ a2 + cb2 (mod p). Let
a = a1 − a2 and b = b2 − b1. Then (a, b) 6= (0, 0) and a ≡ cb (mod p). Thus
a2 + b2 ≡ c2b2 + b2 ≡ 0 (mod p). Thus a2 + b2 = mp where m is a positive
integer. All we need now to prove is that m = 1.

As 0 ≤ a1 <
√

p and 0 ≤ a2 <
√

p then −√p < a = a1 − a2 <
√

p and
so a2 < p. Similarly b2 < p. Hence mp = a2 + b2 < 2p and we conclude that
m = 1. �

Theorem 14 Let n = pr1
1 pr2

2 · · · prk
k with p1 < p2 < · · · < pk prime then

n ∈ S2 if and only if ri is even for every i with pi ≡ 3 (mod 4).

Proof Suppose that n ∈ S2 and that p = pi ≡ 3 (mod 4). We need to
prove that r = ri is even. Note that n = prm where p - m. We argue by
induction on r that r is] even. If r = 0 there is nothing to prove. If r > 0,
write p = a2 + b2 with a, b ∈ Z. By Theorem 12 p | a and p | b. Thus
pr−2m = c2 + d2 where c = a/p ∈ Z and d = b/p ∈ Z. By the inductive
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hypothesis r − 2 is even. Hence r is even. Thus the given condition on n is
necessary for n to lie in S2.

Conversely suppose that n = pr1
1 pr2

2 · · · prk
k with the pi prime and with ri

is even whenever pi ≡ 3 (mod 4). Then n is a product of squares p2
i and

primes pi with pi = 2 or pi ≡ 1 (mod 4). Of course 2 = 12 + 12 ∈ S2 and as
all these factors lie in S2 so does n as S2 is closed under multiplication. �
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