Congruences are respected by addition, subtraction
and multiplication:

a=b (modn)

and
c=d (modn)
imply
atc=b+td (modn)
and

ac =bd (mod n).
But congruences do not respect division, for example,
14 =4 (mod 10)
but
14/2=7#2=4/2 (mod 10).



Each a € Z is congruent to exactly one of the num-
bers0O,1,...,n—1 modulon. Forexample 1000 = 6
(mod 7). Also there is b € Z with |b| < n/2 such that
a = b (mod n). For example 1000 = —1 (mod 7).

As 02 = 0, 12 = 1,22 = 4 = 0 (mod 4) and
32 = 9 =1 (mod 4) then z2 = 0 or 1 (mod 4) for all
z € Z. Similarly 22 = 0, 1 or 4 (mod 8) for all x € Z.
These observations are useful when studying sums of
squares.



Theorem 1 There are infinitely many primes p with
p =3 (mod4).

Proof It suffices to prove that for each n there is such
apwithp >n. Let N =4(n!) —1. Then N = 3
(mod 4). Each prime factor of NV is odd, so each is
congruent to 1 or 3 modulo 4. Let N = pipo - - - pp.
If all the p, are congruent to 1 modulo 4, then N =
pip2 - pr=1x1x---x1=1(mod4), which is
false. Therefore at least one of the p,, let’s call it p, is
congruent to 3 modulo 4. If p < n then p | n! and so
N = 4(n)! — 1 = —1 (mod p) contradicting p | N.
Hence p > n, as required. ]



The Euclidean algorithm
The King of Number Theory Algorithms!

Theorem 2 Givena, b € N we can compute g € N
andr, s € Z such that

e g|laandg|b, and

e g = ra —+ sb.

This g is the greatest common divisor of a and b since

if h € N is a divisor of both ¢ and b then

g=ra+sb=r0+s0=0 (mod h).
Soh|gandsoh < g. We write g = gcd(a, b).



The algorithm:

set a; = a, ao = b and repeat the following step
while aj;41 J(CL]':

find g; € N suchthata;; > = a; — gja;4 1 satisties
0 < aj42 < Qj41-

Whena; 1 |a;theng =a; 4.
Example:

Leta = 37 and b = 14. Then

ap = 37,

a>» = 14,

az = 37 —2Xx14 =09,
ag = 14—-—1x9 =05,
ay =— O—-1x5=4,
ag = b—-—1x4=1

As 1 | 4, the algorithm terminates and gcd(37,14) =
1.



Computing r and s

It's easiest to do this as one goes along, finding r; and
sj such that a; = rja + s;b. In our example:

ai

37 = a = la -+ 0b,
a> = 14:b=0a—|—1b,

az = 9 =a1; —2ap =a — 2b,
ag, = b =ap—a3z3 = —a -+ 3b,
ag = 4 = a3 — agq = 2a — 5b,
ag = 1=ag4 — a5 = —3a -+ 8b.

Thus r = —3 and s = 8. | like to set this out in
tabular form:

4y | "5 | 5j
37 1 O
14 O 1
9 1] -2
5| -1 3
4 2| -5
1| -3 3




Solving linear congruences

| restrict to
ax =b (mod n) (%)

where gcd(a,n) = 1. Then we can find integers
r and s with ra + sn = 1; then ra = 1 (mod n),
Multiplying () by r gives

rax =rb (mod n)
but
rar = 1lx =2 (mod n)

so the solution of (x) is x = rb (mod n).

As an example we solve

14z =22 (mod 37).

Weknow 1 =8 x 14 -3 x37sothat8 x 14 =1
(mod 37). Therefore

r=8x14r=8x22=176 =28 (mod 37).
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The Euclidean algorithm has some important theoret-
ical consequences. If p is prime, then if p 1 a the con-
gruence ax = 1 (mod p) is soluble, since gcd(a, p)
must be a factor of p, but it can’'t be p so it's 1. We
call the solution of ax = 1 (mod p) the reciprocal of a
modulo p. We tabulate reciprocals modulo 11:

1
L] 2]

Here 1 and 10 are their own reciprocals, but the oth-
ers “pair off”. Hence

3]4

2 18910
6]4]3]

.
8|7 |5|10

5|6
9|2

10!

1 X2X3X4xXxbXxb6Xx7Tx8x9x10
1x(2x6)x(3x4)x(5x9)x(7x8)x10
= 1x1x1x1x1x10 (mod 11)

— 10=-1 (mod 11).

In fact (p — 1)! = —1 (mod p) for all primes p: this is
Wilson’s theorem.



We can almost prove Wilson’s theorem. By pairing off
each number with its reciprocal, (p — 1)! is congruent
to the product of all self-reciprocal (modulo p) num-
bers between 1 and p — 1 inclusive. Obviously 1 and
p — 1 are self-reciprocal modulo p. If there aren’t any
more, Wilson’s theorem follows. These self-reciprocal
numbers are the solutions of z2 = 1 (mod p). So
we need this quadratic congruence to only have the
obvious solutions x = +£1 (mod p).

But we need to be careful. It’s crucial that p is a prime:
note that 52 = 1 (mod 24) but 5 £ +1 (mod 24). We
need the following famous result.

Theorem 3 (Euclid’s lemma) Leta andb be integers
and p be a prime. If p | ab then eitherp | a orp | b.

Proof Assumethatp | aband p 1t a. Thengcd(a,p) =
1 and so there is » € Z with ra = 1 (mod p). Then

b=1b=rab=r0=0 (mod p)

as required. [



This has an immediate corollary:

Theorem 4 Letp be a prime anda € Z. Ifa? = 1
(modp) thena = +1 (mod p).

Proof Now a2 = 1 (mod p) means that p | (a2 — 1),
thatis p | (a — 1)(a + 1). By Euclid’s lemma either
pl(a—1)orp| (a+1). Thusa = 1 (mod p) or
a = —1 (mod p). ]

This allows us to complete the proof of Wilson’s the-
orem. If p is prime, the only numbers between 1 and
p — 1 inclusive which are self-reciprocal modulo p are
1 and p — 1. The numbers between 2 and p — 2 in-
clusive can be paired off into reciprocal pairs. We get
(p—DI'=1x(1x---x1)x(p—1) = —1 (mod p).
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Euclid’'s lemma can be extended to a product of sev-
eral factors by a straightforward induction; | omit the
details:

Theorem 5 Letp be prime. Suppose thatp | ajas - - - ar
where the a; € Z. Then p | a; for at least one 1.

I'll state but don’t prove a generalization of Theorem 4.

Theorem 6 Letp be a prime, and letaq,...,an € Z.
Then the congruence

" a1z" T aos" %4 4a,_124+an =0 (mod p)

has at most n distinct solutions modulo p.

11



Theorem 7 (Fundamental theorem of arithmetic) Let

n € Nwithn > 1. If

n=pip2---Pr — 4192 - -(gs
with each p; and q; prime and wherepy < py < --- <

prandq < g < --- < gs, thenr = s and p;, = q;
for all 1.

Proof Use strong induction. Suppose that each in-
teger m with 1 < m < n has unique prime factor-
ization. Consider n. If n is prime then we must have
r=s=1andn = p] = q;1.

If nisn’t prime and p; = q1 setm =n/py = po-- - pr
g>---gs. Then 1 < m < n. By the inductive hypoth-
esisr —1 =s—1,sothatr = s, and p; = q; for
2 <1 <r.Wewin!

Otherwise p1 # q1. lfp1 < g1 thenaspy | n =
q1---qs then p1 | q; for some i. But as p; and g;
are prime, p; = q;. But this is impossible, as p1 <
g1 < q;. Similarly it is impossible for g7 < pj. This
completes the inductive proof. ]
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Powers modulo a prime

Let’s consider an example. Modulo 11,
22=4 23=g8 2%=5 2°=10.
26=9 2f=7 28=3 29=¢,

210 =1 2ll=9o 2124

and we go round in a cycle of length 10. Again mod-
ulo11

3653, 3755,~~~

and again we go round in a cycle, this time of length 5.
However we find 310 = (3%)2 = 12 = 1 (mod 11).
Indeed for 0 < a < 11 we find 19 = 1 (mod 11).
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Theorem 8 (Fermat’s little theorem) Letp be a prime,
and a an integer with p f a. Then a?~! = 1 (mod p).

Before giving the proof, we give an example illustrat-
ing how the method works. We prove first that 310 =
1 (mod 11). Modulo 11,

310100 = 310x1x2x3%x4x5
X6 XT7Tx8x9x10
3xXx6x9x12x15

X 18 x 21 x 24 x 27 x 30
I3IX6X9X%x1x4
X7Tx10x2x5x8

= 10

By Wilson’s theorem —310 = —1 (mod 11).

The general proof is just the observation that this trick
always works.

14



Proof Note that

p—1
a? tp— 1) =[] (ta) = a(2a) - ((p — 1)a)
t=1
and we claim that the factors a, 2a,...,(p — 1)a are
congruent modulo pto 1, 2,...,p — 1 in some order.

To see this note that if 0 < b < p then the congruence
ax = b (Mmod p) has a unique solution with 0 < x < p
(as gcd(a,p) = 1), and this solution can’t be x = O.
Thus

P Tp—11=m-1) (modp).

By Wilson’s theorem,

—aP"1=—-1 (mod p).

15



As a consequence we get:

Fermat primality test Let n > 1 be an integer.
(1) Pick a with1 < a < n,
(2) compute a1 modulo n,

(3) if a® 1 # 1 (mod n) then n is certainly NOT
PRIME; if a1 = 1 (mod n) then n may (or may
not) be prime.

Note it is surprisingly easy to compute a” modulo n.
Don’t compute in succession a2, a3, a?, ..., a"” mod-
ulo n. Instead use ‘repeated squaring’ trick: if r = 2s
is even, first compute b = a® (mod n) and then use
a” = a?% = b2 (mod n); if r = 2s + 1 is odd, first
compute b = a® (mod n) and then use a” = ¢2511 =
ab? (mod n).
16



We do a miniature example: n = 39, a = 2.

To compute 238 = (219)2 (mod 39) we first compute
219 (mod 39),

to compute 21° = 2(29)2 (mod 39) we first compute
29 (mod 39),

to compute 22 = 2(2%)2 (mod 39) we first compute
2% (mod 39),

to compute 2% = (22)2 (mod 39) we first compute
22 (mod 39).

Now 22 = 4, 2% = 42 = 16,27 = 2 x 162
512 = 5 (mod 39), 212 = 2 x 52 =50 =1
(mod 39) and 238 = 112 = 121 = 4 (mod 39). So
39 isn’t prime!
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We have already discussed the congruence z2 = 1
(mod p) for p prime. When studying sums of two
squares we need to consider the congruence z2
—1 (mod p) for p prime.

We find that for certain primes p = 2, 5, 13 etc.,
the congruence is soluble, but for p = 3, 7, 11 etc.,
there are no solutions. When there are solutions, an
argument similar to that for 2 = 1 shows that there
are at most two solutions.

We tabulate the solutions for some small p:

P L p L p L
2 | 1 13| £5 | 31| -
3 - |17 £4 | 37 | 6
S5 | £2 | 19 - 41 | £9
/ - || 23 - 43 | -
11| - |29 £12 | 47| -
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Theorem 9 Let p be a prime number. The quadratic
congruence

z2=-1 (mod p) ()
is soluble if and only if eitherp = 2 orp =1 (mod 4).

Proof Whenp = 2, x = 1 is a solution. Assume now
that p is odd. Thus either p = 1 or p = 3 (mod 4).

Next suppose that p = 3 (mod 4). Write p = 4k + 3
where k € Z. If x € Z solves (x) then

Pl = 2 = (52)2k+1
= (-1)%Tl=_1 (mod p)
which contradicts Fermat’s little theorem.

Finally suppose that p = 1 (mod 4). Write p = 4k+1
where k € N. Let x = (2k)!. Then

72 (—1)%kF12 x 22 x ... x (2k)?
1(—1)2(—=2) x --- x (2k)(—2k)
1(p—1)2(p—2) x -+ x (2k)(p — 2k)
(p—1)!'=-1 (mod p)

by Wilson’s theorem. [l
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Solving z2 = —1 (mod p)

By the previous proof, we can write p = 4k 4+ 1 and
compute x = (2k)! modulo p. Alas this is not prac-
tical for large p since there is no known shortcut for
computing a! modulo n. For example for p = 53,

26! = 403291461126605635584000000
23 (mod 53).

T

But there is a trick. Pick a at random with 0 < a < p.
Then z = a* (mod p) is a solution of 22 = —1 (mod p)
with probability 1/2. (The other half of the time =z =
+1.) If you are unlucky, pick another a.

For example with p = 53 and ¢ = 2 then £ = 13
and z = 213 (mod 53). Now 2° = 64 = 11, 212 =
112 = 121 = 15and z = 213 = 2 x 15 = 30
(mod 53). Note that 30 = —23 (mod 53).

20



Sums of squares We define
So ={a’+b°:a,bec Z}

as the set of sums of two squares. Of course as
a? + b2 = (4+a)?+ (£b)? we don’t need to consider
negative a and b but it’s convenient to allow these and
to insist that zero is a squares. Obviously 0 € S> and
no element of S, is negative. Our task will be to find
which elements of N lie in S5.

n | a®+ b n | a® + b4 n | a® 4+ b
112402 7 - 13 | 32 4 2°
2112412 || 8 | 22422 | 14 -

3 - 9 [32402| 15 -

4122402 10|32412 | 16 | 424 02
5122412 11 - 17 | 42 4+ 12
6 - 12 - 18 | 32 4 32
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Extracting the prime values p = n from the previous
table gives the following table.

ac+b2 | p | at+b% | p | a®+b°

p
2 | 1941 | 13|34 22 || 31
3 - 17 | 424+ 12 || 37
5 | 22412 19 41
7 - 23 43
11 - 29 47

Exercise: complete this table.

ac+b° | p | ac+b% | p | a®+b?

p

2 |14 12| 13|34 22 | 31 -

3 - 17 | 42412 || 37 | 62 4 12
5 | 22412 | 19 - 41 | 52 4 42
7 - 23 - 43 -

11 - 29 | 52422 | 47 -

Note the similarity to previous table with solutions of
2 = —1 (mod p). It seems as if this congruence
Is soluble if and only if p is the sum of two squares.

Indeed this is the case!
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We prove that primes p = 3 (mod 4) cannot lie in
S»; indeed it is “difficult” for such a prime to divide an
element of S5.

Theorem 10 Let p be a prime withp = 3 (mod 4). If
a,beZandp | (a® + b2) then bothp | a andp | b.

Proof Let’'s assume that p 1 a. Then there is a recip-
rocal of a modulo p, that is a number ¢ with ca = 1
(mod p). Then p | ¢2(a? + b2) and so

0= (ca)?+ (cb)?2 =1+ (cb)? (mod p).

This means that + = c¢b is a solution of the congru-

ence 22 = —1 (mod p). But as p = 3 (mod 4) this
congruence is insoluble. By contradiction then p | a.
Similarly, p | b. []

As a consequence of this, if p is prime, p = 3 (mod 4),
n € So and p | n then p2 | n; moreover n/p? € So,
since if we write n = a2 + b2 then a = pr and b = ps
where a,b € Zand n/p2 =12+ s2 € S5.
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For example, 220 =2 x5x 11 € Sy as 11 is prime,
11 =3 (mod 4), 11 | 220 but 112 4 220.

Repeating the previous argument yields the following
result, which states in effect that for n to lie in S a
prime congruent to 3 modulo 4 must divide it an even
number of times.

Theorem 11 Letp be a prime withp = 3 (mod 4) and
n € So. If we writen = p"m withp 1 m then r is even
andm € So.

Proof We proceed by induction on r. There is nothing
to prove when r = 0. Suppose that » > 0. Then by
the previous remark, p2 | n and n/p2 € S,. This
means that » > 2 and p"~2m € S,. By the inductive
hypothesis, r — 2 is even and m € S5. It follows that
r IS even too. [l

As an example, 1715 = 5 x 73 ¢ S5, as 7 is prime,
7 = 3 (mod 4) and 7 divides 1715 an odd number of

times.
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So far we have lots of negative results about S»: var-
lous criteria proving that numbers aren’t sums of two
squares. What about positive results? Can we de-
scribe any classes of numbers that are definitely sums
of two squares?

One obvious result, that is too obvious to be called a
theorem is that if n € S, and » € Z then r2n € So,
since n = a2 4+ b2 implies r2n = (ra)? + (rb)2.
For example, as 41 = 52 4+ 42 ¢ S, then 4100 =
502 + 402 € S>.

The real key to the structure of S5 is the following the-
orem which is a massive generalization of the pre-
vious trite observation. It states in effect that S5 is
closed under multiplication.

Theorem 12 Let m € Sy, andn € Sy. Then mn €
So.
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Proof It's convenient to use complex numbers. Write
m = a®+b2and n = ¢ + d?. Then m = |a|?
and n = |3|2 where @« = a + bi and 8 = ¢ + di.
So mn = |a|?|8|? = |aB|?. The complex number
af = r + st where r and s are real. Indeed r and s
are integers, for r = ac — bd and s = ad + bc. Hence
mn = r? 4 s2 € So. []

A complex number of the form a+b: where a and b are
integers is called a Gaussian integer. If a.is a complex
number then |a|? is called its norm. The norm of a
product of two complex numbers is the product of their
norms. The elements of S5 are precisely the norms
of Gaussian integers. As the product of two Gaussian
integers is a Gaussian integers, then the product of
two elements of S5 is an element of S5.
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We can use the method of the proof to compute ex-
amples. Consider 9797 = 97 x 101. Now 97 =
92 4 42 and obviously 101 = 102 4 12. Thus

(9% +4°)(10% + 1°)
9 + 44210 + 4|?

(9 4 4i)(10 4 )|
86 + 49i|?

862 + 492,

9797

Indeed by jiggling one of the complex numbers here
we can get a different representation:

(9% +4%)(1% 4 10?)
9 + 44|%|1 + 10|
(9 + 4i)(1 + 100)|2
— 31 4 944|°

312 + 942,

9797
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