
Congruences are respected by addition, subtraction
and multiplication:

a ≡ b (mod n)

and

c ≡ d (mod n)

imply

a± c ≡ b± d (mod n)

and

ac ≡ bd (mod n).

But congruences do not respect division, for example,

14 ≡ 4 (mod 10)

but

14/2 = 7 6≡ 2 = 4/2 (mod 10).
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Each a ∈ Z is congruent to exactly one of the num-
bers 0,1, . . . , n−1 modulo n. For example 1000 ≡ 6

(mod 7). Also there is b ∈ Z with |b| ≤ n/2 such that
a ≡ b (mod n). For example 1000 ≡ −1 (mod 7).

As 02 = 0, 12 = 1, 22 = 4 ≡ 0 (mod 4) and
32 = 9 ≡ 1 (mod 4) then x2 ≡ 0 or 1 (mod 4) for all
x ∈ Z. Similarly x2 ≡ 0, 1 or 4 (mod 8) for all x ∈ Z.
These observations are useful when studying sums of
squares.
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Theorem 1 There are infinitely many primes p with
p ≡ 3 (mod 4).

Proof It suffices to prove that for each n there is such
a p with p > n. Let N = 4(n!) − 1. Then N ≡ 3

(mod 4). Each prime factor of N is odd, so each is
congruent to 1 or 3 modulo 4. Let N = p1p2 · · · pk.
If all the pi are congruent to 1 modulo 4, then N =

p1p2 · · · pk ≡ 1 × 1 × · · · × 1 ≡ 1 (mod 4), which is
false. Therefore at least one of the pi, let’s call it p, is
congruent to 3 modulo 4. If p ≤ n then p | n! and so
N = 4(n)! − 1 ≡ −1 (mod p) contradicting p | N .
Hence p > n, as required. �
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The Euclidean algorithm

The King of Number Theory Algorithms!

Theorem 2 Given a, b ∈ N we can compute g ∈ N

and r, s ∈ Z such that

• g | a and g | b, and

• g = ra + sb.

This g is the greatest common divisor of a and b since
if h ∈ N is a divisor of both a and b then

g = ra + sb ≡ r0 + s0 = 0 (mod h).

So h | g and so h ≤ g. We write g = gcd(a, b).
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The algorithm:

set a1 = a, a2 = b and repeat the following step
while aj+1 - aj:

find qj ∈ N such that aj+2 = aj − qjaj+1 satisfies
0 < aj+2 < aj+1.

When aj+1 | aj then g = aj+1.

Example:

Let a = 37 and b = 14. Then

a1 = 37,

a2 = 14,

a3 = 37− 2× 14 = 9,

a4 = 14− 1× 9 = 5,

a5 = 9− 1× 5 = 4,

a6 = 5− 1× 4 = 1

As 1 | 4, the algorithm terminates and gcd(37,14) =
1.
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Computing r and s

It’s easiest to do this as one goes along, finding rj and
sj such that aj = rja + sjb. In our example:

a1 = 37 = a = 1a + 0b,

a2 = 14 = b = 0a + 1b,

a3 = 9 = a1 − 2a2 = a− 2b,

a4 = 5 = a2 − a3 = −a + 3b,

a5 = 4 = a3 − a4 = 2a− 5b,

a6 = 1 = a4 − a5 = −3a + 8b.

Thus r = −3 and s = 8. I like to set this out in
tabular form:

aj rj sj

37 1 0
14 0 1
9 1 −2
5 −1 3
4 2 −5
1 −3 8
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Solving linear congruences

I restrict to

ax ≡ b (mod n) (∗)

where gcd(a, n) = 1. Then we can find integers
r and s with ra + sn = 1; then ra ≡ 1 (mod n),
Multiplying (∗) by r gives

rax ≡ rb (mod n)

but

rax ≡ 1x ≡ x (mod n)

so the solution of (∗) is x ≡ rb (mod n).

As an example we solve

14x ≡ 22 (mod 37).

We know 1 = 8 × 14 − 3 × 37 so that 8 × 14 ≡ 1

(mod 37). Therefore

x ≡ 8× 14x ≡ 8× 22 = 176 ≡ 28 (mod 37).
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The Euclidean algorithm has some important theoret-
ical consequences. If p is prime, then if p - a the con-
gruence ax ≡ 1 (mod p) is soluble, since gcd(a, p)

must be a factor of p, but it can’t be p so it’s 1. We
call the solution of ax ≡ 1 (mod p) the reciprocal of a

modulo p. We tabulate reciprocals modulo 11:

1 2 3 4 5 6 7 8 9 10
1 6 4 3 9 2 8 7 5 10

Here 1 and 10 are their own reciprocals, but the oth-
ers “pair off”. Hence

10!

= 1× 2× 3× 4× 5× 6× 7× 8× 9× 10

= 1× (2× 6)× (3× 4)× (5× 9)× (7× 8)× 10

≡ 1× 1× 1× 1× 1× 10 (mod 11)

= 10 ≡ −1 (mod 11).

In fact (p − 1)! ≡ −1 (mod p) for all primes p: this is
Wilson’s theorem.
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We can almost prove Wilson’s theorem. By pairing off
each number with its reciprocal, (p−1)! is congruent
to the product of all self-reciprocal (modulo p) num-
bers between 1 and p− 1 inclusive. Obviously 1 and
p− 1 are self-reciprocal modulo p. If there aren’t any
more, Wilson’s theorem follows. These self-reciprocal
numbers are the solutions of x2 ≡ 1 (mod p). So
we need this quadratic congruence to only have the
obvious solutions x ≡ ±1 (mod p).

But we need to be careful. It’s crucial that p is a prime:
note that 52 ≡ 1 (mod 24) but 5 6≡ ±1 (mod 24). We
need the following famous result.

Theorem 3 (Euclid’s lemma) Let a and b be integers
and p be a prime. If p | ab then either p | a or p | b.

Proof Assume that p | ab and p - a. Then gcd(a, p) =

1 and so there is r ∈ Z with ra ≡ 1 (mod p). Then

b = 1b ≡ rab ≡ r0 = 0 (mod p)

as required. �
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This has an immediate corollary:

Theorem 4 Let p be a prime and a ∈ Z. If a2 ≡ 1

(mod p) then a ≡ ±1 (mod p).

Proof Now a2 ≡ 1 (mod p) means that p | (a2 − 1),
that is p | (a − 1)(a + 1). By Euclid’s lemma either
p | (a − 1) or p | (a + 1). Thus a ≡ 1 (mod p) or
a ≡ −1 (mod p). �

This allows us to complete the proof of Wilson’s the-
orem. If p is prime, the only numbers between 1 and
p− 1 inclusive which are self-reciprocal modulo p are
1 and p − 1. The numbers between 2 and p − 2 in-
clusive can be paired off into reciprocal pairs. We get
(p−1)! ≡ 1×(1×· · ·×1)×(p−1) ≡ −1 (mod p).
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Euclid’s lemma can be extended to a product of sev-
eral factors by a straightforward induction; I omit the
details:

Theorem 5 Let p be prime. Suppose that p | a1a2 · · · ar

where the ai ∈ Z. Then p | ai for at least one i.

I’ll state but don’t prove a generalization of Theorem 4.

Theorem 6 Let p be a prime, and let a1, . . . , an ∈ Z.
Then the congruence

xn+a1xn−1+a2xn−2+· · ·+an−1x+an ≡ 0 (mod p)

has at most n distinct solutions modulo p.

11



Theorem 7 (Fundamental theorem of arithmetic) Let
n ∈ N with n > 1. If

n = p1p2 · · · pr = q1q2 · · · qs

with each pi and qi prime and where p1 ≤ p2 ≤ · · · ≤
pr and q1 ≤ q2 ≤ · · · ≤ qs, then r = s and pi = qi

for all i.

Proof Use strong induction. Suppose that each in-
teger m with 1 < m < n has unique prime factor-
ization. Consider n. If n is prime then we must have
r = s = 1 and n = p1 = q1.

If n isn’t prime and p1 = q1 set m = n/p1 = p2 · · · pr =
q2 · · · qs. Then 1 < m < n. By the inductive hypoth-
esis r − 1 = s − 1, so that r = s, and pi = qi for
2 ≤ i ≤ r. We win!

Otherwise p1 6= q1. If p1 < q1 then as p1 | n =
q1 · · · qs then p1 | qi for some i. But as p1 and qi

are prime, p1 = qi. But this is impossible, as p1 <

q1 ≤ qi. Similarly it is impossible for q1 < p1. This
completes the inductive proof. �
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Powers modulo a prime

Let’s consider an example. Modulo 11,

22 ≡ 4, 23 ≡ 8, 24 ≡ 5, 25 ≡ 10.

26 ≡ 9, 27 ≡ 7, 28 ≡ 3, 29 ≡ 6,

210 ≡ 1, 211 ≡ 2, 212 ≡ 4, . . .

and we go round in a cycle of length 10. Again mod-
ulo 11

32 ≡ 9, 33 ≡ 5, 34 ≡ 4, 35 ≡ 1,

36 ≡ 3, 37 ≡ 5, · · ·

and again we go round in a cycle, this time of length 5.
However we find 310 = (35)2 ≡ 12 ≡ 1 (mod 11).
Indeed for 0 < a < 11 we find a10 ≡ 1 (mod 11).
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Theorem 8 (Fermat’s little theorem) Let p be a prime,
and a an integer with p - a. Then ap−1 ≡ 1 (mod p).

Before giving the proof, we give an example illustrat-
ing how the method works. We prove first that 310 ≡
1 (mod 11). Modulo 11,

310 × 10! = 310 × 1× 2× 3× 4× 5

× 6× 7× 8× 9× 10

= 3× 6× 9× 12× 15

× 18× 21× 24× 27× 30

≡ 3× 6× 9× 1× 4

× 7× 10× 2× 5× 8

= 10!.

By Wilson’s theorem −310 ≡ −1 (mod 11).

The general proof is just the observation that this trick
always works.
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Proof Note that

ap−1(p− 1)! =
p−1∏
t=1

(ta) = a(2a) · · · ((p− 1)a)

and we claim that the factors a, 2a, . . . , (p − 1)a are
congruent modulo p to 1, 2, . . . , p− 1 in some order.
To see this note that if 0 < b < p then the congruence
ax ≡ b (mod p) has a unique solution with 0 ≤ x < p

(as gcd(a, p) = 1), and this solution can’t be x = 0.
Thus

ap−1(p− 1)! ≡ (p− 1)! (mod p).

By Wilson’s theorem,

−ap−1 ≡ −1 (mod p).

�
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As a consequence we get:

Fermat primality test Let n > 1 be an integer.

(1) Pick a with 1 < a < n,

(2) compute an−1 modulo n,

(3) if an−1 6≡ 1 (mod n) then n is certainly NOT
PRIME; if an−1 ≡ 1 (mod n) then n may (or may
not) be prime.

Note it is surprisingly easy to compute ar modulo n.
Don’t compute in succession a2, a3, a4, . . . , ar mod-
ulo n. Instead use ‘repeated squaring’ trick: if r = 2s

is even, first compute b ≡ as (mod n) and then use
ar = a2s ≡ b2 (mod n); if r = 2s + 1 is odd, first
compute b ≡ as (mod n) and then use ar = a2s+1 ≡
ab2 (mod n).
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We do a miniature example: n = 39, a = 2.
To compute 238 = (219)2 (mod 39) we first compute
219 (mod 39),
to compute 219 = 2(29)2 (mod 39) we first compute
29 (mod 39),
to compute 29 = 2(24)2 (mod 39) we first compute
24 (mod 39),
to compute 24 = (22)2 (mod 39) we first compute
22 (mod 39).
Now 22 = 4, 24 = 42 = 16, 29 = 2 × 162 =

512 ≡ 5 (mod 39), 219 ≡ 2 × 52 = 50 ≡ 11

(mod 39) and 238 ≡ 112 = 121 ≡ 4 (mod 39). So
39 isn’t prime!
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We have already discussed the congruence x2 ≡ 1

(mod p) for p prime. When studying sums of two
squares we need to consider the congruence x2 ≡
−1 (mod p) for p prime.

We find that for certain primes p = 2, 5, 13 etc.,
the congruence is soluble, but for p = 3, 7, 11 etc.,
there are no solutions. When there are solutions, an
argument similar to that for x2 ≡ 1 shows that there
are at most two solutions.

We tabulate the solutions for some small p:

p x p x p x
2 1 13 ±5 31 -
3 - 17 ±4 37 ±6
5 ±2 19 - 41 ±9
7 - 23 - 43 -
11 - 29 ±12 47 -
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Theorem 9 Let p be a prime number. The quadratic
congruence

x2 ≡ −1 (mod p) (∗)
is soluble if and only if either p = 2 or p ≡ 1 (mod 4).

Proof When p = 2, x = 1 is a solution. Assume now
that p is odd. Thus either p ≡ 1 or p ≡ 3 (mod 4).

Next suppose that p ≡ 3 (mod 4). Write p = 4k + 3
where k ∈ Z. If x ∈ Z solves (∗) then

xp−1 = x4k+2 = (x2)2k+1

≡ (−1)2k+1 = −1 (mod p)

which contradicts Fermat’s little theorem.

Finally suppose that p ≡ 1 (mod 4). Write p = 4k+1
where k ∈ N. Let x = (2k)!. Then

x2 = (−1)2k12 × 22 × · · · × (2k)2

= 1(−1)2(−2)× · · · × (2k)(−2k)

≡ 1(p− 1)2(p− 2)× · · · × (2k)(p− 2k)

= (p− 1)! ≡ −1 (mod p)

by Wilson’s theorem. �
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Solving x2 ≡ −1 (mod p)

By the previous proof, we can write p = 4k + 1 and
compute x = (2k)! modulo p. Alas this is not prac-
tical for large p since there is no known shortcut for
computing a! modulo n. For example for p = 53,

x ≡ 26! = 403291461126605635584000000

≡ 23 (mod 53).

But there is a trick. Pick a at random with 0 < a < p.
Then x ≡ ak (mod p) is a solution of x2 ≡ −1 (mod p)
with probability 1/2. (The other half of the time x ≡
±1.) If you are unlucky, pick another a.

For example with p = 53 and a = 2 then k = 13

and x ≡ 213 (mod 53). Now 26 = 64 ≡ 11, 212 ≡
112 = 121 ≡ 15 and x ≡ 213 ≡ 2 × 15 = 30

(mod 53). Note that 30 ≡ −23 (mod 53).
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Sums of squares We define

S2 = {a2 + b2 : a, b ∈ Z}

as the set of sums of two squares. Of course as
a2 + b2 = (±a)2 +(±b)2 we don’t need to consider
negative a and b but it’s convenient to allow these and
to insist that zero is a squares. Obviously 0 ∈ S2 and
no element of S2 is negative. Our task will be to find
which elements of N lie in S2.

n a2 + b2 n a2 + b2 n a2 + b2

1 12 + 02 7 - 13 32 + 22

2 12 + 12 8 22 + 22 14 -
3 - 9 32 + 02 15 -
4 22 + 02 10 32 + 12 16 42 + 02

5 22 + 12 11 - 17 42 + 12

6 - 12 - 18 32 + 32
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Extracting the prime values p = n from the previous
table gives the following table.

p a2 + b2 p a2 + b2 p a2 + b2

2 12 + 12 13 32 + 22 31
3 - 17 42 + 12 37
5 22 + 12 19 41
7 - 23 43
11 - 29 47

Exercise: complete this table.

p a2 + b2 p a2 + b2 p a2 + b2

2 12 + 12 13 32 + 22 31 -
3 - 17 42 + 12 37 62 + 12

5 22 + 12 19 - 41 52 + 42

7 - 23 - 43 -
11 - 29 52 + 22 47 -

Note the similarity to previous table with solutions of
x2 ≡ −1 (mod p). It seems as if this congruence
is soluble if and only if p is the sum of two squares.
Indeed this is the case!
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We prove that primes p ≡ 3 (mod 4) cannot lie in
S2; indeed it is “difficult” for such a prime to divide an
element of S2.

Theorem 10 Let p be a prime with p ≡ 3 (mod 4). If
a, b ∈ Z and p | (a2 + b2) then both p | a and p | b.

Proof Let’s assume that p - a. Then there is a recip-
rocal of a modulo p, that is a number c with ca ≡ 1

(mod p). Then p | c2(a2 + b2) and so

0 ≡ (ca)2 + (cb)2 ≡ 1 + (cb)2 (mod p).

This means that x = cb is a solution of the congru-
ence x2 ≡ −1 (mod p). But as p ≡ 3 (mod 4) this
congruence is insoluble. By contradiction then p | a.
Similarly, p | b. �

As a consequence of this, if p is prime, p ≡ 3 (mod 4),
n ∈ S2 and p | n then p2 | n; moreover n/p2 ∈ S2,
since if we write n = a2+b2 then a = pr and b = ps

where a, b ∈ Z and n/p2 = r2 + s2 ∈ S2.
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For example, 220 = 2×5×11 /∈ S2 as 11 is prime,
11 ≡ 3 (mod 4), 11 | 220 but 112 - 220.

Repeating the previous argument yields the following
result, which states in effect that for n to lie in S2 a
prime congruent to 3 modulo 4 must divide it an even
number of times.

Theorem 11 Let p be a prime with p ≡ 3 (mod 4) and
n ∈ S2. If we write n = prm with p - m then r is even
and m ∈ S2.

Proof We proceed by induction on r. There is nothing
to prove when r = 0. Suppose that r > 0. Then by
the previous remark, p2 | n and n/p2 ∈ S2. This
means that r ≥ 2 and pr−2m ∈ S2. By the inductive
hypothesis, r − 2 is even and m ∈ S2. It follows that
r is even too. �

As an example, 1715 = 5× 73 /∈ S2, as 7 is prime,
7 ≡ 3 (mod 4) and 7 divides 1715 an odd number of
times.
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So far we have lots of negative results about S2: var-
ious criteria proving that numbers aren’t sums of two
squares. What about positive results? Can we de-
scribe any classes of numbers that are definitely sums
of two squares?

One obvious result, that is too obvious to be called a
theorem is that if n ∈ S2 and r ∈ Z then r2n ∈ S2,
since n = a2 + b2 implies r2n = (ra)2 + (rb)2.
For example, as 41 = 52 + 42 ∈ S2 then 4100 =

502 + 402 ∈ S2.

The real key to the structure of S2 is the following the-
orem which is a massive generalization of the pre-
vious trite observation. It states in effect that S2 is
closed under multiplication.

Theorem 12 Let m ∈ S2 and n ∈ S2. Then mn ∈
S2.
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Proof It’s convenient to use complex numbers. Write
m = a2 + b2 and n = c2 + d2. Then m = |α|2

and n = |β|2 where α = a + bi and β = c + di.
So mn = |α|2|β|2 = |αβ|2. The complex number
αβ = r + si where r and s are real. Indeed r and s

are integers, for r = ac− bd and s = ad+ bc. Hence
mn = r2 + s2 ∈ S2. �

A complex number of the form a+bi where a and b are
integers is called a Gaussian integer. If α is a complex
number then |α|2 is called its norm. The norm of a
product of two complex numbers is the product of their
norms. The elements of S2 are precisely the norms
of Gaussian integers. As the product of two Gaussian
integers is a Gaussian integers, then the product of
two elements of S2 is an element of S2.
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We can use the method of the proof to compute ex-
amples. Consider 9797 = 97 × 101. Now 97 =

92 + 42 and obviously 101 = 102 + 12. Thus

9797 = (92 + 42)(102 + 12)

= |9 + 4i|2|10 + i|2

= |(9 + 4i)(10 + i)|2

= |86 + 49i|2

= 862 + 492.

Indeed by jiggling one of the complex numbers here
we can get a different representation:

9797 = (92 + 42)(12 + 102)

= |9 + 4i|2|1 + 10i|2

= |(9 + 4i)(1 + 10i)|2

= | − 31 + 94i|2

= 312 + 942.
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