The extended Euclidean algorithm

Given $a, b \in \mathbb{N}$, this computes $g = \gcd(a, b)$ and also finds integers r and s such that g = ra + sb. The key is the observation that $\gcd(a, b) = \gcd(b, a - qb)$ for any integer q. If $b \mid a$ then $\gcd(a, b) = b$ but if $b \nmid a$ we choose the integer q with 0 < a - qb < b.

In detail we produce three sequences of numbers $a_1, a_2, \ldots, r_1, r_2, \ldots$ and s_1, s_2, \ldots , and an auxiliary sequence $q_2, q_3 \ldots$. The crucial property of these sequences will be that

$$a_j = r_j a + s_j b \tag{\dagger}$$

for each j, or in matrix/vector terms

We start by taking $a_1 = a$, $a_2 = b$, $r_1 = 1$, $r_2 = 0$, $s_1 = 0$ and $s_2 = 1$. Then (†) holds for j = 1 and j = 2. We repeat the following procedure for $j = 2, 3, \ldots$ If $a_j \mid a_{j-1}$ we STOP: and return the values $g = a_j$, $r = r_j$ and $s = s_j$. Otherwise we let q_j be the integer part of the fraction a_{j-1}/a_j and calculate

$$a_{j+1} = a_{j-1} - q_j a_j$$
, $r_{j+1} = r_{j-1} - q_j r_j$, $s_{j+1} = s_{j-1} - q_j s_j$

or in vector terms

$$\begin{pmatrix} a_{j+1} \\ r_{j+1} \\ s_{j+1} \end{pmatrix} = \begin{pmatrix} a_{j-1} \\ r_{j-1} \\ s_{j-1} \end{pmatrix} - q_j \begin{pmatrix} a_j \\ r_j \\ s_j \end{pmatrix}.$$

Then $0 < a_{j+1} < a_j$ and it's easy to see that as long as $(\dagger)/(\ddagger)$ is true for j-1 and for j then it's also true for j+1.

It's handy to set out these sequences in a table. Let's take $a=963,\,b=657.$

j	$ q_j $	a_j	r_j	s_j
1		963	1	0
2	1	657	0	1
3	2	306	1	-1
$\mid 4 \mid$	6	45	-2	3
5	1	36	13	-19
6		9	-15	22

We stop there, as $9 \mid 36$, and conclude that g = 9, r = -15 and s = 22. We check that g = ra + sb; indeed ra = -14445 and sb = 14454 and 9 = -14445 + 14454.

We remark that in this table the first column (j) is completely superfluous and may be omitted. The second column (q_j) is not essential, but is useful for checking.

MAPLE has built-in functions for the Euclidean algorithm and extended Euclidean algorithm: igcd(a,b) returns the gcd of a and b. Applying the extended Euclidean algorithm is slightly awkward: igcdex(a,b,'r','s') returns the the gcd of a and b and assigns to the variables r and s numbers r and s with gcd(a,b) = ra + sb.

In our example we get:

```
> igcd(963,657);
9
> igcdex(963,657,'r','s');
9
> r;
-15
> s;
```

 $RJC \ 3/2/2005$