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SECTION A

1. Find all solutions to each of the following congruences, or show that
none exist:

(a) x2 ≡ −1 (mod 77); (2)

(b) x2 ≡ −1 (mod 185); (3)

(c) x2 ≡ 3 (mod 133); (5)

(d) x3 + 2x ≡ 2 (mod 72); (6)

(e) x8 ≡ −1 (mod 41); (2)

(f) x21 ≡ 7 (mod 41). (2)
[20]

2. (a) Show that there are infinitely many primes p such that p ≡ 3
(mod 4). (4)

(b) Let p be an odd prime. Define the terms quadratic residue modulo
p and quadratic non-residue modulo p. Show that, among the
integers a with 1 ≤ a ≤ p − 1, there are the same number of
quadratic residues and quadratic non-residues modulo p. (5)

(c) Define the Legendre symbol
(

a

p

)
, where p is an odd prime and a

is any integer. State (without proof) the values of the Legendre

symbols
(−1

p

)
and

(
2
p

)
. Use the law of quadratic reciprocity to

evaluate the following Legendre symbols, showing your working
and justifying each intermediate step:

(i)
(

6
29

)
; (ii)

(
21
41

)
; (iii)

(−22
59

)
; (iv)

(
101
103

)
.

(11)
[20]
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SECTION B

3. (a) Let a be a fixed integer, and let n > 1 be a composite integer.
What does it mean to say that n is:
(i) a pseudoprime to base a;
(ii) a Carmichael number.
Show that if n is a pseudoprime both to base a and to base b,
then it is also a pseudoprime to base ab. Deduce that n is a
Carmichael number if and only if n is a pseudoprime to base p
for every prime p < n which does not divide n. (7)

(b) Give an account of the Miller-Rabin primality test for an integer
n using a given base a. This should include a clear step-by-step
account of the algorithm, together with a brief outline of why the
test works. You may express the algorithm in pseudocode, or as
a procedure in MAPLE or some other computer language, if you
wish. Indicate the various points at which the algorithm may
terminate, and what can be deduced in each case (in particular,
whether a proper factor of n can be obtained). You may assume
that subroutines are available to compute ak (mod n) for k ≥ 0,
and to compute the gcd of two integers. (10)

(c) Illustrate your answer to part (b) by applying the Miller-Rabin
test to n = 449 with base a = 2. What conclusion can you draw?

(3)
[20]4. (a) Define Euler’s totient function ϕ, and show that ϕ(pe) = pe−1(p−

1) when p is prime and e ≥ 1. Write down (without proof)
a formula giving ϕ(n) in terms of the prime factorization of n.
Hence find all solutions of each of the following equations:
(i) ϕ(n) = 46;
(ii) ϕ(n) = 8;
(iii) ϕ(n) = 1

2n. (10)
(b) Let g be an integer, and let p be a prime not dividing g. What

does it mean to say that g is a primitive root modulo p?
Let n ≥ 1 and let a be an integer such that gcd(a, p) = 1, where
again p is a prime. Using the fact that a primitive root modulo p
exists, show that the congruence xn ≡ a (mod p) can be solved
for x if and only if a(p−1)/d ≡ 1 (mod p) with d = gcd(n, p− 1).

(5)
(c) Let p be a prime such that p ≡ 2 (mod 3). Show that for

every integer a, the congruence x3 ≡ a (mod p) has exactly
one solution modulo p. Given that 2 is a primitive root modulo
59, and that 10 ≡ 27 (mod 59), solve the congruence x3 ≡ 10
(mod 59). (5)

[20]
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5. (a) State and prove Euler’s criterion on the Legendre symbol
(

a

p

)
,

where p is an odd prime. [Any standard facts you use should be
clearly stated, but need not be proved.] Apply Euler’s criterion

to evaluate
(−1

p

)
for all odd primes p. (7)

(b) State the law of quadratic reciprocity relating the Legendre sym-

bols
(

p

q

)
and

(
q

p

)
for distinct odd primes p, q. Use it to evaluate(

3
p

)
for all odd primes p. (4)

(c) For n ≥ 1, let Fn = 22n
+ 1 be the nth Fermat number. Show

that if Fn is prime then

3(Fn−1)/2 ≡ −1 (mod Fn). (∗)

(5)

(d) Prove conversely that if (∗) holds then Fn is prime, by first show-
ing that the order of 3 mod Fn is precisely Fn−1. [Standard facts
about the order of an integer a modulo m may be used without
proof.] (4)

[20]6. (a) Let p be an odd prime. Prove that (p − 1)! ≡ −1 (mod p).
Deduce that for r =

(
1
2(p− 1)

)
! we have r2 ≡ −1 (mod p) if

p ≡ 1 (mod 4), and r ≡ ±1 if p ≡ 3 (mod 4). (7)

(b) Prove that a prime p can be written as the sum of two squares if
and only if either p = 2 or p ≡ 1 (mod 4). (7)

(c) Let p be a prime. Show that p2 can be written in the form a2 +b2

for positive integers a, b if and only if p ≡ 1 (mod 4). Express
5329 = 732 in this form. (6)

[20]

Page 4 of 4 MAT3434/END OF PAPER


