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SECTION A

1. (a) Find all solutions of each of the following congruences, or show
that none exist:

(i) x2 ≡ −1 (mod 65);
(ii) x2 ≡ 4 (mod 57);
(iii) x2 ≡ 2 (mod 113);
(iv) x2 ≡ 3 (mod 133). (11)

(b) Write down a formula for ϕ(n) in terms of the prime factorization
of n, where n is Euler’s totient function. Hence find all natural
numbers n (if there are any) such that:

(i) ϕ(n) = 28;
(ii) ϕ(n) = 26;
(iii) ϕ(n) = 20. (10)

(c) State (without proof) the Law of Quadratic Reciprocity, includ-

ing the values of the Legendre symbols
(−1

p

)
and

(
2
p

)
for an

odd prime number p. Evaluate the following Legendre symbols,
showing your working and justifying each intermediate step:

(i)
(

7
23

)
; (ii)

(−15
47

)
; (iii)

(
26
61

)
.

(8)

(d) Find all integer solutions to the following Diophantine equations,
or show that none exist:

(i) 17x + 29y = 8;
(ii) x2 + 7y = 2;
(iii) 2x2 + 4xy + 6y2 = 11;
(iv) x2 − 4x + y2 − 2y = 29. (11)

[40]
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SECTION B

2. (a) Give an account of Pollard’s p− 1 method for factorizing a given
integer n using a given base a. This should include a clear step-by-
step account of the algorithm, together with a brief explanation
of why it works. You may express the algorithm in pseudocode,
or as a procedure in MAPLE or some other computer language, if
you wish. Explain the roles of the various input parameters, and
indicate the various ways in which the algorithm may terminate.
State the likely effect of changing the parameters in the cases
when the algorithm fails to find a proper factor of n.
[You may assume that subroutines are available to compute ak

(mod n) for k ≥ 0, and to compute the gcd of two integers.] (10)

(b) Illustrate your answer to part (a) by applying Pollard’s p − 1
method to n = 2263 with base a = 2 and with maximum number
of iterations kmax = 6. (5)

(c) Without actually carrying out the algorithm, determine how many
steps of the p − 1 method would be needed to factorize n =
71977 = 167× 431.
What would happen if you applied this method to n = 74563 =
173× 431?
[The numbers 167, 173, 431 are all prime.] (5)

[20]3. (a) Define Euler’s totient function ϕ, and show that aϕ(n) ≡ 1 (mod n)
for any natural number n and any integer a with gcd(a, n) = 1.
Briefly explain why ϕ(mn) = ϕ(m)ϕ(n) whenever gcd(m,n) = 1.
Let p and q be distinct prime numbers, and let a be an integer
such that gcd(a, p) = gcd(a, q) = 1. Show that

apq−1 ≡ ap−1aq−1 (mod pq).

(9)

(b) Let p be a prime number. What does it mean to say that an
integer g is a primitive root mod p? Show that if gcd(g, p) =
1 then g is a primitive root mod p if and only if g(p−1)/q 6≡ 1
(mod p) for every prime factor q of p− 1. (4)

(c) Show that 2 is not a primitive root mod 89, but that 3 is a
primitive root mod 89. Hence find all solutions (if any exist) to
the following congruences:

(i) x6 ≡ 9 (mod 89);
(ii) x11 ≡ 27 (mod 89). (7)

[20]
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4. (a) Prove that there are infinitely many prime numbers l with l ≡ 3
(mod 4). (3)

(b) Let p be an odd prime number and let a be any integer. Show
that if l is a prime factor of ap−1 + ap−2 + · · · + a + 1 then the
order of a mod l is either 1 or p. Deduce that either l = p or
l ≡ 1 (mod p). Hence show that there are infinitely many prime
numbers l such that l ≡ 1 (mod p). (9)

(c) Let p be an odd prime number. By choosing an appropriate even
value for a in part (b), prove that there are infinitely many prime
numbers l satisfying both of the conditions

(i) l ≡ 1 (mod p);
(ii) l ≡ 3 (mod 4). (5)

(d) Let p be a prime number such that p ≡ 3 (mod 4). Use part
(c), together with the Law of Quadratic Reciprocity, to show
that there are infinitely many prime numbers l such that p is a
quadratic non-residue mod l. (3)

[20]5. (a) State (without proof) a necessary and sufficient condition, in
terms of the prime factorization, for a natural number n to be
expressible as the sum of two squares, n = a2 + b2 where a, b are
integers.
For each of the numbers n = 41, 47, 49, 53, 77, determine whether
n is the sum of two squares, and if so, express n in this form.
Find two inequivalent expressions for 2173 = 41× 53 as the sum
of two squares.
[If n = a2 + b2 then the 8 expressions (±a)2 + (±b)2 and (±b)2 +
(±a)2 for n are considered to be equivalent.] (8)

(b) Define the term Pythagorean triple. What does it mean to say
that a Pythagorean triple is primitive?
Show that if (x, y, z) is a primitive Pythagorean triple then, pos-
sibly after interchanging x and y, we have

x = r2 − s2, y = 2rs, z = r2 + s2

for some natural numbers r, s, where r > s, gcd(r, s) = 1, and
exactly one of r, s is odd. (8)

(c) Deduce that, if (x, y, z) is any Pythagorean triple, then the prod-
uct xyz is divisible by 60. (4)

[20]
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