
Number theory: Problem sheet 4
Solutions to indicated questions and parts of questions must be submitted by Friday 10 January 2014

You are encouraged to submit solutions to non-assessed problems too

Some of the computational examples ask you to use MAPLE. This package
is somewhat similar to MATLAB. In computational number theory it is essen-
tial one uses a system that can deal with integers of arbitrary length; MAPLE
does but as far as I am aware MATLAB doesn’t. If you are really keen on
programming you could use a language like Python instead (which supports
arbitrary length integers) but then you would need to write your own ver-
sion of the Euclidean algorithm etc. There are lots of introductions to MAPLE

online. One convenient one is at
www.personal.soton.ac.uk/jav/soton/maple/Maple11Tutorial.pdf .
The good thing is that one does not need very much MAPLE for our exam-
ples. Most of what you need is illustrated in the handouts on “the extended
Euclidean algorithm”, “the binary powering algorithm” and “algorithms in
MAPLE” on the webpage. Some other useful commands: isprime detects if
an integer is prime and ifactor factorizes it into primes.

1. (B) A perfect number is a natural number n whose positive divisors
(excluding n itself) add up to n. Thus, for example, 28 is a perfect
number since 1 + 2 + 4 + 7 + 14 = 28. Prove that 2k−1(2k−1) is perfect
whenever 2k − 1 is prime. Also, find all perfect numbers of this form
with k ≤ 30. (You are advised to use MAPLE to check whether 2k − 1 is
prime.)

[Euler proved that every even perfect number has the form described
above. It is still unknown whether there are any odd perfect numbers.]

2. (A) Apply Pollard’s p− 1 algorithm, showing your working, with base
a = 2 to find a prime factor of n = 6527. [10 marks]

3. (A) Apply Pollard’s Rho algorithm, by hand, with iteration function
f(x) = x2 + 1 and seed x0 = 2 to find a prime factor of n = 4847. How
many iterations did you need? [15 marks]

4. (A) Using the MAPLE implementation of Pollard Rho from the website
(or if you prefer you can rewrite it in your favourite computer language
or computer algebra system), find prime factors of each of the following
numbers n, using seed x0 = 2 and iteration function f(x) = x2 + 1.

(i) 247 − 1; (ii) 271 − 1; (iii) 1021 − 3.

In each case, give the number of iterations needed. (You will need to
modify the given code to output the number k as well as g.) [(iii): 15 marks]
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5. (A) Apply the Fermat test, by hand, to each of the following numbers
n with base a:

(i) n = 257, a = 3; (ii) n = 1201, a = 2; (iii) n = 1729, a = 2.

In each case, what do you conclude?

6. (B) An early triumph of the Pollard Rho method was the factorization
of 2256 + 1, already known to be composite, by Brent and Pollard in
1980. They wrote up their proof in the paper ‘Factorization of the
eighth Fermat number’, which was published in 1981 in the journal
Mathematics of Computation, volume 36, pages 627–630.

Download this paper from the JSTOR archive: http://www.jstor.org/
(you may need to be on campus to do this). Which iteration function
did they use to factorize 2256 + 1? What seed did they use? How long
did their calculation take? What is their mnemonic for the factor?

(If you are feeling energetic, repeat their calculation in MAPLE.)

7. (B) Let p be a prime, and let q be a prime factor of 2p− 1. Prove that
ordq(2) = p, and deduce that q ≡ 1 (mod p). [15 marks]

Hence show, by hand, that 213 − 1 and 217 − 1 are both prime, and
find prime factors of each of 223− 1 and 229− 1 (you should show your
working). [15 marks]

8. (B) Let p be prime, and let a be a positive integer with p - (a− 1). Let
m = (ap − 1)/(a− 1), which is an integer, and let q be a prime factor
of m. Prove first that p - m and so that q 6= p. Then prove that a has
order p modulo q, and deduce that q ≡ 1 (mod p).

By choosing a = n!, or otherwise, deduce that there are infinitely many
primes q satisfying q ≡ 1 (mod p).

9. (B) Let p be a prime with p ≡ 1 (mod 3). Prove that there is an
integer a such that ordp(a) = 3. Let b = a − a2. Prove that b2 ≡ −3
(mod p), and deduce, without appealing to Gauss’s lemma or quadratic

reciprocity, that
(

−3
p

)
= 1. [15 marks]

10. (A) Compute the Legendre symbol
(

5
p

)
from scratch using Gauss’s

lemma (as I did for
(

2
p

)
and

(
3
p

)
in lectures).
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11. (B) Prove that for each odd positive integer n the Jacobi symbol sat-
isfies (

−1

n

)
=

{
1 if n ≡ 1 (mod 4),
−1 if n ≡ 1 (mod 4)

and (
2

n

)
=

{
1 if n ≡ ±1 (mod 8),
−1 if n ≡ ±3 (mod 8).

(You may assume thse hold for the Legendre symbol).

12. (A) Find all quadratic residues modulo 29. [5 marks]

13. (A) Evaluate (showing your working) the following Legendre symbols:

(i)

(
77

97

)
; (ii)

(
133

211

)
; (iii)

(
1066

2011

)
. [(iii): 5 marks]

Make up some examples of your own, and compute them until you are
completely comfortable with the process.

14. (B) Prove that the congruence

x8 ≡ 16 (mod p)

is soluble for every prime p.

15. (A) In each case, the prime p is congruent to 3 modulo 4. By computing
a(p+1)/4 (using MAPLE if necessary) solve the congruence x2 ≡ a (mod p).

(i) p = 103, a = 7; (ii) p = 211, a = 11;
(iii) p = 2011, a = 666. [(iii): 5 marks]

16. (B) For each odd prime p define p∗ =
(

−1
p

)
p. Prove that p∗ ≡ 1

(mod 4). Also prove that the Law of Quadratic Reciprocity is equiva-
lent to the statement that (

q

p

)
=

(
p∗

q

)
for all odd primes p and q.

17. (C) Let p be an odd prime number. Define

τp =

p−1∑
a=0

(
a

p

)
exp(2πia/p).

Prove that τ 2p =
(

−1
p

)
p. (Much harder!) Determine the value of τp.

RJC 21/11/2013

3


