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This is the proof of quadratic reciprocity given by Hardy andWright in An
Introduction to the Theory of Numbers. It is shorter than that in Davenport’s
The Higher Arithmetic but its motivation is much more opaque.

Let p and q be distinct odd primes. Let

R = {(x, y) ∈ Z2 : 0 < x < p/2, 0 < y < q/2}.

We can regard R as the set of “lattice points” in the interior of the rectangle
with vertices (0, 0), (p/2, 0), (0, q/2) and (p/2, q/2). The x-coordinates of
points in R lie in the set {1, 2, . . . , 1

2
(p− 1)} and the y-coordinates lie in the

set {1, 2, . . . , 1
2
(q − 1)}. Thus

|R| = p− 1

2
× q − 1

2
.

So |R| is even unless p ≡ q ≡ 3 (mod 4) when |R| is odd. So the Law of
Quadratic Reciprocity is equivalent to(

q

p

)(
p

q

)
= (−1)|R|.

We study what Gauss’s lemma tells us about
(
q
p

)
. It equals (−1)µ where

µ is the number of elements x ∈ {1, . . . , 1
2
(p− 1)} for which qx is p-negative.

Now qx is p-negative if and only if there is an integer y such that py− p/2 <
qx < py. We claim that for this integer y, the point (x, y) lies in R. To see
this we have

q

p
x < y <

q

p
x+

1

2

and as x > 0 and x < p/2 then 0 < y < 1
2
(q + 1)/2. As 1

2
(q + 1) is the next

integer after 1
2
(q − 1) then 0 < y ≤ frac12(q − 1) < q/2. Hence (x, y) ∈ R

and 0 > qx− py > −p/2. Let

R1 = {(x, y) ∈ R : 0 > qx− py > −p/2}.
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Then 0 < x < p/2 and the py > qx > py− p/2 proving that qx is p-negative.
So |R1| is the number of x ∈ {1, . . . , 1

2
(p − 1)} for which qx is p-negative,

that is |R1| = µ. Hence
(
q
p

)
= (−1)|R1|.

Swapping over p and q (and x and y) we get that similarly
(
p
q

)
= (−1)|R2|

where
R2 = {(x, y) ∈ R : 0 < qx− py < q/2}.

The sets R1 and R2 are disjoint, so that(
q

p

)(
p

q

)
= (−1)|R1∪R2|.

I claim there are no points on the line qx − py = 0 inside R. For such
a point qx = py is a multiple of pq and also positive, so at least pq. Thus
x ≥ pq/q = p which is impossible. Therefore

R1 ∪R2 = {(x, y) ∈ R : −p/2 < qx− py < q/2}.

The complement of R1 ∪R2 in R is R3 ∪R4 where

R3 = {(x, y) ∈ R : qx− py ≤ −p/2}

and
R4 = {(x, y) ∈ R : qx− py ≥ q/2}

(which are obviously disjoint). I claim that R3 and R4 have the same number
of elements. If (x, y) ∈ R then φ(x, y) = (x′, y′) ∈ R where x′ = 1

2
(p+ 1)− x

and y′ = 1
2
(q+ 1)− y. Clearly φ(φ(x, y)) = (x, y) so that φ is bijective. Also

for (x, y) ∈ R then (x, y) ∈ R3 if and only if qx− py ≤ −p/2 if and only if

q

(
p+ 1

2
− x′

)
− p

(
q + 1

2
− y′

)
≤ −p/2

if and only if
q − p
2
− (qx′ − py′) ≤ −p/2

if and only if q/2 ≤ qx′ − py′ if and only if (x′, y′) ∈ R4. Then φ(R3) = R4

and as φ is bijective, |R4| = |R3|. Thus

|R1 ∪R2| = |R| − |R3| − |R4| = |R| − 2|R3| ≡ |R| (mod 2)

so that (
q

p

)(
p

q

)
= (−1)|R1∪R2| = (−1)|R|

which is the Law of Quadratic Reciprocity.
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