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Let p be an odd prime number. We consider which numbers a # 0 are
squares modulo p. If @ = b? then a = (—b)? and as b Z —b (mod p) then
r? = a (mod p) has precisely the two solutions z = +b (mod p). Tt follows
that there are exactly %(p — 1) such a up to congruence modulo p, which
are 12, 22, [2(p — 1)]%. These are the quadratic residues modulo p. The
:(p—1) remaining values modulo p, for which the congruence z? = a (mod p)

is insoluble are the quadratic nonresidues modulo p. We define the Legendre
symbol (%)as follows:

a 0 ifpla,
(—) = 1 if a is a quadratic residue modulo p,
p —1 if a is a quadratic nonresidue modulo p.

The Legendre symbol < ) depends only on a modulo p, that is,

a
p

(2) - (é) whenever a =0 (mod p).
p p

Theorem 1 (Euler’s criterion) Let p be an odd prime and let a € Z.

Then
(%) =a" V2 (mod p). (%)

Proof If p | a then both sides of (%) are zero modulo p. We may thus
suppose that p { a. Let g be a primitive root modulo p. Then g®~1/2 #£ 1
(mod p) but [¢?~V/2]2 = g»=1 = 1 (mod p). It follows that g®?~1/2 = —1
(mod p). Now a = ¢g* (mod p) for some integer k£ > 0 and so

1 if k is even
(p—l)/2 = k(p—l)/Q = (p—l)/2 k = — k g ’
¢ =9 =l = —{—1 if k is odd.



Let us attempt to solve the congruence z? = a = ¢g* (mod p). The solution
2r —

must have the form # = ¢ (mod p) and so ¢* = ¢* (mod p). This is
equivalent to the congruence 2r = k (mod p —1). As 2| (p — 1) this linear
congruence is soluble if and only if k£ is even. Hence if a is a quadratic

residue then k is even and a® V2 = 1 = <%> (mod p), while if a is a

quadratic nonresidue then k is odd and a®?~1/2 = —1 = (%) (mod p). O

Corollary 1 Let p be an odd prime, and let a, b € Z.. Then

9)-6)6)

In particular if a and b are both quadratic residues modulo p or both quadratic
nonresidues modulo p, then ab is a quadratic residue modulo p, while if one
of a and b is a quadratic residue modulo p and the other is a quadratic
nonresidue modulo p, then ab is a quadratic nonresidue modulo p.

Proof By Euler’s criterion

(a_b) = (ab)7/2 = g-D/2p0-1/2 = (2) (9) (mod p).
P p) \p

Both sides of this congruence lie in the set {—1,0,1} and as p > 3 no two
distinct elements of this set are congruent modulo p. Hence we have equality,

p p p '

Corollary 2 Let p be an odd prime. Then
-1\ _ 1 ifp=1 (mod 4),
p ) | =1 ifp=3(mod4).
Proof By Euler’s criterion

(S1) =00 (mod )

p
If p=1 (mod 4) then (p — 1)/2 is even, and so (%) = 1 (mod p); conse-
quently (’?1) =1, If p = 3 (mod 4) then (p—1)/2 is odd, and so (%) =-1

(mod p); consequently (%) = —1. a

We now prove Gauss’s lemma, which gives a useful if opaque characteri-
zation of the Legendre symbol.



Theorem 2 (Gauss’s lemma) Let p be an odd prime and let a be an in-
teger coprime top. Let R={j e N:0<j<p/2} and S={j e N:p/2 <
j < p}. Then <%> = (=1)* where p is the number of j € R for which the

least nonnegative residue of aj modulo p lies in S.

Proof It is convenient to introduce some notation. If m is an integer, it is
congruent modulo p to exactly one integer between —p/2 and p/2. Let (m)
denote this integer: that is, (m) = m (mod p) and | (m) | < p/2. Then m is
congruent modulo p to an element of S if and only if (m) < 0.

We consider the numbers (aj) for j € R. Then p is the number of j € R
for which (aj) < 0. Let us write (aj) = €;b; where €; = £1 and b; = | (aj) |.
Then (—1)" = H;ijl)/Q g;. I claim that the numbers by, ..., by_1)/2 are the
same as the numbers in R in some order. Certainly b; # 0 for if b; = 0
then p | aj contrary to Euclid’s lemma (p{ a and p{ j). Suppose there were
integers j and k with 0 < j < k < p/2 and b; = b,. Then ak = gy, =
g;b; = gjepa; (mod p). Sop | a(k £ j) and as p { a then p | (k£ ). But
O0<k+j<pand 0 < k—j < p/2. Neither k + j nor k — j is a multiple
of p. This contradiction shows that all the b; are distinct, and so the b; are
the elements of R in some order.

It follows that ]V b; = (3(p—1))! and so

7j=1
-1 (p—1)/2 (p—1)/2 p—1
aP—1)/2 (T)l - H (aj) = H (gjbj) =(=1)* (T)' (mod p).
j=1 j=1

As (3(p — 1))! is coprime to p, we may cancel it and get aP~1/2 = (—1)~

a

(mod p). Applying Euler’s criterion gives <5> = (=1~ O

In the proof of the following theorem, we adopt the following notation.
If x <y then N(z,y) denotes the number of integers n with z < n < y. It is
useful to note several simple properties of N(z,y).

o N(z,y) = N(—y, —x);

e if ¢ is an integer, then N(z +a,y + a) = N(x,y);

e if a is a positive integer, then N(z,y + a) = N(z,y) + a;

e if a is a positive integer, and x is not an integer, then N(z,x + a) = a;
e if z <y < zand y is not an integer, then N(z,z) = N(x,y) + N(y, 2).

The proofs of all of these are straightforward, and left as exercises.



Theorem 3 Leta € N, and let p and q be distinct odd primes, each coprime
to a. If ¢ = £p (mod 4a) then (g) = (%)

Proof By Gauss’s lemma, (%) = (—1)" where p is the number of integers

j € (0,p/2) and with aj having least positive residue modulo p in the interval
(p/2,p). If0 < j < p/2then0 < aj < ap/2 and so p is the number of integers

J with
’ 1
aj € k——=1|pk
reU((s-3) )

where b = a/2 or b = (a — 1)/2 according to whether b is even or b is odd.
Hence p is the number of integers in the set

N ((% — 1)297@) |

2a a

that is
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Similarly (g) = (—1)” where

NESIE)

2a a
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Suppose first that ¢ = p (mod 4a). Without loss of generality, ¢ > p, and
we may write ¢ = p + 4ar with » € N. Then

—~

b
2k — 1 k
v = ZN<<2—>p+(4k—2)r,;p+4kr>

k=1 a
b
2k —1
- ZN(—<k >p,@+2r)
— 2a a
b
- ElE )
— 2a a
= p+2rb

Consequently



Now suppose that ¢ = —p (mod 4a). Then p+ ¢ = 4as with s an integer.

Thus
b
_ (2k—1)p kp
v = ZN((4k—2) — ks —
k=1
b
2k—1
= ZN(@—Z%S u—(4]{:—2)3)
a 2a
k=1
b
kp (2k —1
C (e,
a 2a
k=1
Hence
b
2k —1)p kp kp (2k—1)p
= N N|{—,——+2
u+v ; ( a)—l— (a’ 5 + 2s
b
2k—1 2k—1
_ ZN((k Jp (2k )p+28)
2a 2a
k=1
= 2sb.
Consequently

We can now prove the law of quadratic reciprocity

Theorem 4 (Quadratic reciprocity) Let p and q be distinct odd primes.

Then
3)-()
p q
unless p = q = 3 (mod 4) in which case
() --()
p q
Proof Suppose first that p = ¢ (mod 4).
q > p so that ¢ = p + 4a with a € N. Then

()= (57)- ()

5

Without loss of generality,

(5



and

By Theorem 3

and then

(0- ()6

while if p = ¢ = 3 (mod 4) then

(=G G -6

Now suppose that p = —¢ (mod 4). Then p + ¢ = 4a with a € N. Then

(B)-(5)-(2)-C
(0 (7))

o (5)- (9
9-C)

and then

)
)

O

When applying quadratic reciprocity, it is useful to have a version involv-
ing the Jacobi symbol. This is denoted by (“), like the Legendre symbol, but

n

in the Legendre symbol the number n must be an odd prime, in the Jacobi
symbol n can be any positive odd integer and a any integer at all. We define
the Jacobi symbol as follows: if n is a positive odd integer, write n = p; ... px

with the p; prime. Then set
() =11(;)
n i1 Pj

6



It is immediate that the Jacobi symbol shares some of the formal properties
of the Legendre symbol:

e (&) ==£1if a and n are coprime and (%) = 0 otherwise,

e () = (L) whenever a = b (mod n),

o () =) ) and (53) = (3) ()
The most convenient property is that quadratic reciprocity is true for the
Jacobi symbol too. Let m and n be coprime odd positive integers. Write

m =pi...pr and n = q; ...qs where the p; and ¢, are primes. By quadratic
reciprocity,

(=T G) =TI () = v ()

j=1 k=1 j=1 k=1
where €;; = 1 unless p; = ¢; = 3 (mod 4) in which case €;; = —1 and p
is the number of pairs (j,k) with €, = —1. But g = ab where a is the

number of p; which are 3 modulo 4 and b is the number of g, which are 3
modulo 4. Then m = 3* = (—1)? (mod 4) and n = 3* = (—1)® (mod 4).
Then (—1)% = 1 unless both a and b are odd when (—1)* = —1. Thus
(—1)* = —1if and only if m =n =3 (mod 4):

G =G
unless m =n = 3 (mod 4) in which case
G =)

(This even holds when m and n are non-coprime positive odd integers, for
then both sides are zero.)



