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Let p be an odd prime number. We consider which numbers a 6≡ 0 are
squares modulo p. If a ≡ b2 then a ≡ (−b)2 and as b 6≡ −b (mod p) then
x2 ≡ a (mod p) has precisely the two solutions x ≡ ±b (mod p). It follows
that there are exactly 1

2
(p − 1) such a up to congruence modulo p, which

are 12, 22, . . . [1
2
(p − 1)]2. These are the quadratic residues modulo p. The

1
2
(p−1) remaining values modulo p, for which the congruence x2 ≡ a (mod p)

is insoluble are the quadratic nonresidues modulo p. We define the Legendre

symbol
(

a
p

)
as follows:

(
a

p

)
=


0 if p | a,
1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

The Legendre symbol
(

a
p

)
depends only on a modulo p, that is,(

a

p

)
=

(
b

p

)
whenever a ≡ b (mod p).

Theorem 1 (Euler’s criterion) Let p be an odd prime and let a ∈ Z.
Then (

a

p

)
≡ a(p−1)/2 (mod p). (∗)

Proof If p | a then both sides of (∗) are zero modulo p. We may thus
suppose that p - a. Let g be a primitive root modulo p. Then g(p−1)/2 6≡ 1
(mod p) but [g(p−1)/2]2 = gp−1 ≡ 1 (mod p). It follows that g(p−1)/2 ≡ −1
(mod p). Now a ≡ gk (mod p) for some integer k ≥ 0 and so

a(p−1)/2 ≡ gk(p−1)/2 ≡ [g(p−1)/2]k ≡ (−1)k ≡
{

1 if k is even,
−1 if k is odd.
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Let us attempt to solve the congruence x2 ≡ a ≡ gk (mod p). The solution
must have the form x ≡ gr (mod p) and so g2r ≡ gk (mod p). This is
equivalent to the congruence 2r ≡ k (mod p − 1). As 2 | (p − 1) this linear
congruence is soluble if and only if k is even. Hence if a is a quadratic

residue then k is even and a(p−1)/2 ≡ 1 =
(

a
p

)
(mod p), while if a is a

quadratic nonresidue then k is odd and a(p−1)/2 ≡ −1 =
(

a
p

)
(mod p). 2

Corollary 1 Let p be an odd prime, and let a, b ∈ Z. Then(
ab

p

)
=

(
a

p

) (
b

p

)
.

In particular if a and b are both quadratic residues modulo p or both quadratic
nonresidues modulo p, then ab is a quadratic residue modulo p, while if one
of a and b is a quadratic residue modulo p and the other is a quadratic
nonresidue modulo p, then ab is a quadratic nonresidue modulo p.

Proof By Euler’s criterion(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

) (
b

p

)
(mod p).

Both sides of this congruence lie in the set {−1, 0, 1} and as p ≥ 3 no two
distinct elements of this set are congruent modulo p. Hence we have equality,
not just congruence: (

ab

p

)
=

(
a

p

) (
b

p

)
.

2

Corollary 2 Let p be an odd prime. Then(
−1

p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Proof By Euler’s criterion(
−1

p

)
≡ (−1)(p−1)/2 (mod p).

If p ≡ 1 (mod 4) then (p − 1)/2 is even, and so
(
−1
p

)
≡ 1 (mod p); conse-

quently
(
−1
p

)
= 1, If p ≡ 3 (mod 4) then (p−1)/2 is odd, and so

(
−1
p

)
≡ −1

(mod p); consequently
(
−1
p

)
= −1. 2

We now prove Gauss’s lemma, which gives a useful if opaque characteri-
zation of the Legendre symbol.
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Theorem 2 (Gauss’s lemma) Let p be an odd prime and let a be an in-
teger coprime to p. Let R = {j ∈ N : 0 < j < p/2} and S = {j ∈ N : p/2 <

j < p}. Then
(

a
p

)
= (−1)µ where µ is the number of j ∈ R for which the

least nonnegative residue of aj modulo p lies in S.

Proof It is convenient to introduce some notation. If m is an integer, it is
congruent modulo p to exactly one integer between −p/2 and p/2. Let 〈m〉
denote this integer: that is, 〈m〉 ≡ m (mod p) and | 〈m〉 | < p/2. Then m is
congruent modulo p to an element of S if and only if 〈m〉 < 0.

We consider the numbers 〈aj〉 for j ∈ R. Then µ is the number of j ∈ R
for which 〈aj〉 < 0. Let us write 〈aj〉 = εjbj where εj = ±1 and bj = | 〈aj〉 |.
Then (−1)r =

∏(p−1)/2
j=1 εj. I claim that the numbers b1, . . . , b(p−1)/2 are the

same as the numbers in R in some order. Certainly bj 6= 0 for if bj = 0
then p | aj contrary to Euclid’s lemma (p - a and p - j). Suppose there were
integers j and k with 0 < j < k < p/2 and bj = bk. Then ak ≡ εkbk =
εjbj ≡ εjεkaj (mod p). So p | a(k ± j) and as p - a then p | (k ± j). But
0 < k + j < p and 0 < k − j < p/2. Neither k + j nor k − j is a multiple
of p. This contradiction shows that all the bj are distinct, and so the bj are
the elements of R in some order.

It follows that
∏(p−1)/2

j=1 bj = (1
2
(p− 1))! and so

a(p−1)/2

(
p− 1

2

)
! =

(p−1)/2∏
j=1

(aj) ≡
(p−1)/2∏

j=1

(εjbj) = (−1)µ

(
p− 1

2

)
! (mod p).

As (1
2
(p − 1))! is coprime to p, we may cancel it and get a(p−1)/2 ≡ (−1)µ

(mod p). Applying Euler’s criterion gives
(

a
p

)
= (−1)µ. 2

In the proof of the following theorem, we adopt the following notation.
If x < y then N(x, y) denotes the number of integers n with x < n < y. It is
useful to note several simple properties of N(x, y).

• N(x, y) = N(−y,−x);

• if a is an integer, then N(x + a, y + a) = N(x, y);

• if a is a positive integer, then N(x, y + a) = N(x, y) + a;

• if a is a positive integer, and x is not an integer, then N(x, x + a) = a;

• if x < y < z and y is not an integer, then N(x, z) = N(x, y) + N(y, z).

The proofs of all of these are straightforward, and left as exercises.
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Theorem 3 Let a ∈ N, and let p and q be distinct odd primes, each coprime

to a. If q ≡ ±p (mod 4a) then
(

a
q

)
=

(
a
p

)
.

Proof By Gauss’s lemma,
(

a
p

)
= (−1)µ where µ is the number of integers

j ∈ (0, p/2) and with aj having least positive residue modulo p in the interval
(p/2, p). If 0 < j < p/2 then 0 < aj < ap/2 and so µ is the number of integers
j with

aj ∈
b⋃

k=1

((
k − 1

2

)
p, kp

)
where b = a/2 or b = (a − 1)/2 according to whether b is even or b is odd.
Hence µ is the number of integers in the set

b⋃
k=1

(
(2k − 1)p

2a
,
kp

a

)
,

that is

µ =
b∑

k=1

N

(
(2k − 1)p

2a
,
kp

a

)
.

Similarly
(

a
q

)
= (−1)ν where

ν =
b∑

k=1

N

(
(2k − 1)q

2a
,
kq

a

)
.

Suppose first that q ≡ p (mod 4a). Without loss of generality, q > p, and
we may write q = p + 4ar with r ∈ N. Then

ν =
b∑

k=1

N

(
(2k − 1)p

2a
+ (4k − 2)r,

kp

a
+ 4kr

)

=
b∑

k=1

N

(
(2k − 1)p

2a
,
kp

a
+ 2r

)

=
b∑

k=1

[
N

(
(2k − 1)p

2a
,
kp

a

)
+ 2r

]
= µ + 2rb.

Consequently (
a

q

)
= (−1)ν = (−1)µ+2rb = (−1)µ =

(
a

p

)
.
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Now suppose that q ≡ −p (mod 4a). Then p+ q = 4as with s an integer.
Thus

ν =
b∑

k=1

N

(
(4k − 2)s− (2k − 1)p

2a
, 4ks− kp

a

)

=
b∑

k=1

N

(
kp

a
− 4ks,

(2k − 1)p

2a
− (4k − 2)s

)

=
b∑

k=1

N

(
kp

a
,
(2k − 1)p

2a
+ 2s

)
.

Hence

µ + ν =
b∑

k=1

[
N

(
(2k − 1)p

2a
,
kp

a

)
+ N

(
kp

a
,
(2k − 1)p

2a
+ 2s

)]

=
b∑

k=1

N

(
(2k − 1)p

2a
,
(2k − 1)p

2a
+ 2s

)
= 2sb.

Consequently (
a

q

)
= (−1)ν = (−1)−µ+2sb = (−1)µ =

(
a

p

)
.

2

We can now prove the law of quadratic reciprocity

Theorem 4 (Quadratic reciprocity) Let p and q be distinct odd primes.
Then (

q

p

)
=

(
p

q

)
unless p ≡ q ≡ 3 (mod 4) in which case(

q

p

)
= −

(
p

q

)
.

Proof Suppose first that p ≡ q (mod 4). Without loss of generality,
q > p so that q = p + 4a with a ∈ N. Then(

q

p

)
=

(
p + 4a

p

)
=

(
4a

p

)
=

(
a

p

)
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and (
p

q

)
=

(
q − 4a

q

)
=

(
−4a

q

)
=

(
−1

q

) (
a

q

)
.

By Theorem 3 (
a

p

)
=

(
a

q

)
and then (

q

p

)
=

(
−1

q

) (
a

q

)
.

Thus if p ≡ q ≡ 1 (mod 4) then(
q

p

)
=

(
−1

q

) (
p

q

)
=

(
p

q

)
while if p ≡ q ≡ 3 (mod 4) then(

q

p

)
=

(
−1

q

) (
p

q

)
= −

(
p

q

)
.

Now suppose that p ≡ −q (mod 4). Then p + q = 4a with a ∈ N. Then(
q

p

)
=

(
4a− p

p

)
=

(
4a

p

)
=

(
a

p

)
and (

p

q

)
=

(
4a− q

q

)
=

(
4a

q

)
=

(
a

q

)
.

By Theorem 3 (
a

p

)
=

(
a

q

)
and then (

q

p

)
=

(
p

q

)
.

2

When applying quadratic reciprocity, it is useful to have a version involv-
ing the Jacobi symbol. This is denoted by

(
a
n

)
, like the Legendre symbol, but

in the Legendre symbol the number n must be an odd prime, in the Jacobi
symbol n can be any positive odd integer and a any integer at all. We define
the Jacobi symbol as follows: if n is a positive odd integer, write n = p1 . . . pk

with the pj prime. Then set (a

n

)
=

k∏
j=1

(
a

pj

)
.
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It is immediate that the Jacobi symbol shares some of the formal properties
of the Legendre symbol:

•
(

a
n

)
= ±1 if a and n are coprime and

(
a
n

)
= 0 otherwise,

•
(

a
n

)
=

(
b
n

)
whenever a ≡ b (mod n),

•
(

ab
n

)
=

(
a
n

) (
b
n

)
and

(
a

mn

)
=

(
a
m

) (
a
n

)
.

The most convenient property is that quadratic reciprocity is true for the
Jacobi symbol too. Let m and n be coprime odd positive integers. Write
m = p1 . . . pr and n = q1 . . . qs where the pj and qk are primes. By quadratic
reciprocity,(m

n

)
=

r∏
j=1

s∏
k=1

(
pj

qk

)
=

r∏
j=1

s∏
k=1

εj,k

(
qk

pj

)
= (−1)µ

( n

m

)
where εj,k = 1 unless pj ≡ qj ≡ 3 (mod 4) in which case εj,k = −1 and µ
is the number of pairs (j, k) with εj,k = −1. But µ = ab where a is the
number of pj which are 3 modulo 4 and b is the number of qk which are 3
modulo 4. Then m ≡ 3a ≡ (−1)a (mod 4) and n ≡ 3b ≡ (−1)b (mod 4).
Then (−1)ab = 1 unless both a and b are odd when (−1)µ = −1. Thus
(−1)µ = −1 if and only if m ≡ n ≡ 3 (mod 4):(m

n

)
=

( n

m

)
unless m ≡ n ≡ 3 (mod 4) in which case(m

n

)
= −

( n

m

)
.

(This even holds when m and n are non-coprime positive odd integers, for
then both sides are zero.)
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