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Let p be an odd prime number. We shall consider how to solve the
congruence z2 = a (mod p) whenever a is a quadratic residue of p.

As almost all congruences in this note will be modulo p, we shall drop
the notation “(mod p)”, just writing the congruence sign = when congruences
modulo p are considered.

The easy case is where p = 3 (mod 4). Then m = 1(p — 1) is an odd
number. If a is a quadratic residue modulo p, then ™ = 1 by Euler’s
criterion. Thus, as m + 1 is even,
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and it follows that the solution of 22 = a is x = +a(™+D/2 = £4P+D/4,

As an example, let p = 1999 and @ = 2. Then using MAPLE we get the
solution b where b = 2P/ = 2500 = 562 We check that 562% = 2.

The hard case is where p = 1 (mod 4). In this case write p — 1 = 2°m
where m is odd. Then s > 2. If a is a quadratic residue modulo p then

1=a@ /2= ¢27'm — (gm)27" If we define
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Uy = a and vo = amtH/2

then
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vg =a auyp.

If we are incredibly lucky, then uy will be congruent to 1 modulo p and then
the solution of 22 = a will be z = +v,. But we won’t always be lucky. Note
however, that (ug)2 = 1 and so the order of uy modulo p is a factor of 25~
and so is a power of 2.

In general, when uy #Z 1, we shall construct sequences ug, uy, us, ... and
Vg, U1, Vg, . .. with the property that

vr = auy,



and that the order of u; modulo p is a power of 2, 2" say, with ro > r; >
ro > ---. If we can do this, we win, since eventually we get to a k with
r, = 0. This means that the order of u; modulo p is 2° = 1, which means
that 1 = uj = uy, so that v} = a. The solution to z* = a is thus z = +uy,.

To construct these sequences we need some more information. Let b be a
quadratic nonresidue modulo p and let ¢ = b™. Then
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by Euler’s criterion.
Now suppose we have some uy and v, with v,% = auy, and also up having
order 2™ modulo p with 0 < r, < s — 1. This means that

urt =1 but ug'fl Z 1.
As u2™* = (12?2 we conclude that
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u} = -1

Thus
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=u, = (ukc2s_rk)2rk_1.

Let us define
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Upr1 = UpC and Vpy1 = UgC

(this makes sense as s —r, — 1 > 0). Then

2 — 2 257"k _ 257"k
Uk+1 = Y,C = augcC = QUg+1

and also u} | " = 1. This means that the order of uz; modulo p is a factor
of 2"#=1. This order is thus 2"+ where 7,11 < 7, — 1 < r. This completes
the algorithm.

One stumbling block on this algorithm is that we need a quadratic non-
residue b of p. There is no deterministic algorithm that is proved to produce
such a quadratic nonresidue in a short time. However one can easily find
quadratic nonresidues randomly. For p = 1 (mod 4) if we choose uniformly
at random an integer b with 2 < b < %(p — 1) then it is a quadratic non-
residue with probability > % The expected number of random picks to
obtain a quadratic nonresidue is thus < 2.

Let us see this algorithm in action on a fairly complex example. Let
p = 769. Then p —1 = 768 = 2 x 3, so s = 8 and m = 3. The first

natural number which is a quadratic nonresidue of 769 is 7, so take b = 7



and so ¢ = 73 = 343. Tt is convenient to calculate ¢’ for 0 < j<s—1. We
get ¢ = 3432 = 761, ¢t = 7612 = 64, & = 64% = 251, !¢ = 2512 = 712,
2 = 7122 = 173, & = 1732 = 707 and ¢'® = 7072 = 768 = —1 as
demanded by the theory.

Let us solve 22 = 6. We compute

uy = a™ = 6 = 216 and vo = a™ V2 = 36.

Next, u? = 216% = 516, ul = 516% = 182, ud = 182% = 57, ul® = 572 = 173,
= 1732 = 707 and uf* — 7072 = 768 = —1. Then

1= 64 128

' = (ugc?)®

so take
uy = upc? = 216 x 761 = 579 and U1 = voc = 36 X 343 = 44.

Next, u? = 579% = 726, uf = 726% = 311, u§ = 3112 = 596, ui® = 5962 =
707, u32 = 7072 = —1. Then

1= Ui’26128 — <U1C4)32

so take
Uy = urct = 579 x 64 = 144 and Ve = v1¢F = 44 x 761 = 417.

Next, u3 = 1442 = 742, uy = 7422 = 729, u§ = 729% = 62, ulb = 622 =
768 = —1. Then

1 = ubc™® = (uyc

8)32
so take
U = usc® = 144 x 251 = 1 and v = vict = 417 x 64 = 542.

As ug = 1 we conclude that the solution of 22 = 6 is v = +v3 = +542
F227. Indeed we check that 2272 = 6.



