Pythagorean triples and sums of squares

Robin Chapman

16 January 2004

1 Pythagorean triples

A Pythagorean triple (x,y,z) is a triple of positive integers satisfying $z^2 + y^2 = z^2$. If $g = \gcd(x,y,z)$ then (x/g,y/g,z/g) is also a Pythagorean triple. It follows that if g > 1, (x,y,z) can be obtained from the "smaller" Pythagorean triple (x/g,y/g,z/g) by multiplying each entry by g. It is natural then to focus on Pythagorean triples (x,y,z) with $\gcd(x,y,z) = 1$ —these are called primitive Pythagorean triples.

It will be useful to note a basic fact about primitive Pythagorean triples.

Theorem 1 Let (x, y, z) be a primitive Pythagorean triple. Then gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.

Proof Suppose gcd(x,y) > 1. Then there is a prime p with $p \mid x$ and $p \mid y$. Then $z^2 = x^2 + y^2 \equiv 0 \pmod{p}$. As $p \mid z^2$ then $p \mid z$ and so $p \mid gcd(x,y,z)$, contradicting (x,y,z) being a primitive Pythagorean triple. Thus gcd(x,y) = 1.

The proofs that gcd(x, z) = 1 and gcd(y, z) = 1 are similar.

Considering things modulo 4 we can determine the parities of the numbers in a primitive Pythagorean triple.

Theorem 2 If (x, y, z) is a primitive Pythagorean triple, then one of x and y is even, and the other odd. (Equivalently, x + y is odd.) Also z is odd.

Proof Note that if x is even then $x^2 \equiv 0 \pmod{4}$ and if x is odd then $x^2 \equiv 1 \pmod{4}$. If x and y are both odd then $x^2 \equiv y^2 \equiv 1 \pmod{4}$. Hence $z^2 \equiv x^2 + y^2 \equiv 2 \pmod{4}$, which is impossible. If x and y are both even, then $\gcd(x,y) \geq 2$ contradicting Theorem 1. We conclude that one of x and y is even, and the other is odd.

In any case, $z \equiv z^2 = x^2 + y^2 \equiv x + y \pmod{2}$, so z is odd.

As the rôles of x and y in Pythagorean triples are symmetric, it makes little loss in generality in studying only primitive Pythagorean triples with x odd and y even.

We can now prove a theorem characterizing primitive Pythagorean triples

Theorem 3 Let (x, y, z) be a primitive Pythagorean triple with x odd. Then there are $r, s \in \mathbb{N}$ with r > s, gcd(r, s) = 1 and r + s odd, such that $x = r^2 - s^2$, y = 2rs and $z = r^2 + s^2$.

Conversely, if $r, s \in \mathbb{N}$ with r > s, gcd(r, s) = 1 and r + s odd, then $(r^2 - s^2, 2rs, r^2 + s^2)$ is a primitive Pythagorean triple.

Proof Let (x, y, z) be a primitive Pythagorean triple with x odd. Then y is even and z is odd. Let $a = \frac{1}{2}(z - x)$, $b = \frac{1}{2}(z + x)$ and c = y/2. Then $a, b, c \in \mathbb{N}$. Also

$$ab = \frac{(z-x)(z+x)}{4} = \frac{z^2 - x^2}{4} = \frac{y^2}{4} = c^2.$$

Let $g = \gcd(a, b)$. Then $g \mid (a + b)$ and $g \mid (b - a)$; that is $g \mid z$ and $g \mid x$. As $\gcd(x, z)$, by Theorem 1, then g = 1, that is $\gcd(a, b) = 1$.

Let p be a prime factor of a. Then $p \nmid b$, so $v_p(b) = 0$. Hence

$$v_p(a) = v_p(a) + v_p(b) = v_p(ab) = v_p(c^2) = 2v_p(c)$$

is even. Thus a is a square. Similarly b is a square. Write $a=s^2$ and $b=r^2$ where $r,s\in \mathbb{N}$. Then $\gcd(r,s)\mid a$ and $\gcd(r,s)\mid b$; as a and b are coprime, $\gcd(r,s)=1$. Now $x=b-a=r^2-s^2$; therefore r>s. Also $z=a+b=r^2+s^2$. As $c^2=ab=r^2s^2$, c=rs and so y=2rs. Finally as x is odd, then $1\equiv x=r^2+s^2\equiv r+s$; that is r+s is odd. This proves the first half of the theorem.

To prove the second part, let $r, s \in \mathbf{N}$ with r > s, $\gcd(r, s) = 1$ and r + s odd. Set $x = r^2 - s^2$, y = 2rs and $z = r^2 + s^2$. Certainly $y, z \in \mathbf{N}$ and also $x \in \mathbf{N}$ as r > s > 0. Also

$$x^2 + y^2 = (r^2 - s^2)^2 + (2rs)^2 = (r^4 - 2r^2s^2 + s^4) + 4r^2s^2 = r^4 + 2r^2s^2 + s^4 = z^2.$$

Hence (x, y, z) is a Pythagorean triple. Certainly y is even, and $x = r^2 - s^2 \equiv r - s \equiv r + s \pmod{2}$: x is odd. To show that (x, y, z) is a primitive Pythagorean triple we examine $g = \gcd(x, z)$. As x is odd, g is odd. Also $g \mid (x^2 + z^2)$ and $g \mid (z^2 - x^2)$, that is $g \mid 2s^2$ and $g \mid 2r^2$. As r and s are coprime, then $\gcd(2r^2, 2s^2) = 2$, and so $g \mid 2$. As g is odd g = 1. Hence (x, y, z) is a primitive Pythagorean triple.

We now apply this to the proof of Fermat's last theorem for exponent 4.

Theorem 4 There do not exist $x, y, z \in \mathbb{N}$ with

$$x^4 + y^4 = z^4. (1)$$

Proof In fact we prove a stronger result. We claim that there are no $x, y, u \in \mathbf{N}$ with

$$x^4 + y^4 = u^2. (2)$$

A natural number solution (x, y, z) to (1) gives one for (2), namely $(x, y, u) = (x, y, z^2)$. Thus it suffices to prove that (2) is insoluble over \mathbb{N} .

We use Fermat's method of descent. Given a solution (x, y, u) of (2) we produce another solution (x', y', u') with u' < u. This is a contradiction if we start with the solution of (2) minimizing u.

Let (x, y, u) be a solution of (2) over \mathbf{N} with minimum possible u. We claim first that $\gcd(x, y) = 1$. If not, then $p \mid x$ and $p \mid y$ for some prime p. Then $p^4 \mid (x^4 + y^4)$, that is, $p^4 \mid u^2$. Hence $p^2 \mid u$. Then $(x', y', u') = (x/p, y/p, u/p^2)$ is a solution of (2) in \mathbf{N} with u' < u. This is a contradiction. Hence $\gcd(x, y) = 1$.

As gcd(x,y) = 1 then $gcd(x^2,y^2) = 1$, and so (x^2,y^2,u) is a primitive Pythagorean triple by (2). By the symmetry of x and y we may assume that x^2 is odd and y^2 is even, that is, x is odd and y is even. Hence there are r, $s \in \mathbb{N}$ with gcd(r,s) = 1

$$x^{2} = r^{2} - s^{2},$$

$$y^{2} = 2rs,$$

$$u = r^{2} + s^{2}.$$

Then $x^2+s^2=r^2$, and as $\gcd(r,s)=1$ then (x,s,r) is a primitive Pythagorean triple. As x is odd, there exist $a,b\in \mathbb{N}$ with $\gcd(a,b)=1$ and

$$x = a^2 - b^2,$$

$$s = 2ab,$$

$$r = a^2 + b^2.$$

Then

$$y^2 = 2rs = 4(a^2 + b^2)ab,$$

equivalently $(y/2)^2 = ab(a^2 + b^2) = abr$. (Recall that y is even.) If p is prime and $p \mid \gcd(a,r)$ then $b^2 = (a^2 + b^2) - a^2 \equiv 0 \pmod{p}$ and so $p \mid b$. This is impossible, as $\gcd(a,b) = 1$. Thus $\gcd(a,r) = 1$. Similarly $\gcd(b,r) = 1$. Now abr is a square. If $p \mid a$, then $p \nmid b$ and $p \nmid r$. Thus $v_p(a) = v_p(abr)$

is even, and so a is a square. Similarly b and r are squares. Write $a = x'^2$, $b = y'^2$ and $r = u'^2$ where x', y', $u' \in \mathbb{N}$. Then

$$u'^2 = a^2 + b^2 = x'^4 + y'^4$$

so (x', y', u') is a solution of (2). Also

$$u' < u'^2 = a^2 + b^2 = r < r^2 < r^2 + s^2 = u.$$

This contradicts the minimality of u in the solution (x, y, u) of (2). Hence (2) is insoluble over \mathbf{N} . Consequently (1) is insoluble over \mathbf{N} .

2 Sums of squares

For $k \in \mathbb{N}$ we let $S_k = \{a_1^2 + \dots + a_k^2 : a_1, \dots, a_k \in \mathbb{Z}\}$ be the set of sums of k squares. Note that we allow zero; for instance $1 = 1^2 + 0^2 \in S_2$.

The sets S_2 and S_4 are closed under multiplication.

Theorem 5 1. If $m, n \in S_2$ then $mn \in S_2$.

2. If $m, n \in S_4$ then $mn \in S_4$.

Proof Let $m, m \in S_2$. Then $m = a^2 + b^2$ and $n = r^2 + s^2$ where $a, b, r, s \in \mathbb{Z}$. By the *two-square* formula,

$$(a^2 + b^2)(r^2 + s^2) = (ar - bs)^2 + (as + br)^2,$$

it is immediate that $mn \in S_2$.

Let $m, m \in S_4$. Then $m = a^2 + b^2 + c^2 + d^2$ and $n = r^2 + s^2 + t^2 + u^2$ where $a, b, c, d, r, s, t, u \in \mathbf{Z}$. By the four-square formula,

$$(a^{2} + b^{2} + c^{2} + d^{2})(r^{2} + s^{2} + t^{2} + u^{2})$$

$$= (ar - bs - ct - du)^{2} + (as + br + cu - dt)^{2} + (at - bu + cr + ds)^{2} + (au + bt - cs + dr)^{2}.$$

it is immediate that $mn \in S_4$.

We remark that the two-square theorem comes from complex numbers:

$$(a^{2} + b^{2})(c^{2} + d^{2}) = |a + bi|^{2}|c + di|^{2}$$

$$= |(a + bi)(c + di)|^{2}$$

$$= |(ac - bd) + (ad + bc)|^{2}$$

$$= (ac - bd)^{2} + (ad + bc)^{2}.$$

Similarly the four-square theorem comes from the theory of quaternions (if you know what they are).

We can restrict the possible factorizations of a sum of two squares. Recall that if p is prime, and n is an integer, then $v_p(n)$ denotes the exponent of the largest power of p dividing n: $p^{v_p(n)} \mid n$ but $p^{v_p(n)+1} \nmid n$.

Theorem 6 Let p be a prime with $p \equiv 3 \pmod{4}$ and let $n \in \mathbb{N}$. If $n \in S_2$ then $v_p(n)$ is even.

Proof Let $n = a^2 + b^2$ with $a, b \in \mathbf{Z}$ and suppose $p \mid n$. We aim to show that $p \mid a$ and $p \mid b$. Suppose $p \nmid a$. Then there is $c \in \mathbf{Z}$ with $ac \equiv 1 \pmod{p}$. Then $0 \equiv c^2n = (ac)^2 + (bc)^2 \equiv 1 + (bc)^2 \pmod{p}$. This implies that $\left(\frac{-1}{p}\right) = 1$, but we know that $\left(\frac{-1}{p}\right) = 1$ when $p \equiv 3 \pmod{4}$. This contradiction proves that $p \mid a$. Similarly $p \mid b$. Thus $p^2 \mid (a^2 + b^2) = n$ and $n/p^2 = (a/p)^2 + (b/p)^2 \in S_2$.

Let $n \in S_2$ and $k = v_p(n)$. We have seen that if k > 0 then $k \ge 2$ and $n/p^2 \in S_2$. Note that $v_p(n/p^2) = k - 2$. Similarly if k - 2 > 0 (that is if k > 2) then $k - 2 \ge 2$ (that is $k \ge 4$) and $n/p^4 \in S_2$. Iterating this argument, we find that if k = 2r + 1 is odd, then $n/p^{2r} \in S_2$ and $v(n/p^{2r}) = 1$, which is impossible. We conclude that k is even.

If $n \in \mathbb{N}$, we can write $n = rm^2$ where m^2 is the largest square dividing n and r is squarefree, that is either r = 1 or r is a product of distinct primes. If any prime factor p of r is congruent to 3 modulo 4 then $v_p(n) = 1 + 2v_p(m)$ is odd, and $n \notin S_2$. Hence, if $n \in S_2$, the only possible prime factors of r are p = 2 and the p congruent to 1 modulo 4. Obviously $2 = 1^2 + 1^2 \in S_2$. It would be nice if all primes congruent to 1 modulo 4 were also in S_2 . Fortunately, this is the case.

Theorem 7 Let p be a prime with $p \equiv 1 \pmod{4}$. Then $p \in S_2$.

Proof As $p \equiv 1 \pmod{4}$ then $\left(\frac{-1}{p}\right) = 1$ and so there is $u \in \mathbb{Z}$ with $u^2 \equiv -1 \pmod{p}$. Let

$$A = \{(m_1, m_2) : m_1, m_2 \in \mathbf{Z}, 0 \le m_1, m_2 < \sqrt{p}\}.$$

Then A has $(1+s)^2$ elements, where s is the integer part of \sqrt{p} , that is, $s \leq \sqrt{p} < s+1$. Hence |A| > p. For $\mathbf{m} = (m_1, m_2) \in \mathbf{R}^2$ define $\phi(\mathbf{m}) = um_1 + m_2$. Then ϕ is a linear map from \mathbf{R}^2 to \mathbf{R} , and if $\mathbf{m} \in \mathbf{Z}^2$ then $\phi(\mathbf{m}) \in \mathbf{Z}$.

As |A| > p, the $\phi(\mathbf{m})$ for $\mathbf{m} \in A$ can't all be distinct modulo p. Hence there are distinct \mathbf{m} , $\mathbf{n} \in A$ with $\phi(\mathbf{m}) \equiv \phi(\mathbf{n}) \pmod{p}$. Let $\mathbf{a} = \mathbf{m} - \mathbf{n}$. Then

 $\phi(\mathbf{a}) = \phi(\mathbf{m}) - \phi(\mathbf{n}) \equiv 0 \pmod{p}$. Let $\mathbf{a} = (a, b)$. Then $a = m_1 - n_1$ where $0 \le m_1, n_1 < \sqrt{p}$ so that $|a| < \sqrt{p}$. Similarly $|b| < \sqrt{p}$. Then $a^2 + b^2 < 2p$. As $\mathbf{m} \ne \mathbf{n}$ then $\mathbf{a} \ne (0, 0)$ and so $a^2 + b^2 > 0$. But $0 \equiv \phi(\mathbf{a}) = ua + b \pmod{p}$. Hence $b \equiv -ua \pmod{p}$ and so $a^2 + b^2 \equiv a^2 + (-ua)^2 \equiv a^2(1 + u^2) \equiv 0 \pmod{p}$. As $a^2 + b^2$ is a multiple of p, and $0 < a^2 + b^2 < 2p$, then $a^2 + b^2 = p$. We conclude that $p \in S_2$.

We can now characterize the elements of S_2 .

Theorem 8 (Two-square theorem) Let $n \in \mathbb{N}$. Then $n \in S_2$ if and only if $v_p(n)$ is even whenever p is a prime congruent to 3 modulo 4.

Proof If $n \in S_2$, p is prime and $p \equiv 3 \pmod{4}$ then $v_p(n)$ is even by Theorem 7.

If $v_p(n)$ is even whenever p is a prime congruent to 3 modulo 4 then $p = rm^2$ where each prime factor p of r is either 2 or congruent to 1 modulo 4. By Theorem 7 all such p lie in S_2 . Hence By Theorem 5 $r \in S_2$. Hence $r = a^2 + b^2$ where $a, b \in \mathbf{Z}$ and so $n = rm^2 = (am)^2 + (bm)^2 \in S_2$.

The representation of a prime as a sum of two squares is essentially unique.

Theorem 9 Let p be a prime. If $p = a^2 + b^2 = c^2 + d^2$ with $a, b, c, d \in \mathbb{N}$ then either a = c and b = d or a = d and b = c.

Proof Consider

$$(ac + bd)(ad + bc) = a^2cd + abc^2 + abd^2 + b^2cd$$

= $(a^2 + b^2)cd + ab(c^2 + d^2)$
= $pcd + pab = p(ab + cd)$.

As $p \mid (ac + bd)(ad + bc)$ then either $p \mid (ac + bd)$ or $p \mid (ad + bc)$. Assume the former — the latter case can be treated by reversing the rôles of c and d. Now ac + bd > 0 so that $ac + bd \ge p$. Also

$$(ac+bd)^{2} + (ad-bc)^{2} = a^{2}c^{2} + 2abcd + b^{2}d^{2} + a^{2}d^{2} - 2abcd + b^{2}c^{2}$$
$$= a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2}$$
$$= (a^{2} + b^{2})(c^{2} + d^{2}) = p^{2}.$$

As $ac+bd \ge p$, the only way this is possible is if ac+bd = p and ad-bc = 0. Then $ac^2 + bcd = cp$ and $ad^2 - bcd = 0$, so adding gives $a(c^2 + d^2) = cp$, that is ap = cp, so that a = c. Then $c^2 + bd = p = c^2 + d^2$ so that b = d.

We wish to prove the theorem of Lagrange to the effect that all natural numbers are sums of four squares. It is crucial to establish this for primes. **Theorem 10** Let p be a prime. Then $p \in S_4$.

Proof If $p \equiv 1 \pmod{4}$ then there are $a, b \in \mathbf{Z}$ with $p = a^2 + b^2 + 0^2 + 0^2$ (Theorem 7) so that $p \in S_4$. Also $2 = 1^2 + 1^2 + 0^2 + 0^2 \in S_4$ and $3 = 1^2 + 1^2 + 1^2 + 0^2 \in S_4$. We may assume that p > 3 and that $p \equiv 3 \pmod{4}$. As a consequence $\left(\frac{-1}{p}\right) = -1$.

Let w be the smallest positive integer with $\left(\frac{w}{p}\right) = -1$. Then $\left(\frac{w-1}{p}\right) = 1$ and $\left(\frac{-w}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{w}{p}\right) = 1$. Hence there are $u, v \in \mathbf{Z}$ with $w - 1 \equiv u^2 \pmod{p}$ and $-w \equiv v^2 \pmod{p}$. Then $1 + u^2 + v^2 \equiv 1 + (w - 1) - w \equiv 0 \pmod{p}$.

Let

$$B = \{(m_1, m_2, m_3, m_4) : m_1, \dots, m_4 \in \mathbf{Z}, 0 \le m_1, \dots, m_4 < \sqrt{p}\}.$$

Then B has $(1+s)^4$ elements, where s is the integer part of \sqrt{p} , that is, $s \leq \sqrt{p} < s+1$. Hence $|A| > p^2$. For $\mathbf{m} = (m_1, nm_2, m_3, m_4)$ define $\psi(\mathbf{m}) = (um_1 + vm_2 + m_3, -vm_1 + um_2 + m_4)$. Then ψ is a linear map from \mathbf{R}^4 to \mathbf{R}^2 . If $\mathbf{m} \in \mathbf{Z}^4$ then $\psi(\mathbf{m}) \in \mathbf{Z}^2$. We write $(a, b) \equiv (a', b') \pmod{p}$ if $a \equiv a' \pmod{p}$ and $b \equiv b' \pmod{p}$. If we have a list $(a_1, b_1), \ldots, (a_N, b_N)$ of vectors in \mathbf{Z}^2 with $N > p^2$, then there must be some i and j with $(a_i, b_i) \equiv (a_j, b_j) \pmod{p}$. This happens for the vectors $\psi(\mathbf{m})$ with $\mathbf{m} \in B$ as $|B| > p^2$. There are distinct \mathbf{m} , $\mathbf{n} \in B$ with $\psi(\mathbf{m}) \equiv \psi(\mathbf{n}) \pmod{p}$. Let $\mathbf{a} = \mathbf{m} - \mathbf{n}$. Then $\psi(\mathbf{a}) = \psi(\mathbf{m}) - \psi(\mathbf{n}) \equiv 0 \pmod{p}$. Let $\mathbf{a} = (a, b, c, d)$. Then $a = m_1 - n_1$ where $0 \leq m_1, n_1 < \sqrt{p}$ so that $|a| < \sqrt{p}$. Similarly |b|, |c|, $|d| < \sqrt{p}$. Then $a^2 + b^2 + c^2 + d^2 < 4p$. As $\mathbf{m} \neq \mathbf{n}$ then $\mathbf{a} \neq (0, 0, 0, 0)$ and so $a^2 + b^2 + c^2 + d^2 > 0$.

Now $(0,0) \equiv \phi(\mathbf{a}) = (ua + vb + c, -va + ub + d) \pmod{p}$. Hence $c \equiv -ua - vb \pmod{p}$ and $d \equiv va - ub \pmod{p}$. Then

$$a^{2} + b^{2} + c^{2} + d^{2} \equiv a^{2} + b^{2} + (ua + vb)^{2} + (va - ub)^{2}$$
$$= (1 + u^{2} + v^{2})(a^{2} + b^{2}) \equiv 0 \pmod{p}$$

As $a^2 + b^2 + c^2 + d^2$ is a multiple of p, and $0 < a^2 + b^2 + c^2 + d^2 < 4p$, then $a^2 + b^2 + c^2 + d^2 \in \{p, 2p, 3p\}$.

When $a^2 + b^2 + c^2 + d^2 = p$ then certainly $p \in S_4$. Alas, we need to consider the bothersome cases where $a^2 + b^2 + c^2 + d^2 = 2p$ or 3p.

Suppose that $a^2+b^2+c^2+d^2=2p$. Then $a^2+b^2+c^2+d^2\equiv 2\pmod 4$ so that two of $a,\,b,\,c,\,d$ are odd and the other two even. Without loss of generality a and b are odd and c and d are even. Then $\frac{1}{2}(a+b),\,\frac{1}{2}(a-b),\,\frac{1}{2}(c+d)$ and $\frac{1}{2}(c-d)$ are all integers, and a simple computation gives

$$\left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2 + \left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2 = \frac{a^2+b^2+c^2+d^2}{2} = p$$

so that $p \in S_4$.

Finally suppose that $a^2+b^2+c^2+d^2=3p$. Then $a^2+b^2+c^2+d^2$ is a multiple of 3 but not 9. As $a^2\equiv 0$ or 1 (mod 3) then either exactly one or all four of a,b,c and d are multiples of 3. But the latter case is impossible (for then $a^2+b^2+c^2+d^2$ would be a multiple of 9), so without loss of generality $3\mid a$ and $b,c,d\equiv \pm 1\pmod 3$. By replacing b by -b etc., if necessary, we may assume that $b\equiv c\equiv d\equiv 1\pmod 3$. Then Then $\frac{1}{3}(b+c+d),\frac{1}{3}(a+b-c),\frac{1}{3}(a+c-d),\frac{1}{3}(a+d-b)$, are all integers, and a simple computation gives

$$\left(\frac{b+c+d}{3}\right)^{2} + \left(\frac{a+b-c}{3}\right)^{2} + \left(\frac{a+c-d}{3}\right)^{2} + \left(\frac{a+d-b}{3}\right)^{2}$$

$$= \frac{a^{2} + b^{2} + c^{2} + d^{2}}{3} = p$$

so that $p \in S_4$.

We can now prove Lagrange's four-square theorem.

Theorem 11 (Lagrange) If $n \in \mathbb{N}$ then $n \in S_4$.

Proof Either $n = 1 = 1^2 + 0^2 + 0^2 + 0^2 \in S_4$, or n is a product of a sequence of primes. By Theorem 10, each prime factor of n lies in S_4 . Then by Theorem 5, $n \in S_4$.

We finish with some remarks about sums of three squares. This is a much harder topic than sums of two and of four squares. One reason for this is that the analogue of Theorem 5 is false. Let $m=3=1^2+1^2+1^2$ and $n=5=2^2+1^2+0^2$. Then $m\in S_3$ and $n\in S_3$ but $mn=15\notin S_3$. It follows that we cannot reduce the study of sums of three squares to this problem for primes.

Theorem 12 1. If $m \in S_3$ then $m \not\equiv 7 \pmod{8}$.

2. If $4n \in S_3$ then $n \in S_3$.

Proof Let $m = a_1^2 + a_2^2 + a_3^2$. As $a_j^2 \equiv 0$ or 1 (mod 4) then $m \equiv k \pmod{4}$ where k is the number of odd a_j . If $m \equiv 7 \pmod{8}$ then $m \equiv 3 \pmod{4}$ and so all of the a_j are odd. But if a_j is odd, then $a_j^2 \equiv 1 \pmod{8}$ and so $m = a_1^2 + a_2^2 + a_3^2 \equiv 3 \pmod{8}$, a contradiction.

 $m = a_1^2 + a_2^2 + a_3^2 \equiv 3 \pmod{8}$, a contradiction. Let $m = 4n = a_1^2 + a_2^2 + a_3^2$. As $m \equiv 0 \pmod{4}$ then all of the a_j are even. Hence $n = (a_1/2)^2 + (a_2/2)^2 + (a_3/2)^2 \in S_3$.

As a consequence, if $n = 4^k m$ where k is a nonnegative integer and $m \equiv 7 \pmod{8}$ then $n \notin S_3$. Gauss proved in his *Disquisitiones Arithmeticae* that if $n \in \mathbb{N}$ is not of this form, then $n \in S_3$. Alas, all known proofs are too difficult to be presented in this course.