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1 Pythagorean triples

A Pythagorean triple (x, y, z) is a triple of positive integers satisfying z2 +
y2 = z2. If g = gcd(x, y, z) then (x/g, y/g, z/g) is also a Pythagorean
triple. It follows that if g > 1, (x, y, z) can be obtained from the “smaller”
Pythagorean triple (x/g, y/g, z/g) by multiplying each entry by g. It is nat-
ural then to focus on Pythagorean triples (x, y, z) with gcd(x, y, z) = 1 —
these are called primitive Pythagorean triples.

It will be useful to note a basic fact about primitive Pythagorean triples.

Theorem 1 Let (x, y, z) be a primitive Pythagorean triple. Then gcd(x, y) =
gcd(x, z) = gcd(y, z) = 1.

Proof Suppose gcd(x, y) > 1. Then there is a prime p with p | x and
p | y. Then z2 = x2 + y2 ≡ 0 (mod p). As p | z2 then p | z and so
p | gcd(x, y, z), contradicting (x, y, z) being a primitive Pythagorean triple.
Thus gcd(x, y) = 1.

The proofs that gcd(x, z) = 1 and gcd(y, z) = 1 are similar. 2

Considering things modulo 4 we can determine the parities of the numbers
in a primitive Pythagorean triple.

Theorem 2 If (x, y, z) is a primitive Pythagorean triple, then one of x and
y is even, and the other odd. (Equivalently, x+ y is odd.) Also z is odd.

Proof Note that if x is even then x2 ≡ 0 (mod 4) and if x is odd then
x2 ≡ 1 (mod 4). If x and y are both odd then x2 ≡ y2 ≡ 1 (mod 4). Hence
z2 ≡ x2 + y2 ≡ 2 (mod 4), which is impossible. If x and y are both even,
then gcd(x, y) ≥ 2 contradicting Theorem 1. We conclude that one of x and
y is even, and the other is odd.

In any case, z ≡ z2 = x2 + y2 ≡ x+ y (mod 2), so z is odd. 2
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As the rôles of x and y in Pythagorean triples are symmetric, it makes
little loss in generality in studying only primitive Pythagorean triples with x
odd and y even.

We can now prove a theorem characterizing primitive Pythagorean triples

Theorem 3 Let (x, y, z) be a primitive Pythagorean triple with x odd. Then
there are r, s ∈ N with r > s, gcd(r, s) = 1 and r + s odd, such that
x = r2 − s2, y = 2rs and z = r2 + s2.

Conversely, if r, s ∈ N with r > s, gcd(r, s) = 1 and r + s odd, then
(r2 − s2, 2rs, r2 + s2) is a primitive Pythagorean triple.

Proof Let (x, y, z) be a primitive Pythagorean triple with x odd. Then y
is even and z is odd. Let a = 1

2
(z− x), b = 1

2
(z + x) and c = y/2. Then a, b,

c ∈ N. Also

ab =
(z − x)(z + x)

4
=
z2 − x2

4
=
y2

4
= c2.

Let g = gcd(a, b). Then g | (a+ b) and g | (b− a); that is g | z and g | x. As
gcd(x, z), by Theorem 1, then g = 1, that is gcd(a, b) = 1.

Let p be a prime factor of a. Then p - b, so vp(b) = 0. Hence

vp(a) = vp(a) + vp(b) = vp(ab) = vp(c
2) = 2vp(c)

is even. Thus a is a square. Similarly b is a square. Write a = s2 and
b = r2 where r, s ∈ N. Then gcd(r, s) | a and gcd(r, s) | b; as a and b are
coprime, gcd(r, s) = 1. Now x = b − a = r2 − s2; therefore r > s. Also
z = a+ b = r2 + s2. As c2 = ab = r2s2, c = rs and so y = 2rs. Finally as x
is odd, then 1 ≡ x = r2 + s2 ≡ r + s; that is r + s is odd. This proves the
first half of the theorem.

To prove the second part, let r, s ∈ N with r > s, gcd(r, s) = 1 and r+ s
odd. Set x = r2 − s2, y = 2rs and z = r2 + s2. Certainly y, z ∈ N and also
x ∈ N as r > s > 0. Also

x2 +y2 = (r2−s2)2 +(2rs)2 = (r4−2r2s2 +s4)+4r2s2 = r4 +2r2s2 +s4 = z2.

Hence (x, y, z) is a Pythagorean triple. Certainly y is even, and x = r2−s2 ≡
r − s ≡ r + s (mod 2): x is odd. To show that (x, y, z) is a primitive
Pythagorean triple we examine g = gcd(x, z). As x is odd, g is odd. Also
g | (x2 + z2) and g | (z2 − x2), that is g | 2s2 and g | 2r2. As r and s are
coprime, then gcd(2r2, 2s2) = 2, and so g | 2. As g is odd g = 1. Hence
(x, y, z) is a primitive Pythagorean triple. 2

We now apply this to the proof of Fermat’s last theorem for exponent 4.
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Theorem 4 There do not exist x, y, z ∈ N with

x4 + y4 = z4. (1)

Proof In fact we prove a stronger result. We claim that there are no x, y,
u ∈ N with

x4 + y4 = u2. (2)

A natural number solution (x, y, z) to (1) gives one for (2), namely (x, y, u) =
(x, y, z2). Thus it suffices to prove that (2) is insoluble over N.

We use Fermat’s method of descent. Given a solution (x, y, u) of (2) we
produce another solution (x′, y′, u′) with u′ < u. This is a contradiction if we
start with the solution of (2) minimizing u.

Let (x, y, u) be a solution of (2) over N with minimum possible u. We
claim first that gcd(x, y) = 1. If not, then p | x and p | y for some prime p.
Then p4 | (x4 + y4), that is, p4 | u2. Hence p2 | u. Then (x′, y′, u′) =
(x/p, y/p, u/p2) is a solution of (2) in N with u′ < u. This is a contradiction.
Hence gcd(x, y) = 1.

As gcd(x, y) = 1 then gcd(x2, y2) = 1, and so (x2, y2, u) is a primitive
Pythagorean triple by (2). By the symmetry of x and y we may assume that
x2 is odd and y2 is even, that is, x is odd and y is even. Hence there are r,
s ∈ N with gcd(r, s) = 1

x2 = r2 − s2,

y2 = 2rs,

u = r2 + s2.

Then x2+s2 = r2, and as gcd(r, s) = 1 then (x, s, r) is a primitive Pythagorean
triple. As x is odd, there exist a, b ∈ N with gcd(a, b) = 1 and

x = a2 − b2,

s = 2ab,

r = a2 + b2.

Then
y2 = 2rs = 4(a2 + b2)ab,

equivalently (y/2)2 = ab(a2 + b2) = abr. (Recall that y is even.) If p is prime
and p | gcd(a, r) then b2 = (a2 + b2) − a2 ≡ 0 (mod p) and so p | b. This
is impossible, as gcd(a, b) = 1. Thus gcd(a, r) = 1. Similarly gcd(b, r) = 1.
Now abr is a square. If p | a, then p - b and p - r. Thus vp(a) = vp(abr)
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is even, and so a is a square. Similarly b and r are squares. Write a = x′2,
b = y′2 and r = u′2 where x′, y′, u′ ∈ N. Then

u′2 = a2 + b2 = x′4 + y′4

so (x′, y′, u′) is a solution of (2). Also

u′ ≤ u′2 = a2 + b2 = r ≤ r2 < r2 + s2 = u.

This contradicts the minimality of u in the solution (x, y, u) of (2). Hence
(2) is insoluble over N. Consequently (1) is insoluble over N. 2

2 Sums of squares

For k ∈ N we let Sk = {a2
1 + · · ·+ a2

k : a1, . . . , ak ∈ Z} be the set of sums of
k squares. Note that we allow zero; for instance 1 = 12 + 02 ∈ S2.

The sets S2 and S4 are closed under multiplication.

Theorem 5 1. If m, n ∈ S2 then mn ∈ S2.

2. If m, n ∈ S4 then mn ∈ S4.

Proof Let m, m ∈ S2. Then m = a2 + b2 and n = r2 + s2 where a, b, r,
s ∈ Z. By the two-square formula,

(a2 + b2)(r2 + s2) = (ar − bs)2 + (as+ br)2,

it is immediate that mn ∈ S2.
Let m, m ∈ S4. Then m = a2 + b2 + c2 + d2 and n = r2 + s2 + t2 + u2

where a, b, c, d, r, s, t, u ∈ Z. By the four-square formula,

(a2 + b2 + c2 + d2)(r2 + s2 + t2 + u2)

= (ar − bs− ct− du)2 + (as+ br + cu− dt)2

+ (at− bu+ cr + ds)2 + (au+ bt− cs+ dr)2,

it is immediate that mn ∈ S4. 2

We remark that the two-square theorem comes from complex numbers:

(a2 + b2)(c2 + d2) = |a+ bi|2|c+ di|2

= |(a+ bi)(c+ di)|2

= |(ac− bd) + (ad+ bc)|2

= (ac− bd)2 + (ad+ bc)2.
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Similarly the four-square theorem comes from the theory of quaternions (if
you know what they are).

We can restrict the possible factorizations of a sum of two squares. Recall
that if p is prime, and n is an integer, then vp(n) denotes the exponent of
the largest power of p dividing n: pvp(n) | n but pvp(n)+1 - n.

Theorem 6 Let p be a prime with p ≡ 3 (mod 4) and let n ∈ N. If n ∈ S2

then vp(n) is even.

Proof Let n = a2 + b2 with a, b ∈ Z and suppose p | n. We aim to show
that p | a and p | b. Suppose p - a. Then there is c ∈ Z with ac ≡ 1
(mod p). Then 0 ≡ c2n = (ac)2 + (bc)2 ≡ 1 + (bc)2 (mod p). This implies

that
(
−1
p

)
= 1, but we know that

(
−1
p

)
= 1 when p ≡ 3 (mod 4). This

contradiction proves that p | a. Similarly p | b. Thus p2 | (a2 + b2) = n and
n/p2 = (a/p)2 + (b/p)2 ∈ S2.

Let n ∈ S2 and k = vp(n). We have seen that if k > 0 then k ≥ 2 and
n/p2 ∈ S2. Note that vp(n/p

2) = k − 2. Similarly if k − 2 > 0 (that is if
k > 2) then k−2 ≥ 2 (that is k ≥ 4) and n/p4 ∈ S2. Iterating this argument,
we find that if k = 2r + 1 is odd, then n/p2r ∈ S2 and v(n/p2r) = 1, which
is impossible. We conclude that k is even. 2

If n ∈ N, we can write n = rm2 where m2 is the largest square dividing
n and r is squarefree, that is either r = 1 or r is a product of distinct primes.
If any prime factor p of r is congruent to 3 modulo 4 then vp(n) = 1+2vp(m)
is odd, and n /∈ S2. Hence, if n ∈ S2, the only possible prime factors of r
are p = 2 and the p congruent to 1 modulo 4. Obviously 2 = 12 + 12 ∈ S2.
It would be nice if all primes congruent to 1 modulo 4 were also in S2.
Fortunately, this is the case.

Theorem 7 Let p be a prime with p ≡ 1 (mod 4). Then p ∈ S2.

Proof As p ≡ 1 (mod 4) then
(
−1
p

)
= 1 and so there is u ∈ Z with u2 ≡ −1

(mod p). Let

A = {(m1,m2) : m1,m2 ∈ Z, 0 ≤ m1,m2 <
√
p}.

Then A has (1 + s)2 elements, where s is the integer part of
√
p, that is,

s ≤ √
p < s + 1. Hence |A| > p. For m = (m1,m2) ∈ R2 define φ(m) =

um1 + m2. Then φ is a linear map from R2 to R, and if m ∈ Z2 then
φ(m) ∈ Z.

As |A| > p, the φ(m) for m ∈ A can’t all be distinct modulo p. Hence
there are distinct m, n ∈ A with φ(m) ≡ φ(n) (mod p). Let a = m−n. Then
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φ(a) = φ(m)− φ(n) ≡ 0 (mod p). Let a = (a, b). Then a = m1 − n1 where
0 ≤ m1, n1 <

√
p so that |a| < √

p. Similarly |b| < √
p. Then a2 + b2 < 2p.

As m 6= n then a 6= (0, 0) and so a2 +b2 > 0. But 0 ≡ φ(a) = ua+b (mod p).
Hence b ≡ −ua (mod p) and so a2 + b2 ≡ a2 + (−ua)2 ≡ a2(1 + u2) ≡ 0
(mod p). As a2 + b2 is a multiple of p, and 0 < a2 + b2 < 2p, then a2 + b2 = p.
We conclude that p ∈ S2. 2

We can now characterize the elements of S2.

Theorem 8 (Two-square theorem) Let n ∈ N. Then n ∈ S2 if and only
if vp(n) is even whenever p is a prime congruent to 3 modulo 4.

Proof If n ∈ S2, p is prime and p ≡ 3 (mod 4) then vp(n) is even by
Theorem 7.

If vp(n) is even whenever p is a prime congruent to 3 modulo 4 then
p = rm2 where each prime factor p of r is either 2 or congruent to 1 modulo 4.
By Theorem 7 all such p lie in S2. Hence By Theorem 5 r ∈ S2. Hence
r = a2 + b2 where a, b ∈ Z and so n = rm2 = (am)2 + (bm)2 ∈ S2. 2

The representation of a prime as a sum of two squares is essentially unique.

Theorem 9 Let p be a prime. If p = a2 + b2 = c2 + d2 with a, b, c, d ∈ N
then either a = c and b = d or a = d and b = c.

Proof Consider

(ac+ bd)(ad+ bc) = a2cd+ abc2 + abd2 + b2cd

= (a2 + b2)cd+ ab(c2 + d2)

= pcd+ pab = p(ab+ cd).

As p | (ac + bd)(ad + bc) then either p | (ac + bd) or p | (ad + bc). Assume
the former — the latter case can be treated by reversing the rôles of c and d.
Now ac+ bd > 0 so that ac+ bd ≥ p. Also

(ac+ bd)2 + (ad− bc)2 = a2c2 + 2abcd+ b2d2 + a2d2 − 2abcd+ b2c2

= a2c2 + b2d2 + a2d2 + b2c2

= (a2 + b2)(c2 + d2) = p2.

As ac+ bd ≥ p, the only way this is possible is if ac+ bd = p and ad− bc = 0.
Then ac2 + bcd = cp and ad2 − bcd = 0, so adding gives a(c2 + d2) = cp, that
is ap = cp, so that a = c. Then c2 + bd = p = c2 + d2 so that bd = d2, so that
b = d. 2

We wish to prove the theorem of Lagrange to the effect that all natural
numbers are sums of four squares. It is crucial to establish this for primes.
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Theorem 10 Let p be a prime. Then p ∈ S4.

Proof If p ≡ 1 (mod 4) then there are a, b ∈ Z with p = a2 + b2 + 02 + 02

(Theorem 7) so that p ∈ S4. Also 2 = 12 + 12 + 02 + 02 ∈ S4 and 3 =
12 + 12 + 12 + 02 ∈ S4. We may assume that p > 3 and that p ≡ 3 (mod 4).

As a consequence
(
−1
p

)
= −1.

Let w be the smallest positive integer with
(

w
p

)
= −1. Then

(
w−1

p

)
= 1

and
(
−w
p

)
=

(
−1
p

) (
w
p

)
= 1. Hence there are u, v ∈ Z with w − 1 ≡ u2

(mod p) and −w ≡ v2 (mod p). Then 1 + u2 + v2 ≡ 1 + (w − 1) − w ≡ 0
(mod p).

Let

B = {(m1,m2,m3,m4) : m1, . . . ,m4 ∈ Z, 0 ≤ m1, . . . ,m4 <
√
p}.

Then B has (1 + s)4 elements, where s is the integer part of
√
p, that is,

s ≤ √
p < s + 1. Hence |A| > p2. For m = (m1, nm2,m3,m4) define

ψ(m) = (um1+vm2+m3,−vm1+um2+m4). Then ψ is a linear map from R4

to R2. If m ∈ Z4 then ψ(m) ∈ Z2. We write (a, b) ≡ (a′, b′) (mod p) if a ≡ a′

(mod p) and b ≡ b′ (mod p). If we have a list (a1, b1), . . . , (aN , bN) of vectors
in Z2 with N > p2, then there must be some i and j with (ai, bi) ≡ (aj, bj)
(mod p). This happens for the vectors ψ(m) with m ∈ B as |B| > p2. There
are distinct m, n ∈ B with ψ(m) ≡ ψ(n) (mod p). Let a = m − n. Then
ψ(a) = ψ(m) − ψ(n) ≡ 0 (mod p). Let a = (a, b, c, d). Then a = m1 − n1

where 0 ≤ m1, n1 <
√
p so that |a| < √

p. Similarly |b|, |c|, |d| < √
p. Then

a2+b2+c2+d2 < 4p. As m 6= n then a 6= (0, 0, 0, 0) and so a2+b2+c2+d2 > 0.
Now (0, 0) ≡ φ(a) = (ua + vb + c,−va + ub + d) (mod p). Hence c ≡

−ua− vb (mod p) and d ≡ va− ub (mod p). Then

a2 + b2 + c2 + d2 ≡ a2 + b2 + (ua+ vb)2 + (va− ub)2

= (1 + u2 + v2)(a2 + b2) ≡ 0 (mod p)

As a2 + b2 + c2 + d2 is a multiple of p, and 0 < a2 + b2 + c2 + d2 < 4p, then
a2 + b2 + c2 + d2 ∈ {p, 2p, 3p}.

When a2 + b2 + c2 + d2 = p then certainly p ∈ S4. Alas, we need to
consider the bothersome cases where a2 + b2 + c2 + d2 = 2p or 3p.

Suppose that a2 + b2 + c2 + d2 = 2p. Then a2 + b2 + c2 + d2 ≡ 2 (mod 4)
so that two of a, b, c, d are odd and the other two even. Without loss of
generality a and b are odd and c and d are even. Then 1

2
(a + b), 1

2
(a − b),

1
2
(c+ d) and 1

2
(c− d) are all integers, and a simple computation gives(

a+ b

2

)2

+

(
a− b

2

)2

+

(
c+ d

2

)2

+

(
c− d

2

)2

=
a2 + b2 + c2 + d2

2
= p
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so that p ∈ S4.
Finally suppose that a2 + b2 + c2 + d2 = 3p. Then a2 + b2 + c2 + d2 is a

multiple of 3 but not 9. As a2 ≡ 0 or 1 (mod 3) then either exactly one or all
four of a, b, c and d are multiples of 3. But the latter case is impossible (for
then a2 + b2 + c2 + d2 would be a multiple of 9), so without loss of generality
3 | a and b, c, d ≡ ±1 (mod 3). By replacing b by −b etc., if necessary, we
may assume that b ≡ c ≡ d ≡ 1 (mod 3). Then Then 1

3
(b+c+d), 1

3
(a+b−c),

1
3
(a+ c− d),1

3
(a+ d− b), are all integers, and a simple computation gives(

b+ c+ d

3

)2

+

(
a+ b− c

3

)2

+

(
a+ c− d

3

)2

+

(
a+ d− b

3

)2

=
a2 + b2 + c2 + d2

3
= p

so that p ∈ S4. 2

We can now prove Lagrange’s four-square theorem.

Theorem 11 (Lagrange) If n ∈ N then n ∈ S4.

Proof Either n = 1 = 12 + 02 + 02 + 02 ∈ S4, or n is a product of a
sequence of primes. By Theorem 10, each prime factor of n lies in S4. Then
by Theorem 5, n ∈ S4. 2

We finish with some remarks about sums of three squares. This is a much
harder topic than sums of two and of four squares. One reason for this is
that the analogue of Theorem 5 is false. Let m = 3 = 12 + 12 + 12 and
n = 5 = 22 + 12 + 02. Then m ∈ S3 and n ∈ S3 but mn = 15 /∈ S3. It follows
that we cannot reduce the study of sums of three squares to this problem for
primes.

Theorem 12 1. If m ∈ S3 then m 6≡ 7 (mod 8).

2. If 4n ∈ S3 then n ∈ S3.

Proof Let m = a2
1 + a2

2 + a2
3. As a2

j ≡ 0 or 1 (mod 4) then m ≡ k (mod 4)
where k is the number of odd aj. If m ≡ 7 (mod 8) then m ≡ 3 (mod 4)
and so all of the aj are odd. But if aj is odd, then a2

j ≡ 1 (mod 8) and so
m = a2

1 + a2
2 + a2

3 ≡ 3 (mod 8), a contradiction.
Let m = 4n = a2

1 +a2
2 +a2

3. As m ≡ 0 (mod 4) then all of the aj are even.
Hence n = (a1/2)2 + (a2/2)2 + (a3/2)2 ∈ S3. 2

As a consequence, if n = 4km where k is a nonnegative integer and m ≡ 7
(mod 8) then n 6∈ S3. Gauss proved in his Disquisitiones Arithmeticae that
if n ∈ N is not of this form, then n ∈ S3. Alas, all known proofs are too
difficult to be presented in this course.
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