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1 Pythagorean triples

A Pythagorean triple (z,y, z) is a triple of positive integers satisfying 22 +
y? = 2% If g = ged(x,y,2) then (x/g,y/g,2/g) is also a Pythagorean
triple. It follows that if ¢ > 1, (z,y, 2) can be obtained from the “smaller”
Pythagorean triple (z/g,y/g,z/g) by multiplying each entry by g¢. It is nat-
ural then to focus on Pythagorean triples (z,y, z) with ged(z,y,2) = 1 —
these are called primitive Pythagorean triples.

It will be useful to note a basic fact about primitive Pythagorean triples.

Theorem 1 Let (z,y, z) be a primitive Pythagorean triple. Then ged(z,y) =
ged(z, 2) = ged(y, 2) = 1.

Proof Suppose ged(z,y) > 1. Then there is a prime p with p | x and
p | y. Then 22 = 22 +y?> = 0 (mod p). As p | 2% then p | z and so
p | ged(z,y, z), contradicting (z,y, z) being a primitive Pythagorean triple.
Thus ged(z,y) = 1.
The proofs that ged(z, z) = 1 and ged(y, 2) = 1 are similar. O
Considering things modulo 4 we can determine the parities of the numbers
in a primitive Pythagorean triple.

Theorem 2 If (z,y,z) is a primitive Pythagorean triple, then one of x and
y 1s even, and the other odd. (Equivalently, x + y is odd.) Also z is odd.

Proof Note that if z is even then 2> = 0 (mod 4) and if z is odd then
7?2 =1 (mod 4). If x and y are both odd then ? = y* = 1 (mod 4). Hence
2? = 22+ y? = 2 (mod 4), which is impossible. If z and y are both even,
then ged(z,y) > 2 contradicting Theorem 1. We conclude that one of x and
y is even, and the other is odd.

In any case, z = 2% = 22 + y*> = z + y (mod 2), so z is odd. O
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As the roles of z and y in Pythagorean triples are symmetric, it makes
little loss in generality in studying only primitive Pythagorean triples with x
odd and y even.

We can now prove a theorem characterizing primitive Pythagorean triples

Theorem 3 Let (z,y, 2) be a primitive Pythagorean triple with x odd. Then
there are r, s € N with r > s, ged(r,s) = 1 and r + s odd, such that
r=1%—5% y=2rs and z = r> + 5.

Conversely, if r, s € N with v > s, ged(r,s) = 1 and r + s odd, then
(r? — s2,2rs,r% + s?) is a primitive Pythagorean triple.

Proof Let (z,y,z) be a primitive Pythagorean triple with x odd. Then y
is even and z is odd. Let a = (2 — ), b = 3(2+ ) and ¢ = y/2. Then a, b,

2
c € N. Also

. 2 .2 2
ab:(z x)(z+$):z ”_Y_ 2

4 4 4
Let g = ged(a,b). Then g | (a+b) and g | (b—a); thatis g | z and g | z. As
ged(zx, z), by Theorem 1, then g = 1, that is ged(a,b) = 1.
Let p be a prime factor of a. Then p{ b, so v,(b) = 0. Hence

vp(a) = vp(a) + vp(b) = vp(ab) = Up<c2) = 2v,(c)

is even. Thus a is a square. Similarly b is a square. Write a = s* and
b = r? where r, s € N. Then gcd(r, s) | a and ged(r,s) | b; as a and b are
coprime, ged(r,s) = 1. Now z = b —a = r? — s?; therefore r > s. Also
z=a+b=1r>+5% Asc® =ab=r%s? c=rsand so y = 2rs. Finally as x
is odd, then 1 = = r? + 52 = r + s; that is r 4+ s is odd. This proves the
first half of the theorem.

To prove the second part, let 7, s € N with r > s, ged(r,;s) =1 and r+ s
odd. Set z = r? — 5%, y = 2rs and z = r? + s%. Certainly y, 2 € N and also
reNasr>s>0. Also

2yt = (1P =512+ (2rs)? = (rt —2r2s? + 51 FAr?s? = rt 1 20257 £ st = 22

Hence (z,y, z) is a Pythagorean triple. Certainly y is even, and x = r? —s% =
r—s =r+s (mod 2): xis odd. To show that (z,y,z) is a primitive
Pythagorean triple we examine g = ged(z, z). As x is odd, g is odd. Also
g | (2? +2%) and g | (2% — 2?), that is g | 2s® and g | 2r®. As r and s are
coprime, then ged(2r?,2s?) = 2, and so g | 2. As g is odd g = 1. Hence
(x,y, z) is a primitive Pythagorean triple. O

We now apply this to the proof of Fermat’s last theorem for exponent 4.



Theorem 4 There do not exist x, y, z € N with
ot 4yt =2t (1)

Proof In fact we prove a stronger result. We claim that there are no x, vy,
u € N with
ot + oyt = (2)

A natural number solution (x,y, z) to (1) gives one for (2), namely (z,y,u) =
(x,y,2%). Thus it suffices to prove that (2) is insoluble over N.

We use Fermat’s method of descent. Given a solution (z,y,u) of (2) we
produce another solution (2',y’, ') with ' < u. This is a contradiction if we
start with the solution of (2) minimizing u.

Let (z,y,u) be a solution of (2) over N with minimum possible u. We
claim first that ged(z,y) = 1. If not, then p | = and p | y for some prime p.
Then p* | (z* + y?*), that is, p* | v>. Hence p? | u. Then (2/,¢,u') =
(z/p,y/p,u/p?) is a solution of (2) in N with v/ < u. This is a contradiction.
Hence ged(z,y) = 1.

As ged(z,y) = 1 then ged(2?,9y%) = 1, and so (z%,y? u) is a primitive
Pythagorean triple by (2). By the symmetry of  and y we may assume that
22 is odd and y? is even, that is, z is odd and y is even. Hence there are 7,
s € N with ged(r,s) =1

= rt-s%
2 = 2ps,

u = 7‘2+32.

Then z%+s% = r?, and as ged(r, s) = 1 then (z, s,7) is a primitive Pythagorean
triple. As x is odd, there exist a, b € N with ged(a,b) = 1 and

r = a®—b
s = 2ab,
ro= a+0b.

Then

y® = 2rs = 4(a* + b*)ab,
equivalently (y/2)? = ab(a® +b*) = abr. (Recall that y is even.) If p is prime
and p | ged(a,r) then b = (a® + b*) — a®> = 0 (mod p) and so p | b. This
is impossible, as ged(a,b) = 1. Thus ged(a,r) = 1. Similarly ged(b, r) = 1.
Now abr is a square. If p | a, then p 1 b and p { r. Thus v,(a) = v,(abr)



is even, and so a is a square. Similarly b and r are squares. Write a = 22,
b=1y"? and r = u”? where 2/, /, v’ € N. Then

W? = a? + 1 = gyt
so (2',y',u') is a solution of (2). Also
U <uP =+ =r<r<rt+s=u

This contradicts the minimality of u in the solution (z,y,u) of (2). Hence
(2) is insoluble over N. Consequently (1) is insoluble over N. O

2 Sums of squares

For k € N we let Sy = {a?+ -+ +a} : a1,...,a; € Z} be the set of sums of
k squares. Note that we allow zero; for instance 1 = 12 + 0% € S,.
The sets Sy and Sy are closed under multiplication.

Theorem 5 1. If m, n € Sy then mn € 5.

2. If m, n € Sy then mn € Sy.

Proof Let m, m € So. Then m = a® +b? and n = 72 4 s? where a, b, 7,
s € Z. By the two-square formula,

(a® 4+ b*)(r* + 5%) = (ar — bs)* + (as + br)?,

it is immediate that mn € Ss.
Let m, m € Sy. Then m =a?> + 0>+ +d?> and n = r? + 52 + 2 + u?
where a, b, ¢, d, r, s, t, u € Z. By the four-square formula,

(@®+ b+ +d)(r* + s* +t° +u?)
= (ar —bs —ct — du)* + (as + br + cu — dt)?
+ (at — bu + cr 4 ds)? + (au + bt — cs + dr)?,

it is immediate that mn € S;. O

We remark that the two-square theorem comes from complex numbers:

(> +0))(P +d*) = |a+bi]*|c+di|

(@ + bi)(c + di)|?

|(ac — bd) + (ad + bc)|?
= (ac—bd)* + (ad + be)?.
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Similarly the four-square theorem comes from the theory of quaternions (if
you know what they are).

We can restrict the possible factorizations of a sum of two squares. Recall
that if p is prime, and n is an integer, then v,(n) denotes the exponent of
the largest power of p dividing n: p®™ | n but pU™+1 §p,

Theorem 6 Let p be a prime with p =3 (mod 4) and let n € N. Ifn € Sy
then v,(n) is even.

Proof Let n = a? + b* with a, b € Z and suppose p | n. We aim to show
that p | @ and p | b. Suppose p 1 a. Then there is ¢ € Z with ac = 1
(mod p). Then 0 = *n = (ac)? + (bc)?> = 1 + (be)? (mod p). This implies
that (%1) = 1, but we know that (‘71) = 1 when p = 3 (mod 4). This

contradiction proves that p | a. Similarly p | b. Thus p* | (a* + b*) = n and
n/p* = (a/p)* + (b/p)* € Ss.

Let n € Sy and k = vy(n). We have seen that if £ > 0 then k£ > 2 and
n/p* € S;. Note that v,(n/p*) = k — 2. Similarly if & — 2 > 0 (that is if
k > 2) then k—2 > 2 (that is k > 4) and n/p* € S,. Iterating this argument,
we find that if ¥ = 2r + 1 is odd, then n/p* € Sy and v(n/p*") = 1, which
is impossible. We conclude that k is even. O

If n € N, we can write n = rm? where m? is the largest square dividing
n and r is squarefree, that is either » = 1 or r is a product of distinct primes.
If any prime factor p of 7 is congruent to 3 modulo 4 then v,(n) = 14 2v,(m)
is odd, and n ¢ S,. Hence, if n € Sy, the only possible prime factors of r
are p = 2 and the p congruent to 1 modulo 4. Obviously 2 = 12 + 12 € S,.
It would be nice if all primes congruent to 1 modulo 4 were also in Ss.
Fortunately, this is the case.

Theorem 7 Let p be a prime with p =1 (mod 4). Then p € Ss.

Proof Asp=1 (mod 4) then <’71> = 1 and so there is u € Z with u? = —
(mod p). Let

A ={(m1,ma) : my,me € Z,0 < my,my < \/p}.

Then A has (1 + s)? elements, where s is the integer part of /D, that is,
s < /p < s+ 1. Hence |[A] > p. For m = (my,my) € R* define ¢(m) =
umy + my. Then ¢ is a linear map from R? to R, and if m € Z? then
$(m) € Z.

As |A| > p, the ¢(m) for m € A can’t all be distinct modulo p. Hence
there are distinct m, n € A with ¢(m) = ¢(n) (mod p). Let a = m—n. Then

b}



¢(a) = ¢(m) — ¢(n) =0 (mod p). Let a = (a,b). Then a = my; — ny where
0 < mq,ny < /p so that |a] < /p. Similarly |b| < /p. Then a® + b* < 2p.
Asm # n then a # (0,0) and so a®*+b*> > 0. But 0 = ¢(a) = ua+b (mod p).
Hence b = —ua (mod p) and so a® + bv* = a* 4+ (—ua)? = *(1 +w?) =0
(mod p). As a®+b? is a multiple of p, and 0 < a® +b* < 2p, then a®+ b = p.
We conclude that p € Ss. O

We can now characterize the elements of S,.

Theorem 8 (Two-square theorem) Letn € N. Thenn € Sy if and only
if vy(n) is even whenever p is a prime congruent to 3 modulo 4.

Proof If n € Sy, p is prime and p = 3 (mod 4) then v,(n) is even by
Theorem 7.
If v,(n) is even whenever p is a prime congruent to 3 modulo 4 then
p = rm? where each prime factor p of r is either 2 or congruent to 1 modulo 4.
By Theorem 7 all such p lie in S5. Hence By Theorem 5 r € S;. Hence
r = a®+b? where a, b € Z and so n = rm? = (am)? + (bm)? € Ss. O
The representation of a prime as a sum of two squares is essentially unique.

Theorem 9 Let p be a prime. If p=a®>+b*> = c* +d* with a, b, ¢, d € N
then either a =c andb=d ora=d and b = c.

Proof Consider

(ac +bd)(ad +bc) = a*cd+ abc® 4 abd® + b*cd
(a® + b%)ed + ab(c® + d?)
= pcd + pab = p(ab + cd).
As p | (ac+ bd)(ad + be) then either p | (ac+ bd) or p | (ad + bc). Assume

the former — the latter case can be treated by reversing the roles of ¢ and d.
Now ac + bd > 0 so that ac + bd > p. Also

(ac +bd)? + (ad — be)* = a*c® + 2abed + b*d* + a®d* — 2abed + b*c?
= &’ +0’d* + *d* + b
— (a2+b2)(02+d2):p2.
As ac+bd > p, the only way this is possible is if ac+bd = p and ad — bc = 0.
Then ac? + bed = cp and ad? — bed = 0, so adding gives a(c? + d*) = cp, that
is ap = cp, so that a = ¢. Then ¢2+bd = p = ¢ + d? so that bd = d?, so that
b=d. O

We wish to prove the theorem of Lagrange to the effect that all natural
numbers are sums of four squares. It is crucial to establish this for primes.
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Theorem 10 Let p be a prime. Then p € S;.

Proof If p=1 (mod 4) then there are a, b € Z with p = a® + b* + 0% + 02
(Theorem 7) so that p € Sy. Also 2 = 12 + 12+ 04+ 0? € S; and 3 =
12+ 12+ 124 0% € S4. We may assume that p > 3 and that p = 3 (mod 4).

As a consequence (%) =—1.
Let w be the smallest positive integer with <%> = —1. Then <“’T’l> =1

and( ) ( )()zl. Hence there are u, v € Z with w — 1 = u?

(mod p) and —w = v? (mod p). Then 1 +w*+v* =1+ (w—1)—w =0
(mod p).
Let

B = {(mi,ma,mg,my4) :mq,...,mq € Z,0 <my,...,my < /p}.

Then B has (1 + s)* elements, where s is the integer part of /D, that is,
s < /p < s+ 1. Hence |[A] > p*. For m = (my,nms, ms,my) define
Y(m) = (umy+vme+ms, —vm;+ums+my). Then 1) is a linear map from R?
to R% If m € Z* then v(m) € Z%. We write (a,b) = (a’,) (mod p) if a = d’
(mod p) and b =’ (mod p). If we have a list (aq,b1),. .., (ayn,by) of vectors
in Z? with N > p?, then there must be some ¢ and j with (a;, b;) = (a;, b;)
(mod p). This happens for the vectors ¢»(m) with m € B as |B| > p?. There
are distinct m, n € B with ¢(m) = ¢(n) (mod p). Let a = m —n. Then
Y(a) = Y(m) —¢(n) =0 (mod p). Let a = (a,b,c,d). Then a = my —ny
where 0 < my,ny < /p so that |a| < \/p. Similarly [b], |c|, |d| < \/p. Then
a’+b*+c*+d* < 4p. Asm # nthen a # (0,0,0,0) and so a*+b*+c*+d? > 0.

Now (0,0) = ¢(a) = (ua + vb + ¢, —va + ub + d) (mod p). Hence ¢ =
—ua — vb (mod p) and d = va — ub (mod p). Then

A+ ++d* = @+ b+ (ua+ vb)® + (va — ub)?
(1+u*+0*)(a*+b*) =0 (mod p)

As a® + b? + c® + d? is a multiple of p, and 0 < a® + b + 2 + d? < 4p, then
a’ + b + 2+ d* € {p,2p,3p}.

When a? + b* + ¢ + d*> = p then certainly p € S,. Alas, we need to
consider the bothersome cases where a? + b + ¢* + d* = 2p or 3p.

Suppose that a® +b? + ¢ + d? = 2p. Then a® + b* + ¢ + d* = 2 (mod 4)
so that two of a, b, ¢, d are odd and the other two even. Without loss of
generality @ and b are odd and ¢ and d are even. Then %(a + b), 3(a — b),

2
+(c+d) and (c — d) are all integers, and a simple computation gives

a+b 2+ a—>b 2+ c+d 2+ c—d 2_a2+bz+02+d2_
2 2 2 2 ) = 2 —P
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so that p € ;.

Finally suppose that a® 4+ %> + ¢ +d? = 3p. Then a® + >+ +d? is a
multiple of 3 but not 9. As a? = 0 or 1 (mod 3) then either exactly one or all
four of a, b, ¢ and d are multiples of 3. But the latter case is impossible (for
then a? + b? + ¢® + d* would be a multiple of 9), so without loss of generality
3|aandb, ¢, d= =1 (mod 3). By replacing b by —b etc., if necessary, we
may assume that b = ¢ = d = 1 (mod 3). Then Then $(b+c+d), 3(a+b—c),
%(a +c— d),%(a + d — b), are all integers, and a simple computation gives

<b+c+d>2+ (a+b—c)2+ <a+c—d)2+ <a+d—b>2
3 3 3 3
a’+ 0+ +dF
; —
so that p € S,. O

We can now prove Lagrange’s four-square theorem.

Theorem 11 (Lagrange) Ifn € N then n € Sj.

Proof Either n = 1 = 124+ 02+ 0%+ 0% € S,, or n is a product of a
sequence of primes. By Theorem 10, each prime factor of n lies in Sy. Then
by Theorem 5, n € S,. O

We finish with some remarks about sums of three squares. This is a much
harder topic than sums of two and of four squares. One reason for this is
that the analogue of Theorem 5 is false. Let m = 3 = 12 + 12 4+ 12 and
n=>5=2%+12+0% Then m € S3 and n € Ss but mn = 15 ¢ S3. It follows
that we cannot reduce the study of sums of three squares to this problem for
primes.

Theorem 12 1. Ifm € S3 then m # 7 (mod 8).
2. If 4n € S5 then n € Ss.

Proof Let m = af+aj+a3. Asal =0or 1 (mod 4) then m =k (mod 4)
where £ is the number of odd a;. If m = 7 (mod 8) then m = 3 (mod 4)

and so all of the a; are odd. But if a; is odd, then a7 = 1 (mod 8) and so

m = a? + a2 + a3 = 3 (mod 8), a contradiction.
Let m = 4n = a? +a% +a3. Asm =0 (mod 4) then all of the a; are even.
Hence n = (a1/2)? + (a2/2)* + (a3/2)* € Ss. O

As a consequence, if n = 4*m where k is a nonnegative integer and m =7
(mod 8) then n ¢ S3. Gauss proved in his Disquisitiones Arithmeticae that
if n € N is not of this form, then n € S;. Alas, all known proofs are too
difficult to be presented in this course.



