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In this survey, I give various constructions of the (extended) binary and ternary Golay
codes, sometimes with proofs of their properties. I also give existence and uniqueness
proofs. At present I only cover the binary codes; I intend to add a section on the ternary
codes soon. Corrections, comments, references and new constructions are solicited and will
be gratefully received.

1 Constructions of the Binary Golay Code

We outline various constructions of the binary Golay code. We only deal with the extended
binary Golay code, that of length 24 and dimension 12.

1.1 Preliminaries

A code of length n over the finite field Fq is a subset of V = Fn
q , and it is linear if it is

an Fq-subspace of V . When q = 2 we talk of binary codes and binary linear codes. The
weight w(a) of an element a ∈ V is the number of non-zero entries in a. The minimum
weight of a linear code C is the smallest number which is a weight of a non-zero element
of C. The weight enumerator of a linear code C is

WC(X) =
∑
a∈C

Xw(a) =
n∑

r=0

ArX
r

where Ar is the number of words of weight r in C. If a = (aj), b = (bj) ∈ V then
a ·b =

∑n
j=1 ajbj ∈ Fq. The dot product (a,b) 7→ a ·b is a non-singular symmetric bilinear
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form. If C is a linear code then its dual is

C⊥ = {a ∈ V : a · b = 0 for all b ∈ C}.

By non-singularity, C⊥ is a linear code of dimension n − dim V . Also (C⊥)⊥ = C. Of
course C is self-dual if C = C⊥; if C is self-dual, then dim V = n/2. More generally C is
self-orthogonal if a · b = 0 for all a, b ∈ C, equivalently if C ⊆ C⊥. If C is self-orthogonal
then dim C ≤ n/2. If C is a self-orthogonal binary code, then each element of C has even
weight, and so the all-ones vector lies in C⊥.

Let us consider binary codes in more detail. In this case we can identify elements of V
with subsets of {1, 2, . . . , n}; with a = (aj) being identified with the set A of all j with aj =
1. More generally we can replace {1, 2, . . . , n} with any n-element set Ω = {ω1, ω2, . . . , ωn},
identifying (aj) with A = {ωj : aj = 1}. With this identification V becomes P(Ω), the
power set of Ω. Addition is replaced by symmetric difference, i.e., for A, B ∈ P(Ω) we let
A + B = (A ∪ B)− (A ∩ B). The weight w(A) of A ∈ P(Ω) is simply its cardinality |A|.
Also A · B is equal to |A ∩ B| considered modulo 2. As |A + B| = |A| + |B| − 2|A ∩ B|
it is apparent that w(A + B) ≡ w(A) + w(B) (modulo 2). But if A · B = 0 then |A ∩ B|
is even, and then w(A + B) ≡ w(A) + w(B) (modulo 4). If C is a self-orthogonal binary
linear code, and is spanned by words of weights divisible by 4, then all its words will have
weights divisible by 4. We call such a code doubly even. Conversely all doubly even codes
are self-orthogonal, for 2|A ∩B| = |A|+ |B| − |A + B| ≡ 0 (mod 4) for all A, B ∈ C.

We now consider Steiner systems. An S(k, r, n) Steiner system on Ω is a collection S
of r-element subsets of a set Ω of n elements with the property that each k-element subset
of Ω is a subset of exactly one element of S. We can count the number of sets in S by
the following artifice. Consider the collection C of all pairs (A, B) with B ∈ S, A ⊆ B
and |A| = k. Each k-element subset of Ω is the first entry in exactly one such pair, and so

|C| =
(

n
k

)
. But each element in S is the second entry in

(
r
k

)
such pairs, and so |C| =

(
r
k

)
|S|.

Thus |S| =
(

n
k

)
/
(

r
k

)
. Let S be an S(k, r, n) Steiner system on Ω, and let X be a subset of

Ω with |X| = t ≤ k. Let Ω′ = Ω−X, and

S ′ = {B −X : B ∈ S, X ⊆ B}.

Then Ω′ is a set of (r − t)-element subsets of the (n− t)-element set Ω′. If A is a (k − t)-
element subset of Ω′ then X∪A is contained in a unique B ∈ S. Then A ⊆ B−X ∈ S ′. On
the other hand if A ⊆ B′ ∈ S ′, then X∪A ⊆ X∪B′ ∈ S and X∪B′ = B and B′ = B−X.
Thus S ′ is an S(k − t, r − t, n− t) Steiner system on Ω′. Then |S ′| =

(
n−t
k−t

)
/
(

r−t
k−t

)
. Hence

there are
(

n−t
k−t

)
/
(

r−t
k−t

)
elements of S containing X.

1.2 The binary Golay code

The theory of the binary Golay code is intimately connected with that of the Steiner
system S(5, 8, 24). I describe their relationship here. Most of this section is based on my
recollections of lectures of Conway [3].
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We define a binary Golay code as a binary linear code of length 24, of dimension at
least 12, and minimum weight at least 8. In this section we fix a 24-element set Ω and
consider codes as subsets of V = P(Ω). The basic properties of binary Golay codes are
given by the following two theorems.

Theorem 1 If C is a binary Golay code then

1. C has dimension 12,

2. C has minimum weight 8,

3. the words of weight 8 in C form an S(5, 8, 24) Steiner system,

4. C is spanned by its words of weight 8.

Proof We consider congruences in V modulo C. Fix an element ω ∈ Ω. Let Sω be the
set of A ∈ V with |A| ≤ 4 and with ω ∈ A if |A| = 4. Then

|Sω| =
(

24

0

)
+

(
24

1

)
+

(
24

2

)
+

(
24

3

)
+

(
23

3

)
= 1 + 24 + 276 + 2024 + 1771 = 4096 = 212.

The sum of two elements of Sω has weight at most 4 + 4 = 8, but cannot equal 8, for then
those elements of Sω would have weight 4 each, and their sum must have weight at most 6
since ω lies in both elements. The sum of two distinct elements of Sω thus cannot lie in C.
The cosets A+C as A runs through Sω are all distinct. Thus |V/C| ≥ 212. But as |C| ≥ 212

then |V/C| ≤ 224/212 = 212 and so |C| = |V/C| = 212. Thus C has dimension 12. Also the
A + C for A ∈ Sω form a complete set of cosets of C in V .

Let B ∈ V have weight 4, and suppose that ω /∈ A. Then B /∈ Sω, but B ∈ A + C for
some A ∈ S. As A + B is a non-zero element of Sω, then A + B has weight 8, and so C
has minimum weight 8. The set A + B contains {ω} ∪ B. Thus each 5-element subset of
Ω containing ω is contained in at least one 8-element set in C. But as ω is an arbitrary
element of Ω then each 5-element subset of Ω is contained in at least one 8-element set of C.
But this element is unique; any pair of distinct 8-element sets A, B ∈ V with |A ∩B| ≥ 5
elements satisfy 0 < |A + B| ≤ 6, contrary to C’s having minimum weight 8. Thus the
weight 8 words of C form a Steiner system S(5, 8, 24) and so there are(

24
5

)
(

8
5

) =
42504

56
= 759

words of weight 8 in C.
Let C ′ be the linear subspace of C generated by the weight-8 words of C. We claim that

C = C ′. If A ∈ V has weight at least 5, then there is a weight-8 word B ∈ C whose support
meets that of A in at least 5 places. Thus w(A + B) < w(A). Repeating this argument
shows that each element of V is congruent modulo C ′ to a word of weight at most 4. But
we have seen that if B /∈ Sω has weight 4, then there is A ∈ Sω with A + B ∈ C having
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weight 8. Thus all elements of V are congruent modulo C ′ to elements of Sω, and so
|V/C ′| ≤ |Sω| = |V/C|. As C ′ ⊆ C then |V/C ′| ≥ |V/C|. Hence |C| = |C ′| and C = C ′. As C
is generated by words of even weight, each word in C has even weight. 2

This shows that a binary Golay code determines, and is determined by an S(5, 8, 24)
Steiner system. The question remains as to whether each such Steiner system comes from
a binary Golay code. The answer is yes, and so the problem of constructing binary Golay
codes and S(5, 8, 24) Steiner systems are equivalent.

Theorem 2 Let S be an S(5, 8, 24) Steiner system on Ω, and let C ⊆ P(ω) be the code
spanned by the A ∈ S. Then

1. C is self-dual,

2. C is a binary Golay code,

3. the words of weight 8 in C are precisely those in S,

4. the weight enumerator of C is 1 + 759X8 + 2576X12 + 759X16 + X24.

Proof We first show that if A, B ∈ S then |A ∩ B| is even. To do this we consider the
intersection triangle of S. Fix A ∈ S. If T is a subset of A, the number of elements Nt

of S containing T depends only on t = |T |. If 0 ≤ k ≤ 5 then Nt =
(

24−t
5−t

)
/
(

8−t
5−t

)
while

if 5 ≤ t ≤ 8 then Nt = 1. Thus N0 = 759, N1 = 253, N2 = 77, N3 = 21, N4 = 5, and
N5 = N6 = N7 = N8 = 1. Now define Mj,k for 0 ≤ j ≤ k ≤ 8 by the following recursive
procedure. Let Mk,k = Nk for each k, and for 0 ≤ j < k ≤ 8 set Mj,k = Mj,k−1 −Mj+1,k.
The Mj,k are listed in the following table, the intersection triangle of S, where Mj,k is the
(j + 1)th entry in the (k + 1)th row:

759
506 253
330 176 77
210 120 56 21
130 80 40 16 5
78 52 28 12 4 1
46 32 20 8 4 0 1
30 16 16 4 4 0 0 1
30 0 16 0 4 0 0 0 1

.

I claim that for each A ∈ S, and C ⊆ D ⊆ A with |C| = j and |D| = k, Mj,k is the number
of B ∈ S with B ∩D = C. This is apparent if j = k, so use induction on k − j. Suppose
that j < k. Write C = {a1, . . . , aj} and D = {a1, . . . , ak}. Then B ∩D = C if and only if
B ∩ (D−{ak}) = C and B ∩D 6= C ∪ {ak}. By induction the number of B ∈ S satisfying
this is Mj,k−1 −Mj+1,k = Mj,k. Since Mj,8 = 0 for odd j, each pair of elements of S has
even intersection. Thus C is spanned by mutually orthogonal elements of P(Ω) and so C
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is self-orthogonal. As the weights of the spanning set are divisible by 4 then C is doubly
even.

We need to show that C has dimension at least 12. Choose ω ∈ Ω and let Sω be as in
the proof of the previous theorem. As in that proof, each element of V is congruent modulo
C to some A ∈ Sω. Thus |V/C| ≤ |Sω| = 212 and so |C| ≥ 212. As C is self-orthogonal
|C| ≤ |V |1/2 = 212 and so |C| = 212. Hence C = C⊥ is self-dual.

Each of the words of C has even weight, and so the all-ones word lies in C. Hence
WC(X) = 1+A4X

4 +A8X
8 +A12X

12 +A8X
16 +A4X

20 +X24. To show C is a Golay code,
it suffices to show that A4 = 0. We have seen that the A + C for A ∈ Sω form a complete
set of cosets of C in V . As |Sω| = 212 = |V/C| it follows that no two distinct elements of
Sω are congruent modulo C. But if A ∈ C had weight 4, we could write A = B + C with
|B| = |C| = 2. Thus B and C are distinct elements of Sω which are congruent modulo C.
This is impossible. Hence A4 = 0, and C is a binary Golay code.

By the previous theorem the supports of the words of weight 8 form a Steiner system
S(5, 8, 24). This system must be S. Hence A8 = 759 and so A12 = 2576 and WC(X) =
1 + 759X8 + 2576X12 + 759X16 + X24. 2

It follows that given a construction of a binary Golay code, we can construct a Steiner
system S(5, 8, 24), and vice versa. There are various group-theoretic constructions of
Steiner systems S(5, 8, 24); we shall not consider these, but confine ourselves to direct
construction of the binary Golay code.

1.3 The hexacode and the MOG

Probably the easiest method of computing with the binary Golay code is to use the MOG
(Miracle Octad Generator) of Curtis [6]. Conway later explained the MOG by means of the
hexacode, in the process reflecting it from left to right. We shall use Conway’s description
as found for instance in Chapter 11 of [5].

The hexacode is a linear code of length 6 and dimension 3 over F4. Recall that F4 =
{0, 1, ω, ω2} is the field of four elements with ω2 + ω + 1 = 0. The hexacode is

H = {(a, b, c, a + b + c, ω2a + ωb + c, ωa + ω2b + c) : a, b, c ∈ F4}.

Clearly H is a 3-dimensional F4-subspace of F6
4. Alternatively we could define H to be the

F4-subspace of F6
4 spanned by the rows of the following matrix 1 0 0 1 ω2 ω

0 1 0 1 ω ω2

0 0 1 1 1 1

 .

Apart from linearity, the most important fact about the hexacode is that each element
has either 0, 2 or 6 zeros. If a ∈ H then a = (a, b, f(0), f(1), f(ω), f(ω2)) where f(x) =
ax2 + bx + c. If a = b = 0, then f(α) = c for all α ∈ F4, and so a has 2 or 6 zeros. If
a = 0 6= b, then f(x) = ax + b is a linear function with precisely one zero, so a has two
zeros. If a 6= b = 0, then f(α) = g(α)2 where g(x) = b2x + c2 is linear and again a has 2
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zeros. Finally suppose a 6= 0 6= b. Then f(x) = 0 has at most two roots. Were it to have
exactly one in F4, then ax2 + bx + c = a(x + α)2 and so b = 0, contrary to hypothesis.
Thus a has 0 or 2 zeros.

We now identify V with the space of 4 by 6 matrices over F2. This 4 by 6 arrangement
is the MOG (Miracle Octad Generator). For a row or column vector over F2 its parity is
the sum of its entries. For a 4 by 1 column vector a = (a0, a1, a2, a3)

T over F2 its score is
a1 + a2ω + a3ω

2 ∈ F4. The score of a matrix M ∈ V is the 1 by 6 row vector formed by
the scores of its columns, i.e., it is the product (0 1 ω ω2)M . We define a subset C of V as
the set of all M ∈ V satisfying

1. the parity of each column of M equals the parity of the first row of M , and

2. the score of M lies in H.

The first condition is obviously linear, and as the score is a linear function, and H is closed
under addition the second condition is also linear. Hence C is a linear code. We need to find
its dimension. The first condition gives 6 linear conditions on A, while the second gives at
most another 6, as the dimension of F6

4/H over F2 is 6. Hence dim C ≥ 24− (6 + 6) = 12.
For C to be a Golay code it suffices to show that its minimum weight is at least 8.

Let M be a non-zero element of C. All its columns have the same parity. First suppose
this parity is 0. If the score of M is nonzero, then M has at least 4 nonzero columns. Each
of these contains at most two ones. Thus the weight of M is at least 8. If the score of M
is zero, then each column must be all zero or all one. So the number of ones in the top
row of M is the number of nonzero columns in M . But this number is even. So M has at
least two nonzero columns, its weight is at least 8.

Now suppose the parity of each column of M is 1. Then each column has 1 or 3 ones,
and M will have weight at least 8 unless each column has exactly one 1. In this case the
entries in the top row of M correspond to the zero entries in the score of M . But since
this score lies in H, it has an even number of zeros. Thus the parity of the top row of M
is 0, which is false. In all cases the weight of M is at least 8 and C is a binary Golay code.

The hexacode has a number of symmetries which can be exploited to compute with
the MOG. If (a, b, c, d, e, f) ∈ H then (c, d, a, b, e, f), (a, b, e, f, c, d), (b, a, d, c, e, f) ∈ H.
Considering a word in H as a sequence of three pairs, the hexacode is invariant under
permutations moving the pairs bodily, and those where an even number of pairs are re-
versed. These generate a group of 24 symmetries of H and the images of (0, 0, 0, 0, 0, 0),
(0, 0, 1, 1, 1, 1), (1, 1, ω, ω, ω2, ω2), (1, ω, 1, ω, 1, ω), (0, 1, 0, 1, ω, ω2) and their scalar multi-
ples under this group comprise all of H. (In fact H has other, more subtle, symmetries,
arising from its description as a quadratic residue code.)

One can now prove uniqueness. I state the result for Steiner systems, but it is immediate
that it is also true for Golay codes.

Theorem 3 A Steiner system S(5, 8, 24) on a set Ω is unique up to permutations of Ω.

Proof Let S be an S(5, 8, 24) Steiner system on a 24-element set Ω, and let C be the
Golay code it generates, considered as a subset of P(Ω).
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Let H ⊆ Ω be an umbral hexad , i.e., H is a 6-element subset contained in no element
of S. Umbral hexads exist, as there are

(
24
6

)
= 134596 6-element subsets of Ω but at most

759
(

8
6

)
= 21252 of these are contained in elements of S. Let C be the Golay code generated

by S. I claim that the coset H + C contains exactly six 4-element subsets of Ω. Given
α ∈ Ω, we have seen that each element of P(Ω) is congruent modulo C to a unique set T
with at most 4 elements and containing α if it has exactly 4. As each element of C has
even weight, then all elements of H + C have even weight. As H /∈ C then T 6= ∅, also
|T | 6= 2 as if H + T ∈ C then as |H + T | ≥ 8 we have H ⊆ H + T contrary to hypothesis.
Hence |T | = 4. There is a unique such T containing α for each α ∈ Ω. Hence there are six
mutually disjoint 4-element subsets T1, . . . , T6 of Ω with Ti + H ∈ C. These form a sextet.
Let J = {J ⊆ P(Ω) : |J | = 6, J + H ∈ C}. If J ∈ J then J + Ti ∈ C for each i. This
implies that |J + Ti| = 8 and so |J ∩ Ti| = 1. Hence J (and in particular H) consists of
a point from each of the Ti. I claim that given three points in distinct Ti, then there is a
unique J ∈ J containing these three points. Let the three points be α, β, γ with α ∈ Ti.
Then Ti − {α} ∪ {β, γ} is a 5-element set, and so is contained in a unique element C ∈ S.
I claim that J = C + Ti is the required 8-element set. Certainly C ∩ Ti ⊇ Ti − {α}, and
I claim equality holds, as otherwise C ⊇ Ti, and then |C ∩ (Ti + Tj)| ≥ 5 where β ∈ Tj.
As γ ∈ C but γ /∈ Ti + Tj then C 6= Ti + Tj, but as these sets are in C they cannot have 5
elements in common. Hence |J | = 6, and α, β, γ ∈ J . Uniqueness follows as if J1, J2 ∈ J
and |J1 ∩ J2| ≥ 3 then J1 + J2 ∈ C and |J1 + J2| ≤ 6 so J1 = J2. Fixing three Ti and
selecting an element from each we see that |J | = 43 = 64.

Label the points in Ω as Pi,δ with 1 ≤ i ≤ 6 and δ ∈ F4 such that

1. Ti = {Pi,0, Pi,1, Pi,ω, Pi,ω2} and

2. H = {P1,0, P2,0, P3,0, P4,0, P5,0, P6,0}.

For c = (c1, . . . , c6) ∈ F6
4 let J(c) = {P1,c1 , . . . , P6,c6}. Let K = {c ∈ F6

4 : J(c) ∈ J }. Then
K is a code of length 6 over F4 carrying the same information as J . We shall show that
by permuting the entries of K and permuting the non-zero entries in a given position we
can transform K into the hexacode H. These transformations correspond to relabelling
the Pi,δ such that properties 1 and 2 still hold.

I claim that K is a group under addition. Certainly J(0) = H ∈ J so 0 ∈ K. If b,
c ∈ K then H + J(b) + J(c) + J(b + c) is a union of some of the Ti. If it contains and
odd number of Ti, then H is congruent modulo C to H + J(b + c). Thus J(b + c) ∈ C
which is not the case. Hence H + J(b) + J(c) + J(b + c) ∈ C and so J(b + c) + H ∈ C.
Hence J(b + c) ∈ J and b + c ∈ K. I claim also that each word in K has weight 0,
4 or 6. This follows as for c ∈ K we have H + J(c) ∈ C and |H + J(c)| = 2w(c).
For each α, β and γ ∈ F4 there is a unique word in K of the form (α, β, γ, c4, c5, c6).
By additivity c is determined by those words with (α, β, γ) = (0, 0, 1), (0, 0, ω), (0, 1, 0),
(0, ω, 0), (1, 0, 0) and (ω, 0, 0). Each of these words has weight 4. The words beginning
with (0, 0, 1) and (0, 0, ω) differ in the last 4 places, so by permuting the non-zero entries
in the last three columns we can assume they are (0, 0, 1, 1, 1, 1) and (0, 0, ω, ω, ω, ω). It
follows that (0, 0, ω2, ω2, ω2, ω2) ∈ K. The six words in K beginning with (α, 0, 0) and
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(0, β, 0) (α, β 6= 0) all have weight 4, and cannot have two identical entries amongst the
last three places since then they would coincide in at least three places from one of the
(0, 0, γ, γ, γ, γ) ∈ K. Thus these six words end in the six permutations of {1, ω, ω2} in
some order. But any two of these words ending in permutations with no entry in common
must have their zeros in the same positions. Thus the words in K ending in (1, ω, ω2),
(ω, ω2, 1) and (ω2, 1, ω), must after possibly interchanging the first two positions, be the
ones beginning (0, 1, 0), (0, ω, 0) and (0, ω2, 0). By permuting the non-zero elements in the
second column we can assume that (0, 1, 0, 1, ω, ω2), (0, ω, 0, ω, ω2, 1) ∈ K. Then the words
in K ending in (1, ω2, ω), (ω2, ω, 1) and (ω, 1, ω2), must be the ones beginning (1, 0, 0),
(ω, 0, 0) and (ω2, 0, 0). By permuting the non-zero elements in the first column we can
assume that (1, 0, 0, 1, ω2, ω), (ω, 0, 0, ω, 1, ω2) ∈ K, and so K = H.

It is now easy to see that C is the code derived from the hexacode. Let C ∈ C be a
word with score c ∈ H, and with the parity of all columns equal to that of the first rows.
Then C ′ = C + H + J(c) has score zero, and the parity of its first row and all its columns
is the same as that of C. If that parity is odd then put C ′′ = C ′ + T1 + H; if it is even
then put C ′′ = C ′. Then C ′′ is an union of an even number of the Ti and so lies in C. As
C and C ′′ are congruent modulo C then C ′′ ∈ C. 2

1.4 Generator matrices

We can define a code C ⊆ V = F24
2 by writing down a 24-column matrix A over F2 and

considering the span C of its rows. The dimension of C will be the rank of A. We shall do
this with matrices A of the form (I B) where I is the 12 by 12 identity matrix and B is a
12 by 12 matrix with the following properties:

1. each row and column of B has at least 7 ones,

2. each row of B has 7 or 11 ones,

3. each pair of rows differs in at least 6 places,

4. BBT = I.

Certainly A has rank 12, and so C has dimension 12. Also AAT = IIT +BBT = I +I = O,
the zero matrix. Thus each pair of rows of A are orthogonal and so C is a self-orthogonal
(indeed self-dual) code. As each row of A has 8 or 12 ones, C is doubly even. To show that
C is a Golay code it suffices to show that no a ∈ C has weight 4. Each a ∈ C has the form
bA = (b c) where c = bB. As BBT = I then also b = cBT . Suppose that w(a) = 4.
Then either w(b) ≤ 2 or w(c) ≤ 2. If b = 0 or c = 0 the other vanishes also, and so a = 0.
If w(b) = 1 then c is a row of B, and so w(a) = 1 + w(c) ≥ 8. If w(c) = 1 then b is a row
of BT , i.e., the transpose of a column of B, and so w(a) = 1 + w(b) ≥ 8. The only other
possibility is that w(b) = w(c) = 2. In this case c is the sum of two different rows of B,
and so w(c) ≥ 6 contrary to hypothesis. Thus C is a Golay code.
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It remains to find examples of such matrices B. We can take

B =



1 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0 1 0 1 0
0 1 1 1 0 1 1 0 1 0 0 1
1 0 1 1 1 0 0 1 0 1 1 0
0 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 1 1 1 0 0 1 0 1
0 1 1 0 0 1 1 1 0 1 1 0
1 0 0 1 1 0 1 1 1 0 0 1
0 1 1 0 1 0 0 1 1 1 0 1
1 0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 1 0 1 1


or

B =



0 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1 1 1 0 1
1 1 1 0 1 0 0 0 1 1 1 0
1 0 1 1 0 1 0 0 0 1 1 1
1 1 0 1 1 0 1 0 0 0 1 1
1 1 1 0 1 1 0 1 0 0 0 1
1 1 1 1 0 1 1 0 1 0 0 0
1 0 1 1 1 0 1 1 0 1 0 0
1 0 0 1 1 1 0 1 1 0 1 0
1 0 0 0 1 1 1 0 1 1 0 1
1 1 0 0 0 1 1 1 0 1 1 0
1 0 1 0 0 0 1 1 1 0 1 1



.

It is straightforward to check that the conditions on B are satisfied. The first example
is symmetric, and it is the all-ones matrix plus the incidence matrix of the graph formed by
the vertices and edges of the regular icosahedron. The second matrix includes a circulant
11 by 11 matrix in its bottom right corner. This circulant matrix is the all-ones matrix
plus the incidence matrix of the unique 2-(2,5,11) symmetric design. I have lifted these
constructions from Chapter 11 of [1]. The second construction is essentially the orginal
construction of Golay [8]; note that Golay only constructs the truncated code of length 23,
for which he gives a parity check matrix related to our second matrix.

1.5 Lexicographic codes

This construction is due to Conway and Sloane [4]. Consider F24
2 as the set of words of

length 24 over the alphabet {0, 1} ordered lexicographically by stipulating that 0 precedes 1.
Let c0 be the all-zero word, and define c1, c2, . . . by letting each cj be the lexicographically
earliest word differing in at least 8 places from all its predecessors. Miraculously the process
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terminates with c4095 which happens to be the all-one word. Then C = {c0, c1, c2, . . . , c4095}
is a binary Golay code by construction.

1.6 Quadratic residue codes

Let p be a prime congruent to 7 modulo 8. Let ζ be a primitive p-th root of unity in some
extension field of F2. Let Q, N ⊆ {1, 2, . . . , p − 1} denote the sets of quadratic residues
and non-residues modulo p respectively. Set

fQ =
∏
j∈Q

(X − ζj) and fN =
∏
j∈N

(X − ζj).

Then fQ, fN ∈ F2[ X ] since the Frobenius map acting on the coefficients of fQ and fN

fixes fQ and fN since 2 ∈ Q. Then let Qp be the set of (a∞, a0, a1, . . . , ap−1) ∈ Fp+1
2 such

that

1.
∑p−1

j=0 aj = a∞

2.
∑p−1

j=0 ajX
j ∈ F2[ X ] is a multiple of fQ.

Replacing fQ by fN we define Np similarly. The (extended) quadratic residue codes Qp and
Np are linear codes of length p + 1 which are self-dual and doubly even. Their minimum
weight d satisfy the square root bound d2 − 3d + 3 ≥ p. Also they are invariant under the
action of PSL(2, p) acting on the subscripts (labelled by the projective line over Fp) via
fractional linear transformations. Elements of PGL(2, p) outside PSL(2, p) interchange Qp

and Np. Their intersection Qp ∩ Np is the repetition code consisting of the all-zero and
all one-word, and their sum Qp + Np is the parity check code consisting of all words of
even weight. If p = 23 the square root bound shows that d ≥ 7 and as d is divisible by 4
then d ≥ 8. Therefore Q23 (and N23) is a binary Golay code. It follows that PSL(2, 23)
is a subgroup of the automorphism group of the code. For p = 23 then fQ and fN are
X11 +X9 +X7 +X6 +X5 +X +1 and X11 +X10 +X6 +X5 +X4 +X2 +1 in some order.

Another construction, due to Turyn, uses the quadratic residue codes of length 8. Let
C be the set of words of the form (a + b, a + c, a + b + c) with a ∈ Q7 and b, c ∈ N7.
Note that this code is invariant The sum of the three subwords in this code is a and so if
it vanishes a = 0 and consequently b = c = 0. Thus C has dimension 12. Both (a, a, a)
and (b, c,b + c) have weights divisible by 4, and as they are mutually orthogonal so does
their sum. Thus C is doubly even. Also a + b, a + c and a + b + c all have even weight. If
some word of C has weight 4, we can assume that a + b = 0. The intersection of Q7 and
N7 is the repetition code, and so either a = 0 or a is the all-ones word. In the former case
the word is (0, c, c) which has weight twice that of c and so at least 8. In the latter case
it is (0, a + c, c). The supports of c and a + c are complementary, and so this word has
weight 8. Therefore C is the binary Golay code. From this construction it follows that the
automorphism group of C contains a subgroup isomorphic to S3×PSL(2, 7). Note that for
p = 7 then fQ and fN are X3 + X + 1 and X3 + X2 + 1 in some order.
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1.7 Curtis’s construction

Curtis introduced a construction in [7] which has been reinterpreted by Chapman in terms
of ‘cubic residue codes’ [2]. Let F4 = {0, 1, ω, ω} be the finite field of 4 elements. This
field has an non-trivial automorphism denoted by a bar, so that α = α2 for all α ∈ F4.
We define a cubic residue code W as a subset of F8

4. The code W is an F2-linear but not
an F4-linear subspace of F8

4. It has 28 words but contains no non-zero F4 linear-subspace.
To define it we need to construct a certain matrix M . Let χ : F∗

7 → F∗
4 be a non-trivial

character (i.e., a non-constant homomorphism). For definiteness we can take χ(±1) = 1,
χ(±2) = ω and χ(±3) = ω. Let F8

4 = {(c∞, c0, c1, . . . , c6) : cα ∈ F4}. We define an 8 by 8
matrix M , its rows and columns indexed by the sequence ∞, 0, 1, . . . , 6 as follows: set

Mα,β =


0 if α = β,
1 if α = ∞ 6= β or α 6= ∞ = β,

χ(α− β) if α, β ∈ F7 and α 6= β.

Explicitly

M =



0 1 1 1 1 1 1 1
1 0 1 ω ω ω ω 1
1 1 0 1 ω ω ω ω
1 ω 1 0 1 ω ω ω
1 ω ω 1 0 1 ω ω
1 ω ω ω 1 0 1 ω
1 ω ω ω ω 1 0 1
1 1 ω ω ω ω 1 0


.

Then M is symmetric and MM = I. Let W = {a + aM : a ∈ F8
4} = {b ∈ F8

4 : bM = b}
be the cubic residue code of length 8. In [2] it is proved that W has 28 elements, each word
of W has even weight, the least non-zero weight of W is 4, and b · c ∈ F2 for all b, c ∈ W .
Replacing 0, 1, ω and ω by the columns 0

0
0

 ,

 0
1
1

 ,

 1
0
1

 and

 1
1
0


respectively, replaces W by a triple cubic residue code T , a subset of F24

2 which we identify
with the space of 3 by 8 matrices over F2. The code T is linear and doubly even, but not
self-dual as its dimension is 8. To construct the Golay code we need to add another code
to T . Let Q be a binary quadratic residue code of length 8, with entries indexed in the
same way as that of W . Define U ⊆ F24

2 by replacing 0 and 1 in Q by the columns 0
0
0

 and

 1
1
1


respectively. Then C = T + U is linear, self-dual and doubly even, and as shown in [2], it
has minimum weight 8. Hence it is the binary Golay code. The interest in this construction
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lies in the fact that W is invariant under a monomial action of PSL(2, 7). This combined
with the invariance of Q under PSL(2, 7) implies that C is invariant under a transitive
action of PSL(2, 7), the octern group. For details see [2].

A similar construction can also be given involving quadratic residue codes. Let Q7⊗F4

denote the F4-subspace of F8
4 generated by Q7. Then Q7 has the same weight enumerator

as W , and b ·c = 0 for all b, c ∈ Q7⊗F4. If we replace W and Q in the above construction
by Q7⊗F4 and N7 respectively, then again we get a Golay code. However it is easy to see
that this construction is equivalent to the Turyn construction.

1.8 Pasquier’s construction

Pasquier [9] constructs the binary Golay code from a Reed-Solomon code over F8. Let
T : F8 → F2 denote the trace map, and let α ∈ F8 − F2 satisfy T (α) = 1. Then
α3 + α2 + 1 = 0 and {α, α2, α4} forms an F2-basis for F8. This basis is trace-orthogonal:
T (α2i

α2j
) = δij for 0 ≤ i, j ≤ 2. Consider the vector space F8

8, and index its coordinates
by the elements of F8 so that

F8
8 = {(cβ)β∈F8 = (c0, c1, cα, cα2 , . . . , cα6) : cβ ∈ F8}.

Let f ∈ F8[ X ] be a polynomial, and define c(f) by c(f) = (cβ) where cβ = f(β). Define
the Reed-Solomon code R by

R = {c(f) : f ∈ F8[ X ], degree(f) ≤ 3}.

Then R is a linear code of dimension 4. It is self-dual as if f and g have degree at most 3,
then fg has degree at most 6, and

∑
β∈F8

f(β)g(β) = 0, since
∑

β∈F8
βk = 0 for 0 ≤ k ≤ 6.

But the minimum weight of R is at least 5, for if c(f) ∈ R had weight at most 4, then
f(β) = 0 for at least 4 distinct β, which implies f = 0 since f has degree at most 3.

We now define φ : F8
8 → F24

2 by replacing each entry a0α + a1α
2 + a2α

4 ∈ F8 by
(a0, a1, a2) ∈ F3

2. Then φ is an F2-linear bijection. Let C = φ(R). Then C is linear of
dimension 12. Note that T ((a0α + a1α

2 + a2α
4)(b0α + b1α

2 + b2α
4)) = a0b0 + a1b1 + a2b2

by the trace-orthogonality of the basis {α, α2, α4}. Therefore T (a · b) = φ(a) · φ(b).
Consequently C is self-dual. Note that C is spanned by the φ(c(f)) where f(X) = βXk

where β ∈ F8 and 0 ≤ k ≤ 3. But for such an f , either the entries of c(f) consist of all
the elements of F8, or they are all the same. In the former case the weight of φ(c(f)) is
12, in the latter case the weight of φ(c(f)) is a multiple of 8. As C is self-dual it is doubly
even. As the minimum weight of R is at least 5 then the minimum weight of C is also at
least 5. But as C is doubly even, then the minimum weight of C is at least 8, and C is a
binary Golay code.

If σ ∈ Gal(F8/F2) is an automorphism of F8 we can extend σ to F8[ X ] by setting
σ(X) = X. Let β ∈ F∗

8, γ ∈ F8 and suppose f ∈ F8[ X ] has degree at most 3. Then

σ(f(βσ−1(δ) + γ)) = σ(f)(σ(βσ−1(δ) + γ)) = g(δ)
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for all δ ∈ F8 where g(X) = σ(f)(σ(β)X + σ(γ)) has the same degree as f . Hence if
(cδ) ∈ R then (dδ) ∈ R where dδ = σ(cβσ−1(δ)+γ). This shows that R is invariant under
a monomial action of a group isomorphic to the semidirect product of the non-abelian
group of order 21 acting faithfully on the elementary abelian group of order 8. The code C
inherits a monomial action of the same group.
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