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I give a simple proof of the theorem of Iwasawa, that the index of an
ideal defined via the Stickelberger element associated to the Galois group of
Q(ζpn)/Q is the minus part of the class number of Q(ζpn). This is Theorem
6.19 in [1]. However I find Washington’s proof to be overcomplicated and
inelegant. Instead of providing a global approach he gives a local proof at
each prime. In effect that he proves the result three times, each case varying
with the idiosyncrasy of the prime involved. In this note I give a direct global
proof, essentially a simplification of Washington’s.

I am indebted to Franz Lemmermeyer for pointing out some errors in an
earlier version of this note.

We need to define our notation. Let pn be a power of the odd prime p.
Let G be a group isomorphic to (Z/pnZ)∗. Let σa be the element of G
corresponding to the integer a coprime to p. (The notation comes from the
standard identification of G with the Galois group of Q(ζpn)/Q, but we shall
not need this.) Let R = Z[G] be the integral group ring of G. We define the
Stickelberger element as

θ =
1

pn

pn∑
a=1
p-a

aσ−1
a .

Note that θ ∈ Q[G] but θ /∈ R. The Stickelberger ideal is defined as I =
Rθ ∩R. Let

I ′ = {α ∈ R : αθ ∈ R}

so that I = I ′θ. Then I ′ is an ideal of R which we wish to identify. To this
end define a ring homomorphism φ : R → Z/pnZ by φ(σa) = a. Then φ is
surjective so its kernel has index pn in R.

Lemma 1 The ideal I ′ is the kernel of φ : R→ Z/pnZ.

Proof This is a reformulation of Lemma 6.9 in [1].
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Let

α =

pn∑
b=1
p-b

xbσb ∈ R.

Then

pnαθ =

pn∑
a=1
p-a

pn∑
b=1
p-b

axbσ
−1
a σb =

pn∑
c=1
p-c

σc

pn∑
a=1
p-a

axac.

If αθ ∈ R then the coefficient of σ1 in pnαθ is divisible by pn and so

pn∑
a=1
p-a

axa ≡ 0 (mod pn)

or equivalently φ(α) = 0. Conversely, if φ(α) = 0 then the coefficient of σ1

in αθ is an integer. But the coefficient of σc in αθ is also the coefficient of σ1

in ασ−1
c θ. But as φ is a homomorphism, φ(α) = 0 implies that φ(ασ−1

c ) = 0,
and so the coefficient of σc in αθ is an integer. Hence αθ ∈ R.

To summarize, αθ ∈ R if and only if φ(α) = 0, as required. �

Following Washington define J = σ−1, and let

R− = {α ∈ R : Jα = −α}.

Suppose that

α =

pn∑
a=1
p-a

xaσa ∈ R.

Then α ∈ R− if and only if xpn−a = −xa for each a, equivalently, if and only
if

α = (1− J)

(pn−1)/2∑
a=1
p-a

xaσa.

Hence R− ⊆ (1 − J)R, and the reverse inclusion is obvious, and so R− =
(1− J)R. Define I− = I ∩R−. Theorem 6.19 of [1] states:

Theorem 1 (Iwasawa) We have

|R− : I−| = h−(Q(ζpn)).

Here h−(Q(ζpn)) is the minus part of the class number of Q(ζpn), defined
to be h(Q(ζpn))/h(Q(ζpn + ζ−1

pn )).
For the proof of theorem 1 we require a couple of lemmas.
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Lemma 2 We have I ′ ∩R− = (1− J)I ′ and |R− : (1− J)I ′| = pn.

Proof Certainly (1− J)I ′ ⊆ I ′ ∩R−. Let α ∈ I ′ ∩R−. Then α = (1− J)β
where β ∈ R, since R− = (1− J)R. Then

0 = φ(α) = φ((1− J)β) = (1− φ(J))φ(β) = 2φ(β).

As 2 is a unit in Z/pnZ, then φ(β) = 0 and so β ∈ I ′. Thus α ∈ (1 − J)I ′

and so I ′ ∩R− = (1− J)I ′.
The set (1−J)I ′ is thus the intersection of of R− and the kernel of φ. But

1−J ∈ R− and φ(1−J) = 2, which is a unit in Z/pnZ. Thus φ(R−) = Z/pnZ
and so |R− : (1− J)I ′| = pn. �

Define a homomorphism ψ : R→ Z by ψ(σa) = 1 for each a. Let

N =
∑
σ∈G

σ

be the norm element of R. Then σaN = N for each a, and so αN = ψ(α)N
for each α ∈ R.

Lemma 3 We have 2I− ⊆ (1− J)I ′θ and |(1− J)I ′θ : 2I−| = 2.

Proof Let α ∈ I−. Then α = βθ for some β ∈ I ′. Also Jα = −α and so

2α = (1− J)α = (1− J)βθ ∈ (1− J)I ′θ.

Hence 2I− ⊆ (1− J)I ′θ.
Now let γ ∈ I ′. Then

2γθ = (1 + J)γθ + (1− J)γθ.

But

(1 + J)θ =
1

pn

pn∑
a=1
p-a

[a+ (pn − a)]σa = N.

Hence 1 + J ∈ I ′ and N ∈ I. We thus have

2γθ = γN + (1− J)γθ = gN + (1− J)γθ

where g = ψ(γ). If g is even, then (1 − J)γθ = 2γθ − gN ∈ 2I and so
(1− J)γθ ∈ 2I−. If g is odd then (1− J)γθ−N = 2γθ− (g+ 1)N ∈ 2I and
so (1− J)γθ /∈ 2R and a fortiori (1− J)γθ /∈ 2I−.
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It follows that

2I− = {(1− J)γθ : γ ∈ I ′ and ψ(γ) is even}.

As pn ∈ I ′ and ψ(pn) is odd, the set

{(1− J)γθ : γ ∈ I ′ and ψ(γ) is odd}

is nonempty, and is thus a coset of 2I− disjoint from 2I−. Thus

|(1− J)I ′θ : 2I−| = 2

which proves the lemma. �

Proof of Theorem 1 We calculate what we shall denote |(1 − J)I ′ :
(1 − J)I ′θ|. It is not clear whether this is an index, as it might not be the
case that (1−J)I ′θ ⊆ (1−J)I ′. However if A and B are free abelian groups
of rank r, each spanning a Q-vector space V of dimension r, then |A : A∩B|
and |B : A ∩B| are both finite and if we define

|A : B| = |A : A ∩B|
|B : A ∩B|

then |A : B| has the same formal properties as the index. In particular if T :
V → V is a non-singular linear transformation, then |A : T (A)| = | det(T )|.
Let

V = Q[G]− = {α ∈ Q[G] : Jα = −α}.

Then V is a Q-vector space of dimension r = |G|/2. Also R− ⊆ V and R−

has rank r. As |R− : (1− J)I ′| = pn then (1− J)I ′ has rank r too. Consider
T : V → V given by T (α) = αθ.

We can compute the determinant of T by extending T to a linear map on

C[G]− = {α ∈ C[G] : Jα = −α}.

For a character χ : G→ C∗ define

εχ =
1

|G|
∑
σ∈G

χ(σ)σ−1.

Then C[G]− has as a basis the set of εχ for the odd characters χ, those with
χ(J) = −1. But σεχ = χ(σ)εχ for each σ and χ, and so

εχθ = B1,χεχ
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where

B1,χ =
1

pn

pn∑
a=1
p-a

aχ(σa).

As these εχ form a basis of eigenvectors of T then

det(T ) =
∏

χ(J)=−1

B1,χ.

Let h− = h−(Q(ζpn)). By an argument based on the analytic class number
formula [1, Theorem 4.17]

h− = 2pn
∏

χ(J)=−1

(−B1,χ/2)

and so

| det(T )| = 2rh−

2pn
6= 0.

It follows that (1−J)I ′θ has rank r and |(1−J)I ′ : (1−J)I ′θ| = 2rh−/(2pn).
But

|R− : I−| = |R− : (1−J)I ′||(1−J)I ′ : (1−J)I ′θ||(1−J)I ′θ : 2I−||I− : 2I−|−1.

We have seen that |R− : (1−J)I ′| = pn (Lemma 2), |(1−J)I ′ : (1−J)I ′θ| =
2rh−/(2pn) and |(1 − J)I ′θ : 2I−| = 2 (Lemma 3). As I− has rank r then
|I− : 2I−| = 2r. Putting all these pieces together we get |R− : I−| = h−, as
required. �

Lemmermeyer has informed me that with suitable modifications this proof
is also valid for p = 2. If p = 2 and n ≥ 2 (to avoid trivialities) we find that
in Lemma 2 we |I ′ ∩ R− : (1 − J)I ′| = 2 but that |R− : (1 − J)I ′| = 2n. In
Lemma 3 we find that (1− J)I ′θ = 2I−. Finally in the proof of Theorem 1
we need that the anlaytic class number formula gives us | det(T )| = 2rh−/2n.
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