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I give a simple proof of the theorem of Iwasawa, that the index of an
ideal defined via the Stickelberger element associated to the Galois group of
Q((¢yn)/Q is the minus part of the class number of Q((,»). This is Theorem
6.19 in [1]. However I find Washington’s proof to be overcomplicated and
inelegant. Instead of providing a global approach he gives a local proof at
each prime. In effect that he proves the result three times, each case varying
with the idiosyncrasy of the prime involved. In this note I give a direct global
proof, essentially a simplification of Washington’s.

I am indebted to Franz Lemmermeyer for pointing out some errors in an
earlier version of this note.

We need to define our notation. Let p” be a power of the odd prime p.
Let G be a group isomorphic to (Z/p"Z)*. Let o, be the element of GG
corresponding to the integer a coprime to p. (The notation comes from the
standard identification of G with the Galois group of Q((»)/Q, but we shall
not need this.) Let R = Z[G] be the integral group ring of G. We define the

Stickelberger element as
1 pn
0=—>Y ao,"
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Note that § € Q[G] but 8 ¢ R. The Stickelberger ideal is defined as I =
RONR. Let
I'={a € R:af € R}

so that I = I'6. Then I’ is an ideal of R which we wish to identify. To this
end define a ring homomorphism ¢ : R — Z/p"Z by ¢(0,) = a. Then ¢ is
surjective so its kernel has index p" in R.

Lemma 1 The ideal I' is the kernel of ¢ : R — Z/p"Z.

Proof This is a reformulation of Lemma 6.9 in [1].
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If af € R then the coefficient of o1 in p"a# is divisible by p™ and so

Zaxa =0 (mod p")
p1'a

or equivalently ¢(a) = 0. Conversely, if ¢(a) = 0 then the coefficient of oy
in af is an integer. But the coefficient of o, in af is also the coefficient of oy
in ao; 0. But as ¢ is a homomorphism, ¢(«) = 0 implies that ¢(ac, ) =0,
and so the coefficient of o. in af is an integer. Hence af € R.

To summarize, af € R if and only if ¢(«) = 0, as required. O

Following Washington define J = o_1, and let
R ={a€eR:Ja=—a}.

Suppose that

a—ZmaaaeR

p’(a
Then o € R™ if and only if xpn_, = —x, for each a, equivalently, if and only
if
(p -1)/
Ny s
o

Hence R~ C (1 — J)R, and the reverse inclusion is obvious, and so R~ =
(1 —J)R. Define I~ = 1N R~. Theorem 6.19 of [1] states:

Theorem 1 (Iwasawa) We have
[R™ = 17 = h™(Q(Gr))-

Here h~(Q((pn)) is the minus part of the class number of Q((yn), defined
to be A(Q(Gp))/M(Q(Gn + Gn')).

For the proof of theorem 1 we require a couple of lemmas.
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Lemma 2 We have ' "R~ = (1 —J)I' and |R™ : (1 — J)I'| = p".

Proof Certainly (1—-J)I'CI'NR™. Leta € I'NR~. Then a = (1 - J)pB
where 5 € R, since R~ = (1 — J)R. Then

0= 0(a) = 6((1 ~ J)B) = (1 - 6(7)(3) = 26(5).
As 2 is a unit in Z/p"Z, then ¢(5) =0 and so § € I'. Thus a € (1 — J)I
and so I'NR™ = (1—-J)I".

The set (1—.J)I" is thus the intersection of of R~ and the kernel of ¢. But
1—J € R~ and ¢(1—J) = 2, which is a unit in Z/p"Z. Thus ¢(R~) = Z/p"Z
and so |[R™: (1 —J)I'| =p". O

Define a homomorphism v : R — Z by ¢(0,) = 1 for each a. Let

N:ZU

oelG

be the norm element of R. Then 0,N = N for each a, and so aN = ¢(a)N
for each o € R.

Lemma 3 We have 21~ C (1 —J)I'0 and |(1 — J)I'0 : 21| = 2.
Proof Let a € I~. Then o = (30 for some 3 € I'. Also Ja = —a and so
20=(1—-J)a=(1-J)B0 € (1—J)I'6.
Hence 21~ C (1 — J)I'6.
Now let v € I'. Then
290 = (1+ J)y0 + (1 — J)vb.

But

n

p

(1+J)0= %Z[a—l— (p" —a)lo, = N.

a=1
a

Hence 1+ J € I’ and N € I. We thus have
290 =yN + (1 — J)v0 = gN + (1 — J)~0
where g = (). If g is even, then (1 — J)y0 = 2790 — gN € 2[ and so

(1—J)y0 € 2I~. If g is odd then (1 — J)y0 — N =270 — (g + 1)N € 2I and
o(1—J)v0 ¢ 2R and a fortiori (1 — J)v0 ¢ 21~.



It follows that
217 ={(1 = J)v8 : v € I" and 9)(7) is even}.
As p" € I' and ¥ (p") is odd, the set
{(1—=J)v0 : v €I and 9(v) is odd}
is nonempty, and is thus a coset of 2/~ disjoint from 2/~. Thus
(1—)I'0:217| =2

which proves the lemma. 0

Proof of Theorem 1  We calculate what we shall denote (1 — J)I’ :
(1 = J)I'6]. It is not clear whether this is an index, as it might not be the
case that (1—J)I'8 C (1 —J)I'. However if A and B are free abelian groups
of rank r, each spanning a Q-vector space V' of dimension r, then |A : AN B|
and |B : AN B| are both finite and if we define

|A: AN B|

A:Bl= ———
| | |B: AN B

then |A : B| has the same formal properties as the index. In particular if T :
V — V is a non-singular linear transformation, then |A : T(A)| = | det(T)|.
Let

V =QIG]” ={a e Q[G]: Ja = —a}.

Then V is a Q-vector space of dimension r = |G|/2. Also R~ C V and R~
has rank r. As |R™ : (1 —J)I'| = p™ then (1 — J)I’ has rank r too. Consider
T:V —V given by T(a) = af.

We can compute the determinant of T by extending 7" to a linear map on

ClG]” ={a e C[G]: Ja = —a}.

For a character y : G — C* define

1 -1
€y = €] Zx(a)a :

ceG

Then C[G]™ has as a basis the set of €, for the odd characters x, those with
x(J) = —1. But o€, = x(0)e, for each ¢ and yx, and so

60 = Bi ey



where
1 pﬂ/
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As these €, form a basis of eigenvectors of 7" then

Let h~ = h™(Q((yn)). By an argument based on the analytic class number
formula [1, Theorem 4.17]

hm=2p" [[ (-Bix/2)

x(J)=-1
and so oy
det(T)| = 0.
det(T)] = - #

It follows that (1—.J)I'6 has rank r and |(1—J)I' : (1—J)I'0| = 2"h~/(2p™).
But

R~ 7| = |R: A=) (1= : (A=) 01— J)I'0 : 20 ||I~ : 21|,

We have seen that |[R™: (1—J)I'| = p" (Lemma 2), [(1—-J)I": (1-J)I'0] =
2"h~/(2p") and |(1 — J)I'0 : 2]~| = 2 (Lemma 3). As I~ has rank r then
|I~ :2]7| = 2". Putting all these pieces together we get |R™ : 7| =h~, as
required. Il

Lemmermeyer has informed me that with suitable modifications this proof
is also valid for p = 2. If p =2 and n > 2 (to avoid trivialities) we find that
in Lemma 2 we [I'N R~ : (1 — J)I'| =2 but that |[R™ : (1 — J)I'| =2". In
Lemma 3 we find that (1 — J)I'6 = 2I~. Finally in the proof of Theorem 1
we need that the anlaytic class number formula gives us |det(7T)| = 2"h~/2".
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