

# Low-Frequency Variability in a Low-Order Shallow Water Atmospheric Model

## Alef Sterk University of Groningen

a.e.sterk@rug.nl

# Renato Vitolo University of Exeter

r.vitolo@ex.ac.uk

## Henk Broer University of Groningen

h.w.broer@rug.nl

### Carles Simó Universitat de Barcelona

carles@maia.ub.es

## Henk Dijkstra Utrecht University

h.a.dijkstra@uu.nl

#### **Abstract**

Low-frequency variability is investigated in a low-order atmospheric model derived from the 2-layer shallow water equations on a  $\beta$ -plane channel with bottom topography.

- Low-frequency variability in our model:
- variability on time scales from 10 to 200 days on a zonal wavenumber 3 (Benzi & Speranza 1989);
- irregular weakening and amplification of nonpropagating planetary waves;
- related to strange attractors through bifurcations of periodic orbits;
- dominant time scales and spatial patterns: inherited from periodic orbits;
- persistent in parameter space.
- New scenario: available theories (Charney & DeVore 1979, Legras & Ghil 1985, Crommelin et al. 2004) rely on multiple equilibria and unrealistic zonal windspeeds.

#### Model

- 46-dimensional; obtained from SW equations by Galerkin projection on wavenumbers 0,3 (zonal) and 0,1,2 (meridional).
- $\bullet$  Forced by zonal wind profile with magnitude  $U_0$ .
- Planetary-scale channel (29000  $\times$  2500 km).
- Pressure in each laver

$$\begin{split} p_1 &= \rho_1 g(h_1 + h_2 + h_b - z) \\ p_2 &= \rho_1 g h_1 + \rho_2 g(h_2 + h_b - z) \end{split}$$

• Dynamical equation in each layer

$$\begin{aligned} u_t + uu_x + vu_y &= -\frac{p_x}{\rho} + (f + \beta y)v \\ &- \mu (u - u^*) + A\Delta u - ru \\ v_t + uv_x + vv_y &= -\frac{p_y}{\rho} - (f + \beta y)u \\ &- \mu (v - v^*) + A\Delta v - rv \\ h_t + uh_x + vh_y &= -h(u_x + v_y) \end{aligned}$$

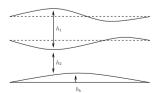


Figure 1: Setup of the 2-layer shallow water model. Each layer has a constant density and variable thickness.

#### **Bifurcations**

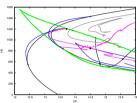
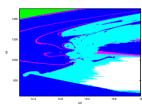


Figure 2: Bifurcation curves in the  $(U_0, h_0)$ -plane: saddle-node bifurcation of equilibria (green), Hopf bifurcation of equilibria (black), saddle-node bifurcation of periodic orbits (blue), period doubling bifurcations (grey), and Neimark-Sacker bifurcations (magenta).

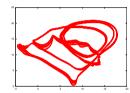
- · Bifurcations of equilibria and periodic orbits:
- control parameters: magnitude of zonal wind forcing  $(U_0)$  and topographic height  $(h_0)$ ;
- there exist two different branches of periodic orbits:  $h_0 \le 950$ : period 10 days, traveling wave  $h_0 \ge 950$ : period 50 days, non-propagating wave
- codimension-2 points: Hopf-saddle-node of equilibria (triangles) and periodic orbits (square), generalized Hopf (circle), double Hopf (diamond);
- Routes to chaos:
- period-doubling cascade;
- breakdown of a 2-torus attractor after a Neimark-Sacker bifurcation:
- saddle-node bifurcations of periodic orbits.



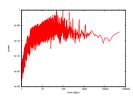
**Figure 3:** Lyapunov diagram of attractors. Equilibria (green), periodic attractors (blue), 2-torus attractors (magenta), and strange attractors (cyan).

- Occurrence of attractors:
- -strange attractors appear when  $14 \le U_0 \le 16$  and  $650 \le h_0 \le 1500$ ;
- islands of periodic behaviour in the middle of chaos.

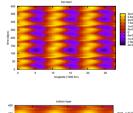
### Strange attractor I



**Figure 4:** Strange attractor after period doubling cascade ( $U_0 = 15, h_0 = 1200$ ).



**Figure 5:** Power spectrum: dominant time scale approximately 50 days; peaks at multiples of 50 days due to period doublings.



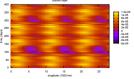
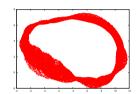


Figure 6: Hovmöller diagram of vorticity along a line of constant latitude: irregular weakening and amplification of vorticity field; non-propagating character; variability stronger in upper layer.

### Strange attractor II



**Figure 7:** Strange attractor after breakdown of a 2-torus attractor ( $U_0 = 14.78, h_0 = 900$ ).

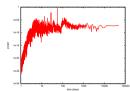
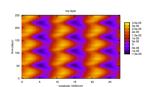


Figure 8: Power spectrum: dominant time scales are 20 and 60 days; two peaks are inherited from the formerly existing 2-torus.



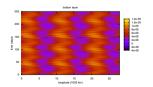


Figure 9: Hovmöller diagram of vorticity along a line of constant latitude: irregular weakening and amplification of vorticity field; non-propagating character; time scales different for both layers.

#### Conclusions

- Summary of dynamical scenario:
- Hopf bifurcations give rise to two different branches of periodic orbits;
- periodic attractors bifurcate into strange attractors via three different routes to chaos;
- strange attractors are related to irregular weakening and amplification of vorticity field;
- The dynamical mechanisms in our model are very different from the available theories (Legras & Ghil 1985, Crommelin et al. 2004).
- Future wor
- focus on the dynamics around the codimension-2 points in the parameter plane;
- determination of the boundaries of the periodic islands within the chaotic zone:
- investigate whether the current dynamical scenarios persist when the number of retained modes in the Galerkin projection is increased.

#### References

- [1] R. Benzi and A. Speranza: J. Climate, 2 (1989), 367 – 379.
- [2] H.W. Broer, C. Simó, and R. Vitolo: *Nonlinearity* **15(4)** (2002), 1205 1267.
- [3] J.G. Charney and J.G. DeVore: J. Atmos. Sci., 36 (1979), 1205 – 1216.
- [4] D.T. Crommelin, J.D. Opsteegh, and F. Verhulst: J. Atmos. Sci. 61(12) (2004), 1406 – 1419.
- [5] H. Itoh and M. Kimoto: J. Atmos. Sci. 53 (1996), 2217 – 2231.
- [6] B. Legras and M. Ghil: *J. Atm. Sci.* **42** (1985), 433
- [7] P. Malguzzi, A. Speranza, A. Sutera, and R. Caballero: J. Atmos. Sci., 54 (1997), 2441 – 2451.
- [8] L. van Veen: Int. J. Bifur. Chaos 13 (2003), 2117 -