

Robust Extremes in Chaotic Deterministic Systems

Renato Vitolo, Mark P. Holland, Christopher A.T. Ferro

School of Engineering, Computing and Mathematics, University of Exeter (www.secam.ex.ac.uk/xcs/).

The concept

A chaotic deterministic system f_{ρ} has robust extremes under observable ϕ when the associated extreme value statistics depend smoothly on control parameter ρ .

Results

Robustness of extremes:

- 1. depends on system f_{ρ} and on observable ϕ ;
- 2. allows improved estimates by pooling data and
- 3. improved prediction of (non-stationary) return levels.

Phenomenology

Robustness of extremes depends on the *system* f_{ρ} and on the *observable* ϕ .

Illustration for Lorenz63 model with $\sigma = 10$, $\beta = \frac{8}{3}$:

$$\dot{x} = \sigma(y - x), \quad \dot{y} = x(\rho - z) - y, \quad \dot{z} = xy - \beta z. \tag{1}$$

For $\rho = 28$: (1) has robust strange attractor [1]. Let

$$\phi_1(x, y, z) = x,$$
 $\phi_2(x, y, z) = 1 - |x - 5|^{0.25}.$ (2)

Generate time series of length 10^n units (recorded every 0.5) and extract maxima over blocks of 1000 time units. Fit generalised extreme value (GEV) distribution:

$$G(x; \mu, \sigma, \xi) = \exp\left[-\left(1 + \xi \frac{x - \mu}{\sigma}\right)_{+}^{-1/\xi}\right]. \tag{3}$$

FIG. 1: Maximum likelihood estimates of ξ for observables ϕ_1 and ϕ_2 in (2), for $\rho_j = 27 + j$, j = 0, 1, ...

 ϕ_1 : for small ρ (\approx 28), ξ varies smoothly with ρ . Non-linear scaling of attractor \leadsto shape of $\xi(\rho)$. Discontinuous for large ρ due to hyperbolicity loss (folds in return map).

 ϕ_2 : $\xi(\rho) = 0.25$ is constant even under hyperbolicity loss.

Rigorous proof available for 1D Lorenz maps.

FIG. 2: Discontinuity in upper tail at $\rho = 59$ for ϕ_1 (quantile-quantile plot of 10^4 maxima from Fig 1, for each $\rho = 58, 59, 60$).

Pooling data

Robustness of extremes → enhanced precision of GEV estimators.

FIG. 3: Left: GEV parameter estimates for (1) with n=5 (dashed, 95% conf. int. in gray) and n=8 (solid). Right: "pooled" estimates with n=5 (dashed, 95% conf. int. in gray).

Large n: GEV parameter estimates \rightarrow smooth functions of ρ (solid lines in Fig 3, n = 8).

Small n: wild oscillations around "true values" (dashed lines, left column in Fig 3, n = 5).

Enhanced precision: "pooling" short series (n=5) Given robust extremes, information can be pooled from nearby ρ

→ reduction in uncertainty due to parameter estimation, cfr. grey bands in Fig 3. Assume functional forms

$$\mu(\rho) = \mu_0 + \mu_1 \rho, \quad \sigma(\rho) = \sigma_0 + \sigma_1 \rho, \quad \xi(\rho) = \xi_0.$$

 ξ constant in ρ : approximation, only valid locally. Estimate $(\mu_0, \mu_1, \sigma_0, \sigma_1, \xi_0)$ by maximum likelihood.

Prediction & non-stationarity

Robustness of extremes \leadsto interpreting and predicting non-stationary extremes.

Robust extreme windspeeds are found in a simple twolayer quasi-geostrophic model [2]:

smooth dependence of windspeed return levels wrt baroclinic forcing parameter T_E in stationary case.

100-yr return levels

FIG. 4: 100-year windspeed return levels at centre of lower layer, for different values of T_E (non-pooled GEV fits, stationary case).

Introduce linear time trend in QG model:

$$T_E(t) = (T_E^0 - 1) + t \Delta T_E, \quad t \in [0, t_0], \quad \Delta T_E = 2/300 yrs.$$

Ansatzen: adiabatic + slow trend.

- 1. trend speed ΔT_E is sufficiently small wrt sampling time for upper tail of windspeed distribution;
- 2. non-stationary extremes remain close (locally in time) to those of stationary system for "frozen" $T_E(t)$.
- ⇒ robustness of extremes wrt control parameter translates to smooth change of extremes wrt time.

We adopt the Generalized Additive Models for Location, Scale and Shape (GAMLSS) [3]:

- 1. response distribution is GEV with constant ξ and cubic smoothing spline for (μ, σ) with identity link;
- 2. split sequence of yearly maxima into training and test set (years 1-2250 and 2251-3000);
- 3. fit non-stationary GEV-GAMLSS to training set;
- 4. compute time-dependent quantiles and compare to training and test set.

FIG. 5: Points: observed yearly windspeed maxima during training (black) and test (blue) periods. Curves: time-dependent estimated quantiles from GEV-GAMLSS.

quantiles	0.4	2	10	25	50	75	90	98	99.6
training	0.5	2.3	9.5	25.2	50.3	76.1	90.0	98.0	99.6
test	0.7	3.6	14.3	30.5	51.7	74.7	91.3	97.7	99.3

Fraction of points below the estimated quantile curves in Fig. 5 (corresp. to top row) during training (green, centre row) and test (red, bottom row) periods.

Illustrates potential for predicting return levels in a nonstationary system exhibiting robust extremes.

References

- [1] Morales, C. A., Pacifico, M. J., and Pujals, E. R. *Proc. Amer. Math. Soc.* **127**(11), 3393–3401 (1999).
- [2] Felici, M., Lucarini, V., Speranza, A., and Vitolo, R. *J. Atmos. Sci.* **64**(7), 2137–2158 Jul (2007).
- [3] Rigby, R. A. and Stasinopoulos, D. M. *J. Roy. Statist. Soc. Ser. C* **54**(3), 507–554 (2005).