

# Robust Extremes in Chaotic Deterministic Systems

Renato Vitolo, Mark P. Holland, Christopher A.T. Ferro

School of Engineering, Computing and Mathematics, University of Exeter (www.secam.ex.ac.uk/xcs/).



## The concept

A chaotic deterministic system  $f_{\rho}$  has robust extremes under observable  $\phi$  when the associated extreme value statistics depend smoothly on control parameter  $\rho$ .

#### **Results**

Robustness of extremes:

- 1. depends on system  $f_{\rho}$  and on observable  $\phi$ ;
- 2. allows improved estimates by pooling data and
- 3. improved prediction of (non-stationary) return levels.

## Phenomenology

Robustness of extremes depends on the *system*  $f_{\rho}$  and on the *observable*  $\phi$ .

Illustration for Lorenz63 model with  $\sigma = 10$ ,  $\beta = \frac{8}{3}$ :

$$\dot{x} = \sigma(y - x), \quad \dot{y} = x(\rho - z) - y, \quad \dot{z} = xy - \beta z. \tag{1}$$

For  $\rho = 28$ : (1) has robust strange attractor [1]. Let

$$\phi_1(x, y, z) = x,$$
  $\phi_2(x, y, z) = 1 - |x - 5|^{0.25}.$  (2)

Generate time series of length  $10^n$  units (recorded every 0.5) and extract maxima over blocks of 1000 time units. Fit generalised extreme value (GEV) distribution:

$$G(x; \mu, \sigma, \xi) = \exp\left[-\left(1 + \xi \frac{x - \mu}{\sigma}\right)_{+}^{-1/\xi}\right]. \tag{3}$$

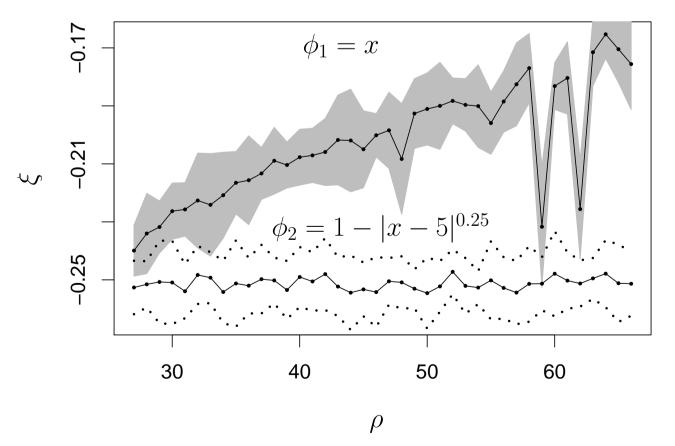


FIG. 1: Maximum likelihood estimates of  $\xi$  for observables  $\phi_1$  and  $\phi_2$  in (2), for  $\rho_j = 27 + j$ , j = 0, 1, ...

 $\phi_1$ : for small  $\rho$  ( $\approx$  28),  $\xi$  varies smoothly with  $\rho$ . Non-linear scaling of attractor  $\leadsto$  shape of  $\xi(\rho)$ . Discontinuous for large  $\rho$  due to hyperbolicity loss (folds in return map).

 $\phi_2$ :  $\xi(\rho) = 0.25$  is constant even under hyperbolicity loss.

Rigorous proof available for 1D Lorenz maps.

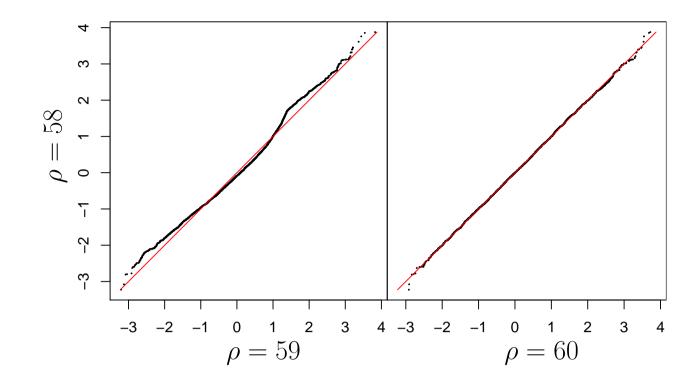


FIG. 2: Discontinuity in upper tail at  $\rho = 59$  for  $\phi_1$  (quantile-quantile plot of  $10^4$  maxima from Fig 1, for each  $\rho = 58, 59, 60$ ).

## Pooling data

Robustness of extremes → enhanced precision of GEV estimators.

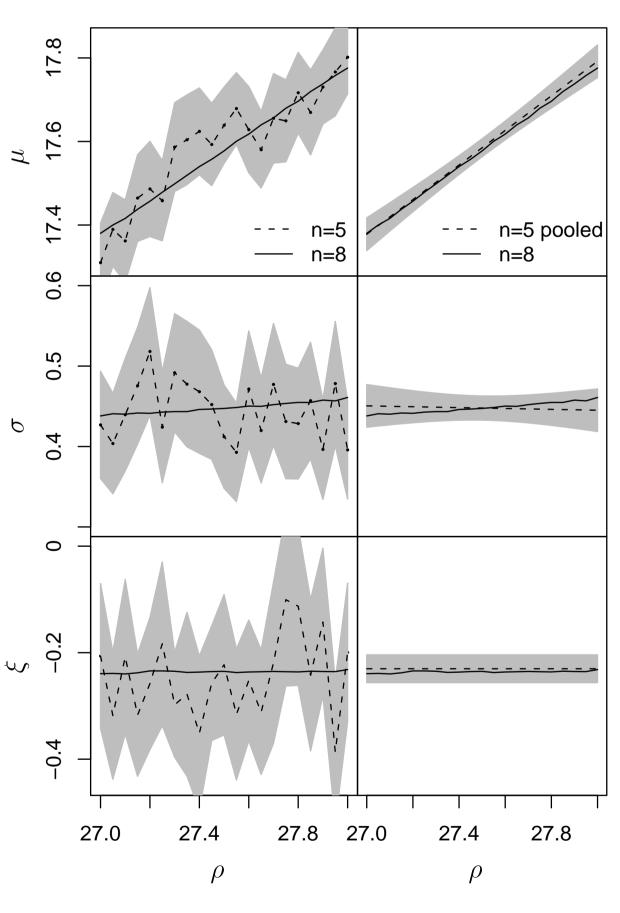


FIG. 3: Left: GEV parameter estimates for (1) with n=5 (dashed, 95% conf. int. in gray) and n=8 (solid). Right: "pooled" estimates with n=5 (dashed, 95% conf. int. in gray).

**Large** n: GEV parameter estimates  $\rightarrow$  smooth functions of  $\rho$  (solid lines in Fig 3, n = 8).

**Small** n: wild oscillations around "true values" (dashed lines, left column in Fig 3, n = 5).

Enhanced precision: "pooling" short series (n=5) Given robust extremes, information can be pooled from nearby  $\rho$ 

→ reduction in uncertainty due to parameter estimation, cfr. grey bands in Fig 3. Assume functional forms

$$\mu(\rho) = \mu_0 + \mu_1 \rho, \quad \sigma(\rho) = \sigma_0 + \sigma_1 \rho, \quad \xi(\rho) = \xi_0.$$

 $\xi$  constant in  $\rho$ : approximation, only valid locally. Estimate  $(\mu_0, \mu_1, \sigma_0, \sigma_1, \xi_0)$  by maximum likelihood.

# **Prediction & non-stationarity**

Robustness of extremes  $\leadsto$  interpreting and predicting non-stationary extremes.

Robust extreme windspeeds are found in a simple twolayer quasi-geostrophic model [2]:

smooth dependence of windspeed return levels wrt baroclinic forcing parameter  $T_E$  in stationary case.

#### 100-yr return levels

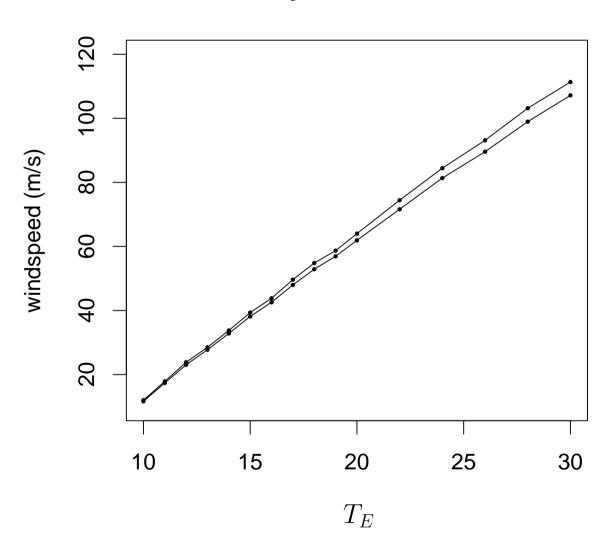


FIG. 4: 100-year windspeed return levels at centre of lower layer, for different values of  $T_E$  (non-pooled GEV fits, stationary case).

Introduce linear time trend in QG model:

$$T_E(t) = (T_E^0 - 1) + t \Delta T_E, \quad t \in [0, t_0], \quad \Delta T_E = 2/300 yrs.$$

#### Ansatzen: adiabatic + slow trend.

- 1. trend speed  $\Delta T_E$  is sufficiently small wrt sampling time for upper tail of windspeed distribution;
- 2. non-stationary extremes remain close (locally in time) to those of stationary system for "frozen"  $T_E(t)$ .
- ⇒ robustness of extremes wrt control parameter translates to smooth change of extremes wrt time.

We adopt the Generalized Additive Models for Location, Scale and Shape (GAMLSS) [3]:

- 1. response distribution is GEV with constant  $\xi$  and cubic smoothing spline for  $(\mu, \sigma)$  with identity link;
- 2. split sequence of yearly maxima into training and test set (years 1-2250 and 2251-3000);
- 3. fit non-stationary GEV-GAMLSS to training set;
- 4. compute time-dependent quantiles and compare to training and test set.

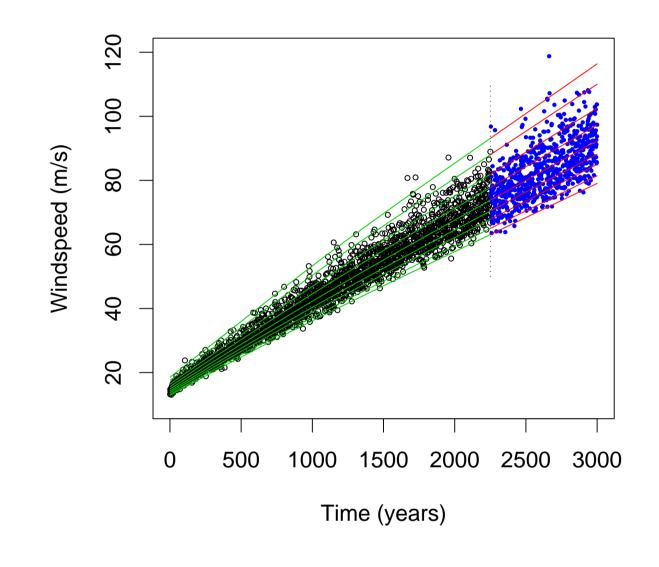


FIG. 5: Points: observed yearly windspeed maxima during training (black) and test (blue) periods. Curves: time-dependent estimated quantiles from GEV-GAMLSS.

| quantiles | 0.4 | 2   | 10   | 25   | 50   | 75   | 90   | 98   | 99.6 |
|-----------|-----|-----|------|------|------|------|------|------|------|
| training  | 0.5 | 2.3 | 9.5  | 25.2 | 50.3 | 76.1 | 90.0 | 98.0 | 99.6 |
| test      | 0.7 | 3.6 | 14.3 | 30.5 | 51.7 | 74.7 | 91.3 | 97.7 | 99.3 |

Fraction of points below the estimated quantile curves in Fig. 5 (corresp. to top row) during training (green, centre row) and test (red, bottom row) periods.

Illustrates potential for predicting return levels in a nonstationary system exhibiting robust extremes.

#### References

- [1] Morales, C. A., Pacifico, M. J., and Pujals, E. R. *Proc. Amer. Math. Soc.* **127**(11), 3393–3401 (1999).
- [2] Felici, M., Lucarini, V., Speranza, A., and Vitolo, R. *J. Atmos. Sci.* **64**(7), 2137–2158 Jul (2007).
- [3] Rigby, R. A. and Stasinopoulos, D. M. *J. Roy. Statist. Soc. Ser. C* **54**(3), 507–554 (2005).