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The concept

A chaotic deterministic system fρ has robust extremes
under observable φ when the associated extreme value
statistics depend smoothly on control parameter ρ.

Results

Robustness of extremes:

1. depends on system fρ and on observable φ;

2. allows improved estimates by pooling data and

3. improved prediction of (non-stationary) return levels.

Phenomenology

Robustness of extremes depends on the system fρ and on
the observable φ.

Illustration for Lorenz63 model with σ = 10, β = 8

3
:

ẋ = σ(y − x), ẏ = x(ρ − z) − y, ż = xy − βz. (1)

For ρ = 28: (1) has robust strange attractor [1]. Let

φ1(x, y, z) = x, φ2(x, y, z) = 1 − |x − 5|0.25. (2)

Generate time series of length 10n units (recorded every
0.5) and extract maxima over blocks of 1000 time units.
Fit generalised extreme value (GEV) distribution:

G(x; µ, σ, ξ) = exp

[

−

(

1 + ξ
x − µ

σ

)−1/ξ

+

]

. (3)
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FIG. 1: Maximum likelihood estimates of ξ for ob-
servables φ1 and φ2 in (2), for ρj = 27 + j, j = 0, 1, . . .

φ1: for small ρ (≈ 28), ξ varies smoothly with ρ. Non-
linear scaling of attractor shape of ξ(ρ). Discontinuous
for large ρ due to hyperbolicity loss (folds in return map).

φ2: ξ(ρ) = 0.25 is constant even under hyperbolicity loss.

Rigorous proof available for 1D Lorenz maps.
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FIG. 2: Discontinuity in upper tail at ρ = 59 for φ1

(quantile-quantile plot of 104 maxima from Fig 1, for
each ρ = 58, 59, 60).

Pooling data
Robustness of extremes enhanced precision of GEV

estimators.
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FIG. 3: Left: GEV parameter estimates for (1) with
n = 5 (dashed, 95% conf. int. in gray) and n = 8
(solid). Right: “pooled” estimates with n = 5
(dashed, 95% conf. int. in gray).

Large n: GEV parameter estimates → smooth functions
of ρ (solid lines in Fig 3, n = 8).
Small n: wild oscillations around “true values” (dashed
lines, left column in Fig 3, n = 5).

Enhanced precision: “pooling” short series (n = 5)
Given robust extremes, information can be pooled from
nearby ρ
 reduction in uncertainty due to parameter estimation,
cfr. grey bands in Fig 3. Assume functional forms

µ(ρ) = µ0 + µ1ρ, σ(ρ) = σ0 + σ1ρ, ξ(ρ) = ξ0.

ξ constant in ρ: approximation, only valid locally.
Estimate (µ0, µ1, σ0, σ1, ξ0) by maximum likelihood.

Prediction & non-stationarity

Robustness of extremes interpreting and predicting
non-stationary extremes.

Robust extreme windspeeds are found in a simple two-
layer quasi-geostrophic model [2]:
smooth dependence of windspeed return levels wrt baro-
clinic forcing parameter TE in stationary case.
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FIG. 4: 100-year windspeed return levels at centre of
lower layer, for different values of TE (non-pooled
GEV fits, stationary case).

Introduce linear time trend in QG model:

TE(t) = (T 0

E − 1) + t ∆TE, t ∈ [0, t0], ∆TE = 2/300yrs.

Ansatzen: adiabatic + slow trend.

1. trend speed ∆TE is sufficiently small wrt sampling
time for upper tail of windspeed distribution;

2. non-stationary extremes remain close (locally in time)
to those of stationary system for “frozen” TE(t).

=⇒ robustness of extremes wrt control parameter trans-
lates to smooth change of extremes wrt time.

We adopt the Generalized Additive Models for Location,
Scale and Shape (GAMLSS) [3]:

1. response distribution is GEVwith constant ξ and cubic
smoothing spline for (µ, σ) with identity link;

2. split sequence of yearly maxima into training and test
set (years 1-2250 and 2251-3000);

3. fit non-stationary GEV-GAMLSS to training set;

4. compute time-dependent quantiles and compare to
training and test set.
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FIG. 5: Points: observed yearly windspeed max-
ima during training (black) and test (blue) periods.
Curves: time-dependent estimated quantiles from
GEV-GAMLSS.

quantiles 0.4 2 10 25 50 75 90 98 99.6
training 0.5 2.3 9.5 25.2 50.3 76.1 90.0 98.0 99.6
test 0.7 3.6 14.3 30.5 51.7 74.7 91.3 97.7 99.3

Fraction of points below the estimated quantile curves in
Fig. 5 (corresp. to top row) during training (green, centre
row) and test (red, bottom row) periods.

Illustrates potential for predicting return levels in a non-
stationary system exhibiting robust extremes.
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