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The concept

A chaotic deterministic system f, has robust extremes
under observable ¢ when the associated extreme value
statistics depend smoothly on control parameter p.

Results

Robustness of extremes:
1. depends on system f, and on observable ¢;
2. allows improved estimates by pooling data and

3. improved prediction of (non-stationary) return levels.

Phenomenology

Robustness of extremes depends on the system f, and on
the observable ¢.

Ilustration for Lorenz63 model with o = 10, 3 = &:

t=o0y—z), y=xz(p—2z)—y, zZ=zy—pz. (1)

For p = 28: (1) has robust strange attractor [1]. Let

¢1<QZ’, Y, Z) = T, ¢2<QZ’, Y, Z) =1- |£E o 5|O'25‘ (2)

Generate time series of length 10" units (recorded every
0.5) and extract maxima over blocks of 1000 time units.
Fit generalised extreme value (GEV) distribution:

G(x;p,0,8) = exp [ (1 + 62 ”) 1/1 . (3)
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F1G. 1: Maximum likelihood estimates of £ for ob-
servables ¢; and ¢ in (2), for p; =27+ 3,7 =0,1,..

¢1: for small p (= 28), £ varies smoothly with p. Non-
linear scaling of attractor ~» shape of £(p). Discontinuous
for large p due to hyperbolicity loss (folds in return map).

¢a: &(p) = 0.25 is constant even under hyperbolicity loss.

Rigorous proof available for 1D Lorenz maps.
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FIG. 2: Discontinuity in upper tail at p = 59 for ¢,
(quantile-quantile plot of 10* maxima from Fig 1, for
each p = 58, 59, 60).

Pooling data

Robustness of extremes ~ enhanced precision of GEV
estimators.
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FIG. 3: Left: GEV parameter estimates for (1) with
n = 5 (dashed, 95% conf. int. in gray) and n = 8
(solid). Right: “pooled” estimates with n = 5
(dashed, 95% conf. int. in gray).

Large n: GEV parameter estimates — smooth functions
of p (solid lines in Fig 3, n = 8).

Small n: wild oscillations around “true values” (dashed
lines, left column in Fig 3, n = 5).
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Enhanced precision: “pooling” short series (n = 5)
Given robust extremes, information can be pooled from
nearby p

~~» reduction in uncertainty due to parameter estimation,
cfr. grey bands in Fig 3. Assume functional forms

pu(p) = po +mp,  olp) =oo+oip, &(p)= .

¢ constant in p: approximation, only valid locally.
Estimate (u, 11, 00, 01, &) by maximum likelihood.

Prediction & non-stationarity

Robustness of extremes ~ interpreting and predicting
non-stationary extremes.

Robust extreme windspeeds are found in a simple two-
layer quasi-geostrophic model [2]:

smooth dependence of windspeed return levels wrt baro-
clinic forcing parameter 7% in stationary case.

100—-yr return levels
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FIG. 4: 100-year windspeed return levels at centre of
lower layer, for different values of 7% (non-pooled
GEV fits, stationary case).

Introduce linear time trend in QG model:

Te(t) = (Th — 1)+ tATg, te€0,t), ATg=2/300yrs.

Ansatzen: adiabatic + slow trend.

1. trend speed AT} is sufficiently small wrt sampling
time for upper tail of windspeed distribution;

2. non-stationary extremes remain close (locally in time)
to those of stationary system for “frozen” Tx(?).

—> robustness of extremes wrt control parameter trans-
lates to smooth change of extremes wrt time.
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We adopt the Generalized Additive Models for Location,
Scale and Shape (GAMLSS) [3]:

1. response distribution is GEV with constant £ and cubic
smoothing spline for (x4, o) with identity link;

2. split sequence of yearly maxima into training and test
set (years 1-2250 and 2251-3000);

3. fit non-stationary GEV-GAMLSS to training set;

4. compute time-dependent quantiles and compare to
training and test set.
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FIG. 5: Points: observed yearly windspeed max-
ima during training (black) and test (blue) periods.

Curves: time-dependent estimated quantiles from
GEV-GAMLSS.

quantiles |04 2 10 25 50 75 90 98 99.6
training 0.5 2.3 9.5 252 50.3 76.1 90.0 98.0 99.6
test 0.7 3.6 14.3 30.5 51.7 74.7 91.3 97.7 99.3

Fraction of points below the estimated quantile curves in
Fig. 5 (corresp. to top row) during training (green, centre
row) and test (red, bottom row) periods.

[lustrates potential for predicting return levels in a non-
stationary system exhibiting robust extremes.
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