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Tipping points in open systems: bifurcation,
noise-induced and rate-dependent examples

in the climate system
BY PETER ASHWIN*, SEBASTIAN WIECZOREK, RENATO VITOLO

AND PETER COX

Mathematics Research Institute, University of Exeter, Exeter EX4 4QF, UK

Tipping points associated with bifurcations (B-tipping) or induced by noise (N-tipping)
are recognized mechanisms that may potentially lead to sudden climate change. We focus
here on a novel class of tipping points, where a sufficiently rapid change to an input
or parameter of a system may cause the system to ‘tip’ or move away from a branch
of attractors. Such rate-dependent tipping, or R-tipping, need not be associated with
either bifurcations or noise. We present an example of all three types of tipping in a
simple global energy balance model of the climate system, illustrating the possibility
of dangerous rates of change even in the absence of noise and of bifurcations in the
underlying quasi-static system.

Keywords: rate-dependent tipping point; bifurcation; climate system

1. Tipping points: not just bifurcations

In the last few years, the idea of ‘tipping points’ has caught the imagination in
climate science with the possibility, also indicated by both palaeoclimate data
and global climate models, that the climate system may abruptly ‘tip’ from one
regime to another in a comparatively short time.

This recent interest in tipping points is related to a long-standing question
in climate science: to understand whether climate fluctuations and transitions
between different ‘states’ are due to external causes (such as variations in the
insolation or orbital parameters of the Earth) or to internal mechanisms (such as
oceanic and atmospheric feedbacks acting on different time scales). A famous
example is the Milankovich theory, according to which these transitions are
forced by an external cause, namely the periodic variations in the Earth’s orbital
parameters [1]. Remarkably, the evidence in favour of the Milankovich theory still
remains controversial [2].

Hasselmann [3] was one of the first to tackle this question through simple
climate models obtained as stochastically perturbed dynamical systems. He
argued that the climate system can be conceptually divided into a fast component
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Tipping points in open systems 1167

(the ‘weather’, essentially corresponding to the evolution of the atmosphere) and
a slow component (the ‘climate’, i.e. the ocean, cryosphere, land vegetation,
etc.). The ‘weather’ would act as an essentially random forcing exciting the
response of the slow ‘climate’. In this way, short-time-scale phenomena, modelled
as stochastic perturbations, can be thought of as driving long-term climate
variations. This is what we refer to as noise-induced tipping.

Sutera [4] studied noise-induced tipping in a simple global energy balance
model previously derived by Fraedrich [5]. Sutera’s results indicate a
characteristic time of 105 year for the random transitions between the ‘warm’ and
the ‘cold’ climate states, which matches well with the observed average value. One
shortcoming is that this analysis leaves open the question as to the periodicity of
such transitions indicated by the power spectral analysis [6, fig. 7].

There is a considerable literature on noise-induced escape from attractors in
stochastic models [7]. These have successfully been used for modelling changes in
climate phenomena [8], although authors do not always use the word ‘tipping’ and
other aspects have been examined. For example, Kondepudi et al. [9] considered
the combined effect of noise and parameter changes on the related problem of
‘attractor selection’ in a noisy system.

More recently, bifurcation-driven tipping points or dynamic bifurcations [10]
have been suggested as an important mechanism by which sudden changes in
the behaviour of a system may come about. For example, Lenton et al. [11,12]
conceptualized this as an open system

dx
dt

= f (x , l(t)), (1.1)

where l(t) is in general a time-varying input. In the case that l is constant,
we refer to (1.1) as the parametrized system with parameter l, and to its stable
solution as the quasi-static attractor. If l(t) passes through a bifurcation point of
the parametrized system where a quasi-static attractor (such as an equilibrium
point x̃(l)) loses stability, it is intuitively clear that a system may ‘tip’ directly
as a result of varying that parameter, though in certain circumstances the effect
may be delayed because of well-documented slow passage through bifurcation
effects [13]. Related to this, Dakos et al. [14] have proposed that tipping points
are recognizable and to some extent predictable. They propose a method to de-
trend signals and then, examining the correlation of fluctuations in the de-trended
signal, they find a signature of bifurcation-induced tipping points. These papers
have concentrated on systems where equilibrium solutions for the parametrized
system lose stability, although recent work of Kuehn [15] considered tipping effects
in general two time-scale systems as occasions when there is a bifurcation of the
fast dynamics.

The explanation of climate tipping as a phenomenon purely induced by
bifurcations has been called into question. For example, Ditlevsen & Johnsen [16]
suggested that the predictive techniques to forecast a forthcoming tipping
point [14] are not always reliable. Indeed, noise alone can drive a system to tipping
without any bifurcation. Nonetheless, it seems that the ideas of bifurcation-
induced tipping can give practically useful predictions; for example, in detecting
potential ecosystem population collapses [17].
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In their review paper, Thompson & Sieber [18] discussed bifurcation- and noise-
induced mechanisms for tipping. They examined stochastically forced systems

dx = f (x , l(t))dt + g(x)dW , (1.2)

where W represents a Brownian motion. Using generic bifurcation theory, they
distinguished between safe bifurcations (where an attracting state loses stability
but is replaced by another ‘nearby’ attractor), explosive bifurcations (where the
attractor dynamics explores more of phase space but still returns to near the
old attractor) and dangerous bifurcations (where the attractor dynamics after
bifurcation are unrelated to what has gone before). Thompson & Sieber [19]
clarified that a time-series analysis of a bifurcation-induced tipping point near a
quasi-static equilibrium (QSE) relies on a separation of time scales

kdrift � kcrit � kstab, (1.3)

where kdrift is the average drift rate of parameters, kcrit is the decay rate for the
slowest decaying mode of the QSE and kstab are the remaining (faster decaying)
modes. However, it is not easy to define kdrift in general (especially in a coordinate-
independent manner) and there is no a priori reason for inequality (1.3) to hold
for a given system.

Rate-dependent tipping has not previously been discussed in detail, but it has
been identified in Wieczorek et al. [20] as an important tipping mechanism that
cannot be explained by previously proposed mechanisms (i.e. noise or bifurcations
of a quasi-static attractor). This paper aims to better understand the phenomenon
of rate-dependent tipping by introducing a linear model with a tipping radius and
discussing three basic examples where this type of tipping appears.

We suggest that tipping effects in open systems can be usefully split into three
categories:

— ‘B-tipping’, in which the output from an open system changes abruptly or
qualitatively owing to a bifurcation of a quasi-static attractor.

— ‘N-tipping’, in which noisy fluctuations result in the system departing from
a neighbourhood of a quasi-static attractor.

— ‘R-tipping’, in which the system fails to track a continuously changing
quasi-static attractor.

We demonstrate that each mechanism on its own can produce a tipping response.
Furthermore, any open system may exhibit tipping phenomena that result from
a combination of several of the above.

This paper is organized as follows: in the remainder of this section, we discuss
a setting for open systems, allowing discussion of the three types of tipping
phenomena. In §2, we formulate a criterion for R-tipping. In §3, we discuss three
illustrative low-dimensional examples of R-tipping; two related to bifurcation
normal forms and one for a slow–fast system. Section 4 gives an illustrative
example of all three types of tipping for an energy-balance model of the global
climate for different parameter regimes. Section 5 concludes with a discussion and
some open questions.
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(a)

(b)

Figure 1. The system (x , y) in (a) represents a (high dimensional) open system with inputs x(t).
We identify a low-dimensional but nonlinear subsystem x forced by some ‘observables’ l(y) from
the high-dimensional system. The behaviour of x in (a) can be partially understood by examining
the open subsystem (b) for a suitable class of temporal forcing l(t).
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Figure 2. Candidate inputs l(t) in the subsystem (1.1). These may include noise- and signal-like
components as in (a), or purely deterministic smooth inputs/parameter variations as in (b,c).
Tipping responses in the subsystem may occur in response to noise fluctuations (N-tipping), to
passing through a bifurcation point for the parametrized subsystem l = l0 (B-tipping) or as a
result of too rapid variation (R-tipping).

(a) Towards a general theory of tipping in open systems

Dynamical systems theory has developed a wide-ranging corpus of results
concentrated on the behaviour of autonomous finite-dimensional deterministic
systems—often called closed systems, because their future time trajectories
depend only on the current state of the system. If the systems have inputs that
can change the fate of system trajectories then we say the system is open. Real-
world systems are never closed except to some degree of approximation, and a
range of methods have been developed to cope with the fact that they are open:
(i) one can view external perturbations as time variation of parameters that
would be fixed for a closed system; (ii) there are various theoretical approaches
to stochasticity in systems, either intrinsic or external; and (iii) control theory
allows one to design inputs to control a system’s outputs in a desired way, given
(possibly imperfect) knowledge of the system.

In figure 1a, we illustrate an arbitrary high-dimensional system where we have
identified a low-dimensional subsystem that we wish to check for ‘tipping effects’.
We do this by analysing the response of an open system (1.1) in figure 1b to
possible time-varying inputs l(t). Figure 2 shows some possible candidates for

Phil. Trans. R. Soc. A (2012)
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the input l(t); we are interested in classifying those inputs that lead to a sudden
change in x . This ‘tipping’ may depend on details of the noise (N-tipping), may
involve passing through a critical value of l(t) corresponding to a bifurcation
(B-tipping) of the parametrized subsystem or may depend on the rate of change
of l(t) along some path in parameter space (R-tipping).

2. R-tipping: a linear model

We use a simple model to explore R-tipping and to give sufficient conditions such
that R-tipping does/does not occur. Suppose that the system (1.1) for x ∈ R

n and
parameter l has a QSE x̃(l) with a tipping radius R > 0. For some initial x0 with
|x0 − x̃(l)| < R, we assume that the evolution of x with time is given by

dx
dt

= M (x − x̃(l)) for |x − x̃(l)| < R, (2.1)

where M is a fixed stable linear operator (i.e. |eMt | → 0 as t → ∞). More generally,
we consider a time-varying parameter, l(t), that represents the input to the
subsystem. If |x(t) − x̃(l(t))| < R then we say that x(t) tracks (or adiabatically
follows) the QSE x̃(l). If there is a t0 such that |x(t0) − x̃(l(t0))| = R then we
say the solution tips (adiabatic approximation fails) at t0 and regard the model
as unphysical beyond this point in time. The tipping radius may be related to
the basin of attraction boundary for the nonlinear problem (1.1), as is the case
in §3a,b, but it need not be, as is the case in §3c and in Wieczorek et al. [20].
System (2.1) shows only R-tipping—because M is fixed there is no bifurcation
in the system and no noise is present. Clearly, the model can be generalized to
include M and R that vary with l(t), and/or nonlinear terms. Equation (2.1) can
be solved with initial condition x(0) = x0 to give

x(t) = eMtx0 +
∫ t

s=0
eM (t−s)Mx̃(l(s))ds.

If we assume that the solution is modelled by the linear system near the QSE for
an arbitrarily long past and set u = t − s, then the dependence on initial value
decays to give

x(t) = −
∫∞

u=0
eMuMx̃(l(t − u))du. (2.2)

Assuming that M is invertible and exponentially stable (more precisely, we
assume that |eMtM−kv| → 0 as t → 0 for k = 1, 2) and that the rate of motion
of the QSE and parameter are bounded (more precisely, the derivatives dl x̃/dll

and dll/dtl for l = 1, 2 are bounded in time) then (2.2) can be integrated by parts
to give

x(t) = − [
eMux̃(l(t − u))

]∞
0 −

∫∞

0
eMu dx̃

dt
(l(t − u))du

and so

x(t) − x̃(l(t)) = −
∫∞

0
eMu dx̃

dt
(l(t − u))du. (2.3)
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 on January 30, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Tipping points in open systems 1171

Integrating again by parts gives

x(t) − x̃(t) = M−1 dx̃
dt

(l(t)) −
∫∞

0
eMuM−1 d2x̃

dt2
(l(t − u))du

= L(t) + E(t).

The linear instantaneous lag is

L(t) = M−1 dx̃
dt

(l(t)). (2.4)

If we define the drift of the QSE to be the rate of change

r(t) := dx̃
dt

= dx̃
dl

dl

dt
(2.5)

then the linear instantaneous lag is

L(t) = M−1r(t). (2.6)

The error to the linear instantaneous lag is

E(t) = −
∫∞

0
eMuM−1 d2x̃

dt2
(l(t − u))du,

which includes historical information. This can also be expressed as

E(t) = −
∫∞

0
eMuM−1[x̃ ′′(l(t − u))(l′(t − u))2 + x̃ ′(l(t − u))l′′(t − u)]du.

To summarize, the solution of (2.1) follows the QSE x̃(l(t)) with a linear
instantaneous lag term L(t) and a history-dependent term E(t).

(a) A criterion for R-tipping with steady drift

If dx̃/dt = r is constant in time then we say the system has steady drift and
(2.3) simplifies to x(t) − x̃(l(t)) = M−1r . In other words, one can verify that
E(t) = 0 and that

|x(t) − x̃(l(t))| = |M−1r |. (2.7)

On writing the matrix norm ‖M‖ = supv �=0 |Mv|/|v|, we note that for any r �= 0
and invertible M we have

‖M‖−1 · |r | ≤ |M−1r | ≤ ‖M−1‖ · |r |.
We can avoid R-tipping if |x(t) − x̃(l(t))| = |M−1r | < R, and hence a sufficient
condition on the rate of parameter variation to avoid R-tipping is that

‖M−1‖ · |r | < R (2.8)

while a sufficient condition for R-tipping to occur in this model is that

‖M‖−1 · |r | > R.

In the intermediate case, the path of parameter variation will determine whether
or not there is any R-tipping.

Phil. Trans. R. Soc. A (2012)
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(b) General criteria for R-tipping

In the more general case where r(t) varies, we can use (2.3) to note that

|x(t) − x̃(t)| ≤
∫∞

u=0
eMu sup

u≤t

∣∣∣∣dx̃
dt

(l(u))
∣∣∣∣ du.

If we define

|rmax(t)| = sup
u≤t

∣∣∣∣dx̃
dt

(l(u))
∣∣∣∣ = sup

u≤t

∣∣∣∣dx̃
dl

(l(u))
dl

dt
(u)

∣∣∣∣,
then, noting that

∫∞
u=0 eMuv du = |M−1v|, we can guarantee that (2.1) avoids

R-tipping up to time t if

‖M−1‖ · |rmax(t)| < R. (2.9)

Conversely, there will be an R-tipping by time t if

‖M‖−1 = R
|rmax(t)| = R

(
sup
u≤t

∣∣∣∣dx̃
dl

dl

dt

∣∣∣∣
)−1

. (2.10)

One can define a natural time scale for the motion of the QSE as

R
|r(t)| = R

(∣∣∣∣dx̃
dl

dl

dt

∣∣∣∣
)−1

;

note that, in general, combinations of dx̃/dt and dl/dt do not give time scales
in units per second. For an R-tipping to occur, this natural time scale may be
comparable to the slowest time scale (e.g. the reciprocal of the leading eigenvalue
of M ) of the parametrized system. The three examples in §3 have |dx̃/dl| = 1 and
R ≈ 1 so we expect R-tipping when |dl/dt| ≈ ‖M‖. However, if |dx̃/dl| ≈ 1/e, then
clearly we can have R-tipping even when |dl/dt| ≈ e‖M‖.

It is possible to think of more general tipping problems by analogy with the
‘linear system and tipping radius’ model discussed here. For example, for an
open nonlinear system, we consider an ‘effective tipping radius’ that corresponds
to how far the linearized system needs to be from a branch of QSE to ensure
that the nonlinear system tips. There is however no exact analogy possible—the
effective tipping radius may depend on the shape of the local basin of attraction,
the nonlinearities present and the exact path taken in parameter space.

3. R-tipping: model examples

We give three illustrative examples of R-tipping. The first two are based on
normal forms for the two basic co-dimension one bifurcations that are generic
for dissipative systems: the saddle–node and the Hopf bifurcation. The third is
an example that uses a fast–slow system to show that R-tipping can occur even
in cases where there is a single attractor that is globally asymptotically stable.

Phil. Trans. R. Soc. A (2012)
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Figure 3. Phase portraits of (3.1) for (a) 0 < r < m, (b) r = m, and (c) r > m, including the two
quasi-static equilibria, x̃a and x̃ s , and the two invariant lines, A and B.

(a) Saddle–node normal form with steady drift

We consider the example system for x ∈ R with parameter l(t) ∈ R and drift r ,

dx
dt

= (x + l)2 − m (3.1)

and
dl

dt
= r , (3.2)

with fixed m > 0. In the (x , l) phase plane of (3.1)–(3.2), there are two dx/dt = 0
isoclines given by x̃ a(m) = {(x , l) ∈ R

2 : l = −√
m − x} and x̃ s(m) = {(x , l) ∈ R

2 : l =√
m − x} that correspond to two QSE: a stable node and a saddle, respectively,

for (3.1). Furthermore, if m > r there are two invariant lines, one attracting

A(m, r) = {(x , l) ∈ R
2 : l = −√

m − r − x}
and one repelling

B(m, r) = {(x , l) ∈ R
2 : l = √

m − r − x},
both with a constant slope dl/dx = −1 (figure 3). The stability manifests itself
as an exponential decay (growth) of small perturbations about A(m, r) (B(m, r)).

If 0 < r < m then B(m, r) defines a tipping threshold. Initial conditions below
B(m, r) converge to A(m, r), whereas initial conditions above B(m, r) give rise to
solutions x(t) → ∞ as t → ∞. If r = m then A(m, r) and B(m, r) coalesce into a
neutrally stable invariant line AB (figure 3b) that disappears for r > m (figure 3c).
Hence, for r > m there is no tipping threshold, meaning that trajectories for all
initial conditions become unbounded as t → ∞.

Let us assume that the system is at (x0, l0) at time t = 0. If the initial condition
(x0, l0) lies between l = −x and x̃ s(m), then the critical rate rc is the value of r
at which the r-dependent tipping threshold B(m, r) crosses (x0, l0). If the initial
condition lies on or below the line l = −x then the critical rate rc is the value of
r at which B(m, r) and A(m, r) meet and disappear. This gives a precise value for
the critical rate as the following function of initial conditions:

rc =
{

m − (l0 + x0)2 if − x0 < l0 < −x0 + √
m,

m if l0 ≤ −x0.
(3.3)
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We can approximate this result using the simple linear model (2.1) with
the linearization at the QSE as M = −2

√
m so that ‖M−1‖ = ‖M‖−1 = 1/(2

√
m).

Clearly, the linear model with R = 2
√

m given by x̃ s (basin boundary for x̃ a)
overestimates rc because the linear attraction weakens on moving away from
the stable QSE in the nonlinear problem. This can be overcome by choosing
an effective tipping radius Rc. Comparing with (2.8), the system avoids tipping if

|r | < 2
√

mRc,

which, for rc = m, suggests an effective tipping radius Rc = √
m/2. Finally, owing

to steady drift, this problem can be reduced to a saddle–node bifurcation at r = m
in a co-moving coordinate system y = x + l.

(b) A subcritical Hopf normal form

As a second example, we consider

dz
dt

= F(z − l), (3.4)

where z = x + iy ∈ C. For the subcritical Hopf normal form with frequency u, we
choose

F(z) = (−1 + iu)z + |z |2z .
Note that the system (3.4) has only one QSE at z̃ = l(t). Two cases of R-tipping
that we consider are with steady drift (these can be reduced to a bifurcation
problem in another coordinate system) and with unsteady drift (where there is
no straightforward simplification to a bifurcation problem).

(i) Hopf normal form with steady drift

Consider (3.4) with a uniform drift of the QSE along the real axis, at a rate r
(which must be real): dl/dt = r . There is a critical rate rc at which the system
moves away from the stable QSE. We can find this rc analytically by changing to
the co-moving system for w = z − l,

dw
dt

= F(w) − r , (3.5)

where a stable equilibrium represents the ability to track the QSE in the original
system. Setting w = |w| eiq and rewriting equation (3.5) in terms of d|w|/dt and
dq/dt gives an equilibrium at (|we|, qe) that satisfies

|we|6 − 2|we|4 + (u2 + 1)|we|2 − r2 = 0. (3.6)

In the (r , u) parameter plane, there is a saddle–node bifurcation curve (S in
figure 4a) whose different branches are given by equation (3.6) with

|we|2± = 2
3

(
1 ±

√
1 − 3

4
(1 + u2)

)
, (3.7)

Phil. Trans. R. Soc. A (2012)
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Figure 4. (a) Solid curves in a two-parameter tipping diagram for (3.4) with steady drift indicate
the critical rate rc(u). The stable equilibrium for the co-moving system (3.5), or the ability to track
the QSE in the original system (3.4), (b) disappears in a saddle–node bifurcation or (c) destabilizes
in a subcritical Hopf bifurcation when r = rc(u).

and join at cusp points at (r , u) = (±(2/3)3/2, ±(1/3)1/2) (not marked in
figure 4a). Linearizing about the stable equilibrium (|we|, qe) reveals that the
characteristic polynomial

s2 + (2 − 4|we|2)s + u2 + (|we|2 − 1)(3|we|2 − 1) = 0

has a pair of pure imaginary roots, indicating a Hopf bifurcation when |we|2 =
1/2 and u2 > 1/4. In the (r , u) parameter plane, (disjoint) Hopf bifurcation
curves (H ) originate from Bogdanov–Takens bifurcation points (BT) at (r , u) =
(±1/2, ±1/2), and are given by

1 + 4u2

8
− r2 = 0 and u2 >

1
4
, (3.8)

which follows from equation (3.6) with |we|2 = 1/2. At BT, saddle–node
bifurcation changes from super (solid) to subcritical (dashed). It turns out that
the stable equilibrium for (3.5), indicating the ability to track the QSE in
the original system, disappears in a supercritical saddle–node bifurcation when
u2 < 1/4 and becomes unstable in a subcritical Hopf bifurcation when u2 > 1/4.
Hence, for initial conditions within the basin boundary of this equilibrium, the
critical rate is given by

rc(u) =

⎧⎪⎨
⎪⎩

±
√

|we|6− − 2|we|4− + (u2 + 1)|we|2− if u2 ≤ 1
4
,

±
√

(1 + 4u2)
8

if u2 >
1
4
.

(3.9)
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Again, we can approximate this result using the simple linear model (2.1) with
the linearization at the QSE as M = (−1, 5; −5, −1) so that ‖M−1‖ = ‖M‖−1 =
0.1961. Clearly, the linear model with a tipping radius R = 1 given by the unstable
periodic orbit (basin boundary for z̃) does not account for nonlinear attraction
away from the QSE and for the spiralling shape of trajectories when u �= 0.
Therefore, we choose an effective tipping radius Rc. Comparing with (2.8), the
system avoids tipping if

|r | < 5.0990Rc,

which suggests an u-dependent effective tipping radius Rc(u) = rc(u)/5.099.
R-tipping that reduces to a bifurcation problem in a co-moving system should

not be confused with B-tipping: observe that the bifurcation parameter r does
not vary in time, and it is ‘the ability to track the QSE’, rather than the QSE
itself, that bifurcates.

(ii) Hopf normal form with unsteady drift

We now consider (3.4) where we include a smooth shift of QSE between
asymptotically steady positions at z = 0 to z = D, according to

dl

dt
= rl(D − l), l(t0) = D

2
, (3.10)

where r > 0 parametrizes the maximum rate of the shift, D > 0 is the amplitude
of the shift and t0 is the time when the rate of change is largest. Integrating
(3.10) gives

l(t) = D
(tanh(Dr(t − t0)/2) + 1)

2
, (3.11)

which implies the following parameter dependence on time:

l(−t) → 0, l(t) → D as t → ∞ and
dl

dt
≤ dl

dt
(t0) = D2r

4
.

Near t = t0 this describes a smooth shift between the location of an asymptotically
stable equilibrium from z = 0 to z = D, and the maximum rate of the shift is D2r/4
at t = t0. Observe that there is no change in stability or basin size of the QSE
as t changes. Figure 5 shows typical trajectories starting at an arbitrary initial
condition within the basin of attraction using fixed D and two values of r. As
shown in the diagram, there is a critical value rc such that for r < rc the system
can track the QSE while for r > rc a tipping occurs near t = t0.

J. Sieber (2010, personal observation) has pointed out that this case may still
be quantifiable by numerical approximation of the rc that gives a heteroclinic
connection from an (initial) saddle equilibrium at (z , l) = (0, 0) to a saddle
periodic orbit at (|z − D|, l) = (1, D) for the extended system (3.4) and (3.10).
Such a connection indicates rc for which the (initial) saddle equilibrium moves
away from the basin boundary of the stable equilibrium at (z , l) = (D, D).

(c) A fast–slow system with R-tipping

A particularly interesting case of R-tipping can occur in slow–fast systems that
have a (unique, globally stable) QSE near a locally folded critical (slow) manifold,
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t
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t

2

4

6

8
(a) (b)

x

r < rc r > rc 

Figure 5. R-tipping for (3.5)–(3.10) for D = 8 showing time evolution for (a) r = 4.76 and (b) r =
4.8 (recall that r scales the maximum rate of change) from an initial condition (x , y, l) =
(0.4, 0.5, 0.0001). For r > rc = 4.78, we find that system trajectories no longer follow the stable
QSE (shown by the dashed line) as they meet its basin boundary.

of which the recently studied compost-bomb instability is a representative [20,21].
Here, we consider a simple example

e
dx1

dt
= x2 + l + x1(x1 − 1) (3.12)

and

dx2

dt
= −

N∑
n=1

xn
1 , (3.13)

with odd N , fast variable x1 ∈ R, slow variable x2 ∈ R, and small parameter
0 < e � 1. A unique equilibrium for (3.12)–(3.13), x̃(l) = (0, −l), is asymptotically
stable for any fixed value of l, and globally asymptotically stable if N ≥ 5.
The slow dynamics is approximated by the one-dimensional critical (slow)
manifold, S(l) = {(x1, x2) ∈ R

2 : x2 = −l − x1(x1 − 1)}, that has a fold, L(l) =
(1

2 , −l + 1
4), tangent to the fast x1 direction. If N ≥ 5, the fold defines a tipping

threshold that is not associated with any basin boundary. Here, S(l) is partitioned
into the attracting part, Sa(l) for x1 < 1

2 , fold L(l) for x1 = 1
2 , and repelling part,

Sr(l) for x1 > 1
2 .

(i) The slow–fast system with steady drift

Consider (3.12)–(3.13) with a uniform drift of the QSE, x̃(l(t)), in the negative
x2 direction at a constant rate

dl

dt
= r > 0, (3.14)

so that l becomes the second slow variable. There is a critical rate, rc, at
which (3.12)–(3.14) is destabilized, meaning that trajectories diverge away from
the QSE for r > rc. We can find this critical rate in the singular limit, e → 0,

Phil. Trans. R. Soc. A (2012)

 on January 30, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1178 P. Ashwin et al.

012

0
0.5

1.0
1.5

2.0
–2

–1

–1 –1

0

12 012

0
0.5

1.0
1.5

2.012

(a)
(b)

x̃L L

Sr Sa

r > rc

r < rc

r >

x2

–2

–1

0

x2

x1x1

rc

r <rc

Sa
Sr

x̃l l

Figure 6. R-tipping in slow–fast systems with a unique QSE, x̃ , and (grey surface) locally folded
critical (slow) manifold, S = Sa ∪ L ∪ Sr , for (a) the steady drift problem (3.12)–(3.14) and (b) the
unsteady drift problem (3.12)–(3.13) and (3.20), where e = 0.01 and N = 1. In (a), equation (3.19)
gives rc = 1

2 and shown are trajectories for r = 0.4 < rc and r = 0.6 > rc. In (b), equation (3.23)
gives rc ≈ 0.99 for the initial condition at the origin (black dot) and shown are trajectories for
r = 0.7 < rc and r = 1 > rc.

by setting e = 0 in (3.12), differentiating the resulting algebraic equation with
respect to t, and studying the projected reduced system [22],

dx1

dt
=

(
−r +

N∑
n=1

xn
1

)
(2x1 − 1)−1 (3.15)

and
dl

dt
= r , (3.16)

that approximates the slow dynamics for (3.12)–(3.14) on the two-dimensional
critical manifold, S = {(x1, x2, l) ∈ R

3 : x2 = −l − x1(x1 − 1)} (grey surface in
figure 6). Although (3.15)–(3.16) is typically singular at the one-dimensional fold,
L = {(x1, x2, l) ∈ R

3 : x1 = 1
2 , x2 = −l + 1

4}, its phase portrait can be constructed by
rescaling time

dt
dt

= −(2x1 − 1) ⇒ t = −
∫ t

0
(2x1(s) − 1)ds,

producing the phase portrait for the desingularized system [23]

dx1

dt
= r −

N∑
n=1

xn
1 (3.17)

and
dl

dt
= −r(2x1 − 1), (3.18)

and then reversing the direction of time on the repelling part of the critical
manifold, Sr . In this way, we find that for 0 < r <

∑N
n=1 2−n trajectories for all

initial conditions within Sa converge to a stable invariant line that is defined by a
constant x1 satisfying r = ∑N

n=1 xn
1 , meaning that trajectories remain close to the
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QSE, x̃ , for all time [r < rc] in figure 6a. However, for r >
∑N

n=1 2−n , trajectories
for all initial conditions within Sa reach the fold, L, where they ‘slip off’ the
critical manifold and diverge away from the QSE in the fast x1 direction [r > rc]
in figure 6a. Hence, system (3.12)–(3.14) exhibits R-tipping and, for e → 0, the
critical rate is

rc =
N∑

n=1

2−n . (3.19)

(ii) The slow–fast system with unsteady drift

We now consider (3.12)–(3.13) with a non-uniform drift

dl

dt
= r e−l (3.20)

that is a logarithmic growth, l(t) = ln[r(t − t0) + el(t0)], where we assume r > 0.
Again, there is a critical rate, rc, at which system (3.12)–(3.13) and (3.20) is
destabilized. The key difference from the steady drift problem is that rc depends
on the initial condition within Sa . This is because the desingularized system

dx1

dt
= e−lr −

N∑
n=1

xn
1 (3.21)

and
dl

dt
= −e−lr(2x1 − 1) (3.22)

has a saddle equilibrium for all r > 0, corresponding to a folded saddle
singularity [24,25],

F = (x1,F , lF (r)) =
(

1
2
, − ln

N∑
n=1

2−n

r

)
,

for the projected reduced system. One can use the theory developed in Wieczorek
et al. [20, §4] to approximate the critical value, rc. Given F , the eigenvector

w =
⎛
⎝−q

p
+

√
2 +

(
q
p

)2

, 1

⎞
⎠

T

corresponding to the stable eigendirection of the saddle F for (3.21)–(3.22), an
initial condition (x1,0, l0) within Sa , and as far as e → 0, the critical rate can be
calculated using Wieczorek et al. [20, eqn (4.12)] to give

rc ≈ p exp

(
l0 + 1/2 − x1,0

−q/p + √
2 + (q/p)2

)
, (3.23)

where p = ∑N
n=1 2−n , q = ∑N

n=1 n2−n . Below the critical rate, the trajectory misses
the fold, L, and approaches the QSE, x̃ , as time tends to infinity [r < rc] in
figure 6b. Above the critical rate, the trajectory reaches L and diverges from the

Phil. Trans. R. Soc. A (2012)

 on January 30, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1180 P. Ashwin et al.

QSE in the fast x1 direction [r > rc] in figure 6b. Note that, in this example, the
critical rate of parameter variation is of the same order as the slow dynamics—
only when the parameter variation is very slow with respect to the slow variable
and there are three time scales is tracking guaranteed. In this sense, the rate-
dependent tipping occurs when the slow and very slow time scales are no longer
separable.

4. B-, N- and R-tipping examples in a simple climate model

We present a simple climate model that independently shows, under differing
circumstances, all three types of tipping. In its deterministic version, this
is a ‘zero-dimensional’ global energy balance model originally introduced by
Fraedrich [5],

c
dT
dt

= R ↓ −R ↑ . (4.1)

The state variable T represents an average surface temperature of an ocean on
a spherical planet subject to radiative heating. Equation (4.1) is a deterministic
energy conservation law where the constant c represents the thermal capacity of a
well-mixed ocean layer of depth 30 m covering 70.8 per cent of the Earth’s surface.
The incoming solar radiation R ↓ and outgoing radiation R ↑ are modelled as

R ↓= 1
4mI0(1 − ap(T )) and R ↑= eSAsT 4.

Here I0 is the solar constant and the parameter m allows for variations in the
planetary orbit, or in the solar constant. An ice–albedo feedback is introduced
to link variations in temperature with changes of ice and thus of albedo ap:
Fraedrich [5] used a quadratic relation

ap(T ) = a2 − b2T 2, (4.2)

where the parameters a2 > 1 and b2 control the albedo magnitude and slope of
the albedo–temperature relation. The outgoing radiation term is obtained by
the Stefan–Boltzmann law, where eSA is the effective emissivity and s is the
Stefan–Boltzmann constant. With these choices (4.1) is written as [5, eqn 4.1]

dT
dt

= f (T ) = c−1a(−T 4 + bmT 2 − dm)

and a = eSAs

c
, bm = mI0b2

4eSAs
, dm = −mI0(1 − a2)

4eSAs
.

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

Table 1 shows the values of constants and parameters for the system
at equilibrium. Sutera [4] reformulated Fraedrich’s model to incorporate
stochastic forcing:

dT = f (T )dt + √
n dW , (4.4)

with f (T ) as in (4.3), where dW is a normalized Wiener (white noise) process
such that (dW )2 has dimension of time t, n has dimension of 1/t and the variance
of

√
n dW per unit time is n.

For m larger than a critical value 0 < mc < 1, the deterministic system (4.3) has
two equilibria, T+ (stable) and T− (unstable). A saddle–node bifurcation takes
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Figure 7. Illustrations of trajectories for the Sutera–Fraedrich model (4.4) showing the presence
of all three tipping types for parameters in table 2—horizontal axis, years; vertical axis, Kelvin.
The solid lines show system trajectories while the dashed lines show the location of the QSE—
the branch T+ is stable while the branch T− is unstable in this model. (a,b) R-tipping for a
smooth change of parameters between two steady states. (a) The system returns to the QSE after
a transient (r = 0.18). (b) The system becomes unbounded, indicating a critical value rc ≈ 0.185
yr−1 (r = 0.19). (c) An example of N-tipping in the presence of noise of amplitude n = 1.0 yr−1;
(d) shows an example of B-tipping on decreasing m uniformly from 1 at a constant rate. Note that
in case (d) the two QSE coalesce at a saddle–node bifurcation.

Table 1. Values of the constants and parameters for equation (4.3).

I0 1366 W m−2 m 1
s 5.6704 × 10−8 W m−2 K−4 b2 1.690 × 10−5 K−2

c 108 kg K s−2 a2 1.6927
eSA 0.62

place at some m = mc with 0 < mc < 1, where the two equilibria T± merge and
disappear. Sutera [4] studied N-tipping in the stochastically forced system (4.4)
for m > mc, as a function of the distance m − mc from the bifurcation value. Namely,
they computed the exit time such that the process jumps over the ‘potential
barrier’ T− and falls irreversibly to ‘ice-covered Earth’.

We illustrate in figure 7 three situations where the Sutera–Fraedrich model
exhibits ‘pure’ B-, N- and R-tipping independently; parameter values are detailed
in table 2. In table 2, (a–b) shows an example of R-tipping, (c) of N-tipping
and (d) of B-tipping. For case (a–b), we evolve the dimensionless parameter l
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Table 2. Parameter values for simulations shown in figure 7. For case (a–b), we interpolate between
the values given along the curve such that b2

m − 4dm is constant at a rate proportional to r. In case
(c), all parameters are fixed but noise is added, while, in case (d), we impose a steady drift of the
parameter m downwards.

parameter (a–b) (c) (d)

m 1.0 1.0 decreases from 1.0
at rate −0.0004 yr−1

b2 (K−2) initial 1.690 × 10−5 1.690 × 10−5 1.04 × 10−5

final 1.8350 × 10−5

a2 initial 1.6927 1.6927 1.2
final 1.8168

n (per year) 0 1.0 0

according to the ODE dl/dt = rl(1 − l) and set b2 = (1 − l)binit
2 + lbfinal

2 —for this
figure, we use initial values l = 106 and T = 290 K. The value of a2 is calculated
to ensure that b2

m − 4dm is held constant for the parameter groups defined in (4.3).
The constant r can be thought of as simply scaling the rate of passage from the
initial to the final values given in the table.

5. Summary and conclusions

It is of great practical importance to understand the theoretical mechanisms
behind tipping phenomena in the climate system as well as other systems.
We have proposed here that such mechanisms can be effectively divided into
three distinct categories: bifurcation-induced, noise-induced and rate-dependent
tipping, respectively denoted as B-, N- and R-tipping. In particular, we describe
R-tipping, a mechanism that may be exhibited by (subsystems of) the climate
system independently of the presence or absence of the other types of tipping.

In realistic models, tipping effects may be associated with a combination
of the three mechanisms, and it will be a challenge to understand this more
general case. For example, B-tipping, usually associated with slow changes in
a parameter, may turn into R-tipping upon increasing the rate of change for
the parameters. However, as illustrated in figure 8, completely new mechanisms
may appear on increasing the rate, including the possibility that B-tipping
may be suppressed for fast enough variation of parameters. Alternatively, the
B-tipping may persist but an R-tipping mechanism may come into play before
the B-tipping is reached.

We emphasize that neither N-tipping nor R-tipping require any change of
stability. Hence there is no reason to assume that the techniques of Dakos et al.
[14], based on a de-trended autoregressive model for B-tipping, should deliver
useful predictions in such cases—as noted by Ditlevsen & Johnsen [16], N-tipping
is intrinsically unpredictable. We are investigating whether any novel predictive
technique may be developed for R-tipping. Those cases of R-tipping that can
be reduced to a local bifurcation in a co-moving system may be expected to
be predictable using similar methods; this includes the examples in §3a,b(i)
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Figure 8. Different possible system behaviours on ramping the parameter l at differing rates
(dashed arrows) through the region l ∈ [0, 1]. (a) Example where there is a B-tipping for low rates
(quasi-static) that disappears for high enough rates. (b) An example where there is no tipping for
small enough rates but R-tipping for large enough rates. (c) Both B- and R-tipping, but there is
a range of rates where no instability appears.

with steady drift. In more complex cases, rc may still be quantifiable by global
heteroclinic bifurcations for an extended system, for example (3.1) and (3.10) or
(3.4) and (3.10) in §3b(ii).

The classification proposed here may be applicable to a wide range of open
systems under the influence of noise and/or parameter changes. Recent work of
Nene & Zaikin [26] suggested that there may be interesting applications of rate-
dependent bifurcation theory to determine cell fate. There are potentially many
other application areas, from mechanics and ecology to economics and social
sciences, where tipping points are of interest. We suggest that this will be an area
of significant mathematical development in the coming years.

The authors thank the Isaac Newton Institute for hosting the programme ‘Mathematical and
Statistical Approaches to Climate Modelling and Prediction’ in autumn 2010, where this topic was
initially discussed, and are indebted to Alexei Zaikin and Jan Sieber for stimulating conversations
in relation to this work.
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