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Abstract. Observational and model based studies provide ample evidence
for the presence of multidecadal variability in the North Atlantic sea-surface

temperature known as the Atlantic Multidecadal Oscillation (AMO). This vari-
ability is characterised by a multidecadal time scale, a westward propagation of
temperature anomalies, and a phase difference between the anomalous merid-
ional and zonal overturning circulations.

We study the AMO in a low-order model obtained by projecting a model for
thermally driven ocean flows onto a 27-dimensional function space. We study
bifurcations of attractors by varying the equator-to-pole temperature gradient
(∆T ) and a damping parameter (γ).

For ∆T = 20◦C and γ = 0 the low-order model has a stable equilibrium
corresponding to a steady ocean flow. By increasing γ to 1 a supercritical Hopf
bifurcation gives birth to a periodic attractor with the spatio-temporal signa-
ture of the AMO. Through a period doubling cascade this periodic orbit gives
birth to Hénon-like strange attractors. Finally, we study the effects of annual
modulation by introducing a time-periodic forcing. Then the AMO appears
through a Hopf-Nĕımark-Sacker bifurcation. For ∆T = 24◦C we detected at
least 11 quasi-periodic doublings of the invariant torus. After these doublings
we find quasi-periodic Hénon-like strange attractors.
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1. Introduction. Understanding the dynamics of oceanic low-frequency variabil-
ity is important for both the development of reliable climate models and the as-
sessment of climate change. In this paper we study multidecadal variability in the
North Atlantic sea surface temperature in a low-order model.

1.1. The Atlantic Multidecadal Oscillation. There is ample observational ev-
idence that the time series of the North Atlantic sea surface temperature (SST)
feature a signal of variability with a time scale of several decades.

Observations. From a century of marine observations Kushnir [32] determined the
spatial structure of the temperature anomalies: the difference of the SST pattern
between the relatively warm years 1970-1980 and the relatively cold years 1950-1964
shows negative anomalies near Newfoundland and positive anomalies in the rest of
the basin. Delworth and Mann [17] provide a comparison between simulations of a
coupled ocean-atmosphere model and instrumental data supplemented with proxy
data. They found an oscillatory mode of variability with an approximate time scale
of 70 years.

The name Atlantic Multidecadal Oscillation (hereafter referred to as AMO) for
this variability was coined by Kerr [31]. Enfield et al. [23] defined an index for the
AMO by the 10-year running mean of the detrended Atlantic SST anomalies north
of the equator. Figure 1 shows a plot of this index computed from the HadSST2
dataset 1.

Figure 1. Atlantic sea surface temperature anomaly (in K) av-
eraged from 10◦N to 90◦N and smoothed with a 10-year running
mean.

Models and mechanisms. The study of multidecadal oscillations in thermally driven
flows in idealised ocean basins goes back to Greatbatch and Zhang [26] and Chen
and Ghil [12]. In the latter paper it was suggested that the multidecadal oscil-
lation can be related to the crossing of a critical parameter value. The relation
between multidecadal oscillations and Hopf bifurcations was further investigated in
the papers of Colin de Verdière and Huck [16], Huck and Vallis [28] and Te Raa and
Dijkstra [40].

Te Raa and Dijkstra [40, 41] computed three-dimensional steady flows and their
linear stability in a single hemispheric sector basin. By varying a horizontal dif-
fusivity parameter the steady state becomes unstable through a Hopf bifurcation

1See http://badc.nerc.ac.uk/data/hadsst2/.
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giving rise to an oscillatory mode with a multidecadal time scale and was named
multidecadal mode (hereafter MM). This mode is further characterised by a west-
ward propagation of temperature anomalies and an out-of-phase response between
the meridional and zonal overturning flows. This characterisation was used by Te
Raa et al. [42] to trace the MM through a hierarchy of ocean-only models, and it
was found that the MM persists in this hierarchy.

In Dijkstra et al. [20], the spatial and temporal characteristics of the MM were
traced through a hierarchy of models while monitoring mechanistic indicators, lead-
ing to an explanation of the AMO based on changes in the spatial patterns of vari-
ability through the model hierarchy. The persistent nature of the MM signature
supports the idea that the MM might provide a prototypal explanation for the
AMO, see Dijkstra [18, Chapter 6].

Climate variability related to the AMO. The alternating warmer and colder phases
of the AMO seem to be correlated with many types of climate variability. For
example, Enfield et al. [23] found that during warm phases of the AMO most of the
United States experience less rainfall, and between warm and cool phases Mississippi
River outflow varies by 10%. Goldenberg et al. [25] demonstrated that there is a
correlation between the warm phases of the AMO and the increase in Atlantic
hurricane activity. At present, however, there are no detailed mechanisms known
on how the AMO might drive these climate variations.

1.2. A low-order model for the AMO. In this paper we derive a low-order
model for the AMO. This means that we aim for a model with the minimum number
of ingredients which still captures the phenomenology of the AMO. More specifi-
cally:

1. our model only resolves the minimal amount of physics which is necessary to
describe the AMO (which is explained below);

2. the governing equations of the model are reduced to a finite-dimensional sys-
tem of ordinary differential equations.

In a hierarchy of models for the AMO, our low-order model is the simplest possible
model. This allows us to give a coherent overview of the dynamics by studying the
parameter space and the geometric structure of the attractors in detail.

In this paper we will study how the AMO is amplified by an annual cycle (mod-
elled by parametric forcing). In a forthcoming paper we will consider a low-order
ocean-atmosphere model to investigate whether the AMO in its damped regime can
be excited by atmospheric variability (possibly through a form of intermittency).

Ingredients of the model. We consider ocean flows in a rectangular ocean basin.
These flows are thermally driven by relaxation of the sea surface temperature to
an idealised atmospheric temperature gradient. In particular, salinity and wind
stress are not taken into account. The governing equations only involve a thermal
wind balance (relating vertical shear in the velocity field to horizontal temperature
gradients) and an equation for the advection of temperature. These equations are
formulated in terms of a system of five partial differential equations together with
suitable boundary conditions.

We derive a low-order model by expanding the velocity and temperature field in
a truncated series of orthogonal functions and applying a Galerkin projection. This
procedure gives a system of 27 ordinary differential equations for the time-dependent
expansion coefficients.
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Dynamics of the low-order model. The dynamics of the low-order model is inves-
tigated using techniques and concepts from dynamical systems. Two parameters
are used to study bifurcations of attractors and the associated routes to chaos: ∆T
controls the equator-to-pole atmospheric temperature gradient and γ controls the
damping of the atmosphere on sea surface temperature anomalies.

First, we study the dynamics of the autonomous low-order model. Next, we ap-
ply a periodic forcing modelling annual variations in heat flux at the ocean surface,
and we study the associated Poincaré map. In the autonomous low-order model
equilibria and periodic attractors are prevalent. The latter bifurcate through (cas-
cades of) period doubling bifurcations, giving rise to Hénon-like strange attractors.
The periodic attractors of the autonomous model become invariant tori of the pe-
riodically forced system (invariant circles for the Poincaré map) and they bifurcate
through quasi-periodic period doubling bifurcations, giving rise to quasi-periodic
Hénon-like strange attractors.

Outline of the paper. In Sections 2.1 and 2.2 we formulate the governing equations
and describe how the low-order model is obtained. In Section 3.1 we study equilibria
and their stability, and in Section 3.2 we study periodic attractors and explain how
they are related to the AMO. In Section 3.3 we impose a time-periodic component
in the forcing terms and study quasi-periodic attractors by means of a Poincaré
map. Section 4 concludes the paper with a discussion of our results.

2. Model. In this section we give a detailed description of the governing equations
and sketch the derivation of the low-order model.

2.1. The governing equations. In the present work we use the model of Te Raa
and Dijkstra [40] and Dijkstra [19] with the difference that our equations are formu-
lated in Cartesian instead of spherical coordinates. In what follows the coordinates
(x, y, z) represent longitude, latitude, and depth, respectively. In addition, we re-
strict to an f -plane approximation (i.e., the Coriolis force is taken to be constant).
According to the mechanism of the multidecadal variability as presented by Te Raa
and Dijkstra [40], the AMO is still expected to occur on the f -plane; only the spa-
tial structure of the observed temperature fields and the amplitude of overturning
circulations will differ from those obtained from models expressed in spherical coor-
dinates. The ocean length and width of the basin is denoted with L and the depth
is denoted with D. The dynamical variables are the velocity field (u∗, v∗, w∗), the
pressure field p∗, and the temperature field T ∗, where the asterisks indicate that
the variable is dimensional.

Forcing. The flows are forced by a restoring heat flux, which means that the heat
flux at the surface is proportional to the temperature difference between the sea
surface temperature and a prescribed atmospheric temperature T ∗

S . As the transfer
of heat occurs in a thin boundary layer, which is not resolved in our model, the
surface flux forcing is distributed as a body force over a certain depth of the ocean,
with thickness Hm using the profile function

G(z) =

{
1 if z ≥ −Hm,

0 otherwise.

Hence, the forcing heat flux is given by

Qrest =
λT

ρ0CpHm

(T ∗
S − T ∗)G(z), (1)
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where λT (in W m−2 K−1) is a constant heat exchange coefficient, ρ0 is a reference
density, and Cp is the specific heat capacity. Observe that the coefficient λT is
related to a surface adjustment time scale τT through the expression

τT =
ρ0CpHm

λT

.

The prescribed surface temperature of the atmosphere is idealised as

T ∗
S = T0 +

∆T

2
cos(πy/L),

where T0 is a reference temperature and ∆T is the equator-to-pole temperature
difference.

Governing equations. Temperature differences cause density differences according
to

ρ = ρ0(1 − αT (T ∗ − T0)),

where αT is the volumetric expansion coefficient. Moreover, we make the following
approximations:

• the effects of density differences are considered only in volume forces, but
not in the equations for momentum, temperature and mass conservation (the
Boussinesq approximation);

• the vertical pressure gradient balances the buoyancy force (the hydrostatic
approximation);

• horizontal and vertical mixing of momentum and heat are represented by
constant eddy coefficients (denoted with AH , AV , KH , and KV , respectively).

We introduce dimensionless variables by using scales L, D, U , and L/U for length,
depth, velocity, and time respectively, and we define a rescaled temperature T and
non-dimensional pressure p by

T ∗ = T0 + T, p∗ = −ρ0gz + fρ0LUp.

As the Rossby number Ro = U/fL is small we neglect inertia terms in the momen-
tum equations. Hence, the governing equations for the rescaled variables are given
by

− v +
∂p

∂x
= EH

(
∂2u

∂x2
+
∂2u

∂y2

)
+ EV

∂2u

∂z2
, (2)

u+
∂p

∂y
= EH

(
∂2v

∂x2
+
∂2v

∂y2

)
+ EV

∂2v

∂z2
, (3)

∂p

∂z
= RaT, (4)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (5)

DT

dt
= PH

(
∂2T

∂x2
+
∂2T

∂y2

)
+ PV

∂2T

∂z2
+B(TS − T )G(z), (6)

where
D

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the advection operator. In the governing equations several nondimensional pa-
rameters appear: the horizontal and vertical Ekman numbers EH and EV , the
Rayleigh number Ra, the inverse horizontal and vertical Péclet numbers PH and
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Parameter Description Value Unit

D depth of ocean basin 4.0×103 m

L length and width of ocean basin 6.0×106 m

U typical velocity scale 1.0 m s−1

Hm depth of surface layer 2.5×102 m

f Coriolis parameter 1.4×10−4 s−1

αT volumetric expansion coefficient 1.0×10−4 K−1

τT surface adjustment time scale of heat 30 days

ρ0 reference density 1.0×103 kg m−3

Cp heat capacity 4.2×103 J kg−1 K−1

AH horizontal eddy coefficient of momentum 3.0×107 m2 s−1

AV vertical eddy coefficient of momentum 1.0×10−3 m2 s−1

KH horizontal eddy coefficient of heat 1.0×103 m2 s−1

KV vertical eddy coefficient of heat 1.0×10−2 m2 s−1

T0 reference temperature 15.0 ◦C

∆T equator-to-pole temperature difference 20.0 ◦C

Table 1. Standard values of the dimensional parameters.

PV , and the Biot number B. These numbers have the following expressions in terms
of the dimensional parameters:

EH =
AH

L2f
, EV =

AV

D2f
, Ra =

αT gD

fLU
, PH =

KH

LU
, PV =

KV L

D2U
, B =

L

τTU
.

In what follows, all dimensional parameters have the values listed in Table 1 unless
specified otherwise. For the value of the Coriolis parameter f , the high-latitude
value at 65◦N is taken as being representative.

Boundary conditions. The governing equations are considered on a rectangular
ocean basin, see Figure 2. The nondimensional spatial coordinates belong to the
domain

(x, y, z) ∈ [0, 1]× [0, 1] × [−1, 0],

and on the boundaries of this domain we impose the conditions

x = 0, 1 : u = v = w =
∂T

∂x
= 0, (7)

y = 0, 1 : u = v = w =
∂T

∂y
= 0, (8)

z = −1, 0 :
∂u

∂z
=
∂v

∂z
= w =

∂T

∂z
= 0. (9)

Stream function formulation. We obtain a divergence-free velocity field by intro-
ducing two scalar velocity potentials φ and ψ and setting




u
v
w



 = ∇×




φ
0
0



 + ∇×




0
ψ
0



 =

(
−∂ψ
∂z

,
∂φ

∂z
,

∂ψ

∂x
− ∂φ

∂y

)⊤

. (10)

With this, the continuity equation (5) is eliminated, and the governing equations
(2)-(6) can be reduced to a system of four partial differential equations for φ, ψ, p,
and T . The boundary conditions for φ and ψ follow immediately from equations
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x

y

z

Figure 2. Basin of the model: (x, y, z) represent longitude, lati-
tude, and depth, respectively.

(7)-(9). Note that the boundary condition for the vertical velocity w at the top and
bottom of the basin leads to

∂ψ

∂x
− ∂φ

∂y
= 0.

The equations for the velocity field (u, v, w) are diagnostic (i.e., they do not contain
derivatives with respect to time) and therefore the boundary conditions for the
velocity field play a less important role. To simplify the derivation of a low-order
model we impose the more strict condition

∂φ

∂y
=
∂ψ

∂x
= 0

to ensure mass conservation.
An advantage of using stream functions is that we can eliminate the pressure

gradient in the low-order model since a gradient is orthogonal to a divergence-free
field with a vanishing normal component at the boundary (see Appendix A). Hence,
the fields ψ, φ, and T are the only variables in the low-order model.

2.2. The low-order model. The governing equations in (2)-(6) form a dynamical
system with an infinite-dimensional state space. We derive a system with a finite-
dimensional state space by means of a projection method.

Projection methods. The general idea behind any projection method is to expand
the unknown fields T, ψ, and φ in terms of a chosen basis, determining the spatial
structure, with unknown time-dependent coefficients. An orthogonal projection
onto the space spanned by the basis gives a set of finitely many ordinary differential
equations for the expansion coefficients.

Examples of a possible basis to project on are empirical orthogonal eigenfunc-
tions, principal interaction patterns (Kwasniok [34]), or eigenvectors computed from
a linear stability problem of a particular steady state (Van der Vaart et al. [44]).
However, these bases have to be computed numerically from a discretised model so
that physical parameters must be fixed.

In the present study we use analytical functions for the projection. This choice
has the major advantage that physical parameters (e.g., ∆T ) are preserved in the
projection. Hence, we can do a bifurcation analysis where the bifurcation parame-
ters have a straightforward physical interpretation.
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Basis functions. We will use sine and cosine functions with half wave numbers

sm(x) =
√

2 sin(mπx), cm(x) =

{
1 if m = 0,√

2 cos(mπx) if m 6= 0,

and the functions

bm(x) = cosh(λmx) − cos(λmx) −
cosh(λm) − cos(λm)

sinh(λm) − sin(λm)
(sinh(λmx) − sin(λmx)),

which are solutions of the boundary eigenvalue problem





d4bm
dx4

− λ4
mbm = 0, 0 < x < 1,

bm(0) = b′m(0) = 0,

bm(1) = b′m(1) = 0,

where the numbers λm (with m ≥ 1) are given by the positive roots of the equation

cos(λ) =
1

cosh(λ)
.

The Galerkin projection. Denote with

RT = {(m,n, k) | 0 ≤ m,n, k ≤ 2},
RS = {(m,n, k) | 1 ≤ m,n, k ≤ 2},

the sets of wave number triplets which are retained in the Galerkin projection. This
choice of the retained basis functions gives the smallest possible model in which we
still can qualitatively represent the patterns in the temperature and velocity fields
which were observed in previous studies of the AMO (see, for example, Te Raa and
Dijkstra [40] for pictures of such patterns).

The temperature and velocity potentials are expanded as

T (x, y, z, t) =
∑

(p,q,r)∈RT

T̂p,q,r(t)cp(x)cq(y)cr(z),

φ(x, y, z, t) =
∑

(p,q,r)∈RS

φ̂p,q,r(t)bp(x)bq(y)sr(z),

ψ(x, y, z, t) =
∑

(p,q,r)∈RS

ψ̂p,q,r(t)bp(x)bq(y)sr(z).

In this way, the truncated expansions satisfy the boundary conditions. By projecting
the equations (2)-(6) onto the basis functions, we obtain a system of 27 ordinary

differential equations for T̂p,q,r, and a set of 16 linear algebraic equations to compute

the coefficients ψ̂p,q,r and φ̂p,q,r. See Appendix A for details.

3. Results. We start the investigation of the low-order model by studying equilib-
ria and their stability. For suitable parameter ranges there is a unique equilibrium
which loses stability through a supercritical Hopf bifurcation when we increase
a certain damping parameter (Section 3.1). The resulting periodic orbit has the
spatio-temporal characteristics of the AMO and bifurcates through (cascades) of
period doubling bifurcations (Section 3.2).

Finally, we introduce a time-periodic variation in the forcing heat flux (modelling
an annual cycle). Then, the Hopf bifurcation of the autonomous system becomes a
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Hopf-Nĕımark-Sacker bifurcation, and an invariant 2-torus appears which bifurcates
through quasi-periodic period doubling bifurcations (Section 3.3).

The bifurcations of equilibria and periodic orbits discussed in this section are
standard, and they are discussed in detail in standard text books on dynamical sys-
tems, see, e.g., Broer and Takens [10], Guckenheimer and Holmes [27], or Kuznetsov
[33]. For an extensive discussion on quasi-periodic attractors and their bifurcations
see Broer et al. [2, 1] or Broer and Sevryuk [3].

3.1. The autonomous system: equilibria. Throughout this section, state vec-
tors of the low-order model will be denoted by

T̂ = (T̂0,0,0, T̂0,0,1, . . . , T̂2,2,2),

see Section 2.2 for the meaning of the components. Equilibria of the low-order model

will be denoted with T̂
(∆T )
E , where the superscript emphasizes the dependence upon

∆T .
When the equator-to-pole temperature gradient is set to ∆T = 0◦C, the zero

vector T̂
(0)
E = (0, . . . , 0) is an equilibrium of the low-order model. This equilibrium

corresponds to a motionless ocean with a constant temperature through the entire

basin. By continuation we compute an equilibrium T̂
(20)
E for the standard value

∆T = 20◦C, and this equilibrium corresponds to a steady ocean flow. In this
section we discuss the physical characteristics and the linear stability of such flows.

Physical characteristics. The equilibrium T̂
(20)
E is stable and corresponds to a steady

ocean flow, and the corresponding surface heat flux is shown in Figure 3. The
sea surface temperature is zonally almost homogeneous. In the northern half of
the basin the temperature field is vertically almost homogeneous, whereas in the
southern half warmer water masses are located near the surface (Figure 4).

To represent 3-dimensional flows by 2-dimensional plots, we introduce the merid-
ional and zonal overturning stream functions defined by the relations

∂ΨM

∂y
=

∫ 1

0

w(x, y, z)dx,
∂ΨM

∂z
= −

∫ 1

0

v(x, y, z)dx,

and
∂ΨZ

∂x
=

∫ 1

0

w(x, y, z)dy,
∂ΨZ

∂z
= −

∫ 1

0

u(x, y, z)dy.

The dimensional values of both stream functions are expressed in Sverdrups (1 Sv ≡
106 m3 s−1). The meridional and zonal overturning circulations form single cells
(Figure 5). The surface velocity is anticyclonic (i.e., clockwise) and the bottom
velocity is cyclonic (i.e., counterclockwise), which is consistent with the unicellular
overturnings (Figure 6).

Note that the amplitude of the overturning circulations is relatively large com-
pared to observations. This has several reasons, the most important one being the
large value of vertical heat diffusion coefficient KV . This value has been chosen
to prevent unstable stratifications, i.e., cold water on top of warm water. Lower
values of KV can be chosen when a so-called convective adjustment procedure is
implemented to prevent unstable stratifications, see Te Raa and Dijkstra [40] for
details. Moreover, in the low-order model there is limited spatial resolution. In
particular, the ocean basin is too large near the North pole due to the rectangular
shape of the basin.
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Stability under prescribed heat flux. Once we have obtained a stable equilibrium

T̂
(∆T )
E we define the constant term

Qpres = B(T̂S − T̂
(∆T )
E ),

which will be referred to as the prescribed heat flux associated with the equilibrium

T̂
(∆T )
E . Next, we define a new heat flux Qγ by setting

Qγ = (1 − γ)Qrest + γQpres, (11)

where γ is a nondimensional parameter interpolating between restoring and pre-
scribed heat flux conditions. This parameter essentially modifies the atmospheric
damping of sea surface temperature anomalies. The choice γ = 0 corresponds to
the damping time scale τT (Section 2.1), and when γ increases to 1, this time scale
increases to infinity (no damping). Now we replace (1) in the equations by (11).

By construction, the equilibrium T̂
(∆T )
E remains an equilibrium under the heat flux

Qγ for all values of γ. In this way we can study stability of the equilibrium under
the same heat flux, but with a different effect of atmospheric damping on the sea
surface temperature.

For the parameter range

2 × 107 ≤ AH ≤ 1 × 108, 5 × 10−4 ≤ KV ≤ 1 × 10−2,

the equilibrium T̂
(20)
E is stable for γ = 0. However, by varying γ from 0 to 1, the

equilibrium can become unstable. Figure 7 shows the number of unstable eigen-
values as a function of the parameter AH for different values of KV . Clearly, the
equilibrium loses stability through a succession of bifurcations. These bifurcations
can only be pitchfork, transcritical, or Hopf bifurcations: since the equilibrium

T̂
(∆T )
E persists for all values of γ, the possibility of saddle-node bifurcations is ruled

out.

3.2. The autonomous system: periodic attractors. When we fix the values of
AH and KV as in Table 1 the steady flows of the previous section only lose stability
through a supercritical Hopf bifurcation. The obtained periodic flow is a multi-
decadal mode of variability with a period of about 50 years which is characterised
by a westward propagation of temperature anomalies and a phase lag between the
zonal and meridional overturning anomalies. In turn, for values of ∆T ≥ 22◦C, this
mode loses stability through (cascades of) period doubling bifurcations.
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panel: the growth factor (σre) and period (2π/σim) of the least
stable eigenvalue pair is plotted as a function of γ for AH and KV

fixed as in Table 1. A Hopf bifurcation takes place for γH ≈ 0.951
where the growth rate becomes positive. Right panel: radius of the
periodic attractor as a function of γ.

The Hopf bifurcation. By increasing the parameter γ from 0 to 1 the equilibrium

T̂
(20)
E becomes unstable through a supercritical Hopf bifurcation which takes place

for γH ≈ 0.951 (left panel of Figure 8). Observe that close to the Hopf bifurcation
the radius of the periodic orbit is of the order O(

√
γ − γH) as predicted by normal

form theory (right panel of Figure 8).
Linearising the vector field around the Hopf bifurcation gives two eigenvalues

±σimi on the imaginary axis. Let Φre ± iΦim denote corresponding eigenvectors.
Then

P (t) = cos(σimt)Φre − sin(σimt)Φim (12)

is a periodic orbit of the vector field obtained by linearisation around the equilibrium
undergoing the Hopf bifurcation. This periodic orbit can be interpreted as a periodic
anomaly imposed on the steady background flow associated with the equilibrium

T̂
(20)
E . The physical signature of the anomalies can be studied by looking at the
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patterns associated with the phases P (−π/2σim) = Φim and P (0) = Φre. The sea
surface temperature associated with the eigenvectors are shown in the top panels
of Figure 9. A warm tongue at the sea surface has travelled westward during one
quarter of the oscillation. In addition, there is a phase lag between the meridional
and zonal overturning flows, see the bottom panel of Figure 9. In summary, these
characteristics qualitatively agree with those of the multidecadal mode detected in
Te Raa and Dijkstra [40].
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Figure 9. Physical characteristics of the periodic anomaly P (t)
defined in (12). Top panels: westward propagation of the sea
surface temperature anomalies P (−π/2σim) (left panel) and P (0)
(right panel); contour values are omitted as the scales are arbitrary
(any scalar multiple of (12) is also a solution of the linearised sys-
tem). Bottom panel: basin averaged values of the meridional and
zonal overturning circulations; observe the phase difference.

The period doubling bifurcations. For ∆T = 20◦C the periodic orbit remains stable
up to γ = 1. However, for larger values of ∆T the periodic orbit can bifurcate
through one or more period doubling bifurcations.

In Figure 10 we have plotted 1-dimensional projections of attractors of a local

Poincaré map defined by the section {T̂0,0,1 = 2}. For each parameter value 500
iterates of the Poincaré map are computed of which the last 100 points are plotted.
Then the parameter γ is increased with 5 × 10−5 and the last computed point
is used as initial condition for a new loop. For ∆T = 22◦C there are only two
consecutive period doubling bifurcations, but for larger values we observe a full
cascade of period doublings where regions of chaotic behaviour are interrupted with
windows of periodic behaviour.

The occurrence of the period doubling bifurcations as indicated in Figure 10 is
slightly shifted to larger values of the parameter with respect to the actual location.
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Figure 10. Period doubling cascades of the AMO mode in the
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Poincaré section T̂0,0,1 = 2. The components T̂0,0,2 are plotted
as a function of γ. For each parameter value 500 iterates of the
Poincaré map are computed and only the last 100 iterates are plot-
ted. Then the parameter γ is increased with 5× 10−5 and the last
computed iterate is used to start a new loop.
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This is due to intermittency near the bifurcations: the periodic orbits that are losing
stability are only weakly unstable near the bifurcation point. Therefore a large
number of iterations (larger than that used in Figure 10) is required to converge
to the ‘doubled’ orbit. This results in tiny ‘delays’ in the apparent location of the
period doubling bifurcations. See Neishtadt et al. [35] and references therein for a
detailed discussion on bifurcation delay.

At the first period doubling, the periodic orbit associated with the AMO loses
stability which gives birth to a new periodic orbit which makes two loops before
closing, and which has roughly twice the period of the original periodic orbit. The
new periodic orbit inherits the physical characteristics of the AMO (i.e., the phase-
lag in the overturning circulations and the westward propagation of temperature
anomalies), but the period doubling has introduced a harmonic of approximately
100 years in the variability. At subsequent period doublings more harmonics (200
years, 400 years, 800 years, etc.) are introduced in the power spectrum (not shown).

Hénon-like strange attractors. The left panel Figure 11 shows a strange attractor
which appears for (∆T, γ) = (24; 0.998) after a cascade of period doubling bifurca-

tions of a fixed point of the Poincaré map defined by the section {T̂0,0,1 = 2} (see
the bottom panel of Figure 10). The right panel of the same figure shows a short
piece of the 1-dimensional unstable manifold of an unstable fixed point obtained by
continuation of the stable fixed point which is present for γ = 0.995. This unstable
manifold almost coincides with the strange attractor, which suggests that the latter
is indeed Hénon-like. Figure 12 is the same as Figure 11, but a different projection
has been used. Observe that the unstable manifold is folding in very wild way. This

causes the component T̂0,0,0 to seem to behave in a noisy way.
The reader is referred to, e.g., Simó [38] for the methodology of computing in-

variant manifolds.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0.44  0.46  0.48  0.5  0.52  0.54  0.56

T^ 0,
1,

0

T
^

0,0,2

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0.44  0.46  0.48  0.5  0.52  0.54  0.56

T^ 0,
1,

0

T
^

0,0,2

Figure 11. Left: strange attractor obtained for (∆T, γ) =
(24; 0.998). Right: the 1-dimensional unstable manifold of the un-
stable fixed point (marked as a dot on the plot) of the Poincaré
map obtained by continuation of the stable fixed point which ap-
pears for γ = 0.995. Note the similarity between this curve and
the strange attractor. However, there are differences in the struc-
ture of the attractor and the displayed part of the manifold; for a
complete agreement one should compute a longer piece of each side
of the manifold, counted from the fixed point. This requires more
iterations and produces a huge file.
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Figure 12. Same as in Figure 11, but in a different projection.
Observe the wild foldings in the unstable manifold: this causes the

‘white noise’-like behaviour in the variable T̂0,0,0.

Attractors for γ > 1. The parameter γ only has a physical meaning when its value
is between 0 and 1, but attractors appearing for γ = 1 can persist for values γ > 1.
We have used the same algorithm of Figure 10 to extend the computation of the
attractors to values γ > 1 (not shown). The results are sensitive with respect to
the choice of initial condition and of the step size ∆γ which is used to increase the
parameter γ. Not all initial conditions converge to an attractor: orbits may diverge
to infinity, depending on the initial point. Also, when starting from an initial point
p on an attractor for some value γ = γ0, the point p may fall outside the basin of
the attractor occurring at γ = γ0 + ∆γ, if the step size ∆γ is too large. The orbit
of p would then diverge to infinity.

3.3. The annually forced system: quasi-periodicity and chaos. In this sec-
tion we study the AMO mode under periodic forcing modelling annual variations in
the surface heat flux. In this setting we detect a Hopf-Nĕımark-Sacker bifurcation
which gives rise to an invariant 2-torus. The dynamics on this torus correspond to
the periodic forcing imposed on the AMO mode.

Forcing heat flux. Define

Qper = (1 − γ)Qrest + γQpres + P (t)S(x, y)

Here, P and S are functions setting the time scale and spatial structure of the
forcing, respectively. We set

P (t) = ǫ cos

(
2πt

T

)

and

S(x, y) =
1

4

[
1 − cos

(
2πx

Lx

)] [
1 − cos

(
2πy

Ly

)]
,

where the parameters ǫ and T denote the strength and the period of the forcing,
respectively. We will set T = 365 days (unless specified otherwise), and for ǫ we will
use values in the range of 0.1 to 1.0. The value ǫ = 0.5 corresponds approximately
to 10% of the difference between the maximum and minimum over the basin of the
heat flux Qpres. The periodic component P (t)S(x, y) can be interpreted as a very
rough approximation to fluctuations observed in surface heat fluxes over the North
Atlantic (Cayan [11]).
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Amplification of the AMO mode. We now fix the equator-to-pole temperature gradi-
ent at ∆T = 20 and the forcing period T = 365 days. For γ = 0.95 the autonomous
system (ǫ = 0) has an equilibrium destabilising through a supercritical Hopf bifur-
cation which gives rise to the AMO mode. In the periodically forced system (ǫ > 0)
a stable periodic orbit bifurcates into an attracting 2-dimensional torus through a
Hopf-Nĕımark-Sacker bifurcation where two complex conjugate Floquet multipliers
cross the unit circle. This bifurcation takes place for almost the same value of γ
for which the corresponding Hopf bifurcation occurred in the autonomous system
ǫ = 0.

In physical terms, the dynamics on the 2-torus attractor corresponds to the an-
nual cycle imposed on the original AMO signal, see Figure 13. For most parameter
values the dynamics on the 2-torus is quasi-periodic. Only for parameter values in
very narrow domains the periods of the forcing and of the AMO mode become com-
mensurate, which leads to a periodic attractor on the 2-torus. The size of the forcing
amplitude ǫ determines the size of the 2-torus (in state space), or equivalently, the
amplification of the AMO.

Figure 13 shows the peak-to-peak amplitude of the basin averaged sea surface
temperature as function of the forcing period T for different values of ǫ. For fixed
T the variability increases with increasing ǫ. For fixed ǫ a larger value of T (i.e.,
a lower forcing frequency) is more effective in amplifying the AMO mode. Observe
that for the different values of ǫ the variability is linear in T . In addition, the slopes
are linear functions of ǫ: computing a linear fit gives

peak-to-peak SST = a+ (c+ dǫ)T ,

where a = 0.938549, c = −0.00135510, and d = 0.00116036.

The Poincaré map and its attractors. The state space of the periodically forced sys-
tem is 28-dimensional and is given by the Cartesian product of a circle (containing
the time-periodicity) with the 27-dimensional state space of the autonomous system.
A convenient way to study this system is by means of a Poincaré map (also referred
to as a time-T map or stroboscopic map). This map is obtained numerically by
sampling the integration output of the periodically forced system at integer mul-
tiples of the forcing period T . This procedure reduces the dimension of the state
space by one and gives a discrete time dynamical system with a 27-dimensional
state space. Moreover, the complexity of attractors is reduced: a invariant 2-torus
becomes an invariant circle, and a periodic orbit becomes a periodic point. In what
follows, the Poincaré map will be denoted by P .

Now we fix the parameters ǫ = 0.25 and T = 365 and give an overview of the
attractors that occur for various values in the (∆T, γ)-plane. An overview of the
dynamics of the Poincaré map P is obtained by brute force iteration. We fix the
value of ∆T and increase the value of γ from 0.995 up to 1.0 in steps of 10−5.
For each value of γ we compute 104 iterates of P and plot the last 500 computed
points; the final point of the last attractor serves as an initial condition for the
next loop. Simultaneously we compute the three largest Lyapunov exponents to
classify the attractor. See Figure 14 and Figure 15. Note that by this procedure we
cannot detect multistability, i.e., the coexistence of different attractors. This can
be detected by using more refined procedures with varying initial conditions. Also
observe that the second Lyapunov exponent is always negative but increases to zero
when the amount of damping (controlled by γ) is decreased.



18 BROER, DIJKSTRA, SIMÓ, STERK AND VITOLO
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Figure 13. Top panel: time series of the AMO mode (solid) and a
quasi-periodic attractor obtained with periodic forcing for ǫ = 0.5
and T = 365 days (dashed). The basin averaged sea surface tem-
perature is plotted against the time in years. Bottom panel: The
peak-to-peak amplitude of the basin averaged sea surface tempera-
ture as a function of the forcing period (in days) for different values
of ǫ.

As in the autonomous case, we also found attractors for values γ > 1. However,
orbits may escape to infinity depending on the initial point, see a remark at the end
of Section 3.2.

Quasi-periodic and periodic dynamics. For most values of the parameters the dy-
namics of P is quasi-periodic, meaning that evolutions densely fill an invariant
circle. Only in narrow windows of the (∆T, γ)-parameter plane phase locking can
be observed, where the dynamics on the invariant circle locks onto a periodic point
attractor, as in Figure 16. This behaviour occurs when parameter values move
through so-called Arnol′d tongues. These are regions in the (∆T, γ)-plane bounded
by pairs of curves of saddle-node bifurcations of periodic orbits originating from a
common resonant Hopf-Nĕımark-Sacker bifurcation. It is precisely in these regions
where the periods of the forcing and the AMO mode become commensurate.

Quasi-periodic period doublings. The periodically forced system exhibits quasi-per-
iodic period doublings of the P -invariant circle. These bifurcations can be seen
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attractors of the Poincaré map as a function of γ.

as perturbations arising for ǫ > 0 from the period doublings in the autonomous
system, see Section 3.2 and Figure 10. Indeed, the values of γ where the quasi-
periodic period doublings occur for ǫ > 0 are close to those where period doublings
occur for ǫ = 0. Period doubling bifurcations can be identified in the Lyapunov
diagrams of Figure 14 and Figure 15 as the locations where the second Lyapunov
exponent becomes zero.

Only two period doublings are detected up to γ = 1 for ∆T = 22◦C. At least
eleven doublings are detected for ∆T = 24◦C, but only three of them can be seen in
the Lyapunov diagram due to the large step size in γ. The parameter values of the
first eleven doublings are listed in Table 2, and we expect that they are followed by
infinitely many additional period doublings. Figure 17 shows a sequence of doubled
invariant circles which are born at the first four period doublings.

Note, however, that further refinement of the values in Table 2 requires a huge
computational effort. For a careful determination of the location of the period dou-
bling the Lyapunov exponents have to be determined with an error below 10−6.
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This requires a great number of Poincaré iterates, and usage of extrapolation tech-
niques, see, e.g., Broer and Simó [4] and Simó [37]. Up to 5×106 iterates have been
used for some selected values of γ after a transient of 106 iterates. See Section B.2
for additional details and illustrations.

Two different types of quasi-periodic period doubling bifurcations are possible
(see Broer et al. [2]): as a parameter is varied, an attracting invariant circle loses
stability and gives birth

1. to a single attracting invariant circle of roughly double length;
2. to a pair of disjoint circles, each mapped onto the other by the Poincaré map
P . This is also referred to as a pair of periodically invariant circles of period
2, or a period-2 invariant circle.

A priori there is no reason to expect that only one of the two types occurs, but in
our model we only have found period doublings of length-doubling type. In cases
where the invariant torus is reducible, the type of bifurcation can be deduced from
the eigenvalues of an associated Floquet matrix, see Jorba [29] and Broer et al.

[7, 45] for details.
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Figure 16. Two different attractors of the Poincaré map for ∆T =
22. Left panel: an invariant circle with quasi-periodic dynamics
(γ = 0.9967347). Right panel: a periodic point attractor (γ =
0.9967379) having period 45.

Remark 1. A full description of the quasi-periodic period doubling bifurcation of
invariant circles requires in fact two parameters. Loosely speaking, one parameter
is necessary to unfold the loss of normal hyperbolicity and another parameter is
required to enforce a Diophantine condition for the rotation number, necessary for
KAM-like persistence of the ‘undoubled’ invariant circle, see Broer et al. [1, 5, 9, 7,
8].

In 2-dimensional parameter space the quasi-periodic bifurcation set is a Cantor
set which is contained in a smooth curve, its gaps being filled with resonance bub-
bles, giving rise to a ‘frayed’ boundary. The quasi-periodic doubling bifurcation
admits a simple description only if parameters are restricted to any of the codi-
mension one manifolds (curves in parameter space) where the rotation number is
Diophantine. Much more intricate bifurcation structures are expected within the
resonance ‘bubbles’, but the quasi-periodic bifurcation theory does not predict the
generic behaviour there, see Broer et al. [7] for a case-study of the quasi-periodic
Hopf bifurcation.

When varying only one parameter from panel (A) to (B) in Figure 17, the theory
predicts that a quasi-periodic doubling occurs with positive probability, although
one cannot exclude that a resonance ‘bubble’ is being crossed instead. See Broer et

al. [7, 45] and Chenciner [13, 14, 15] for a more complete discussion.

From the parameter values in Table 2 (see also Figure 19 in Appendix B.2) we
conjecture that

lim
n→∞

qn = F,

where F ≈ 4.6692 is Feigenbaum’s constant. The end of the period doubling cas-
cade, γ∞, will be located very close to γ = 0.997150334. Observe in Figure 15 that,
despite the spacing in γ is too large, this is indeed the approximate location for
which the dominant Lyapunov exponent becomes positive. In similar models it is
common that only a finite number of period doublings appears, see e.g. Broer et

al. [45], but in the present model and for ∆T = 24 it seems that the full cascade is
present.

Strange attractors. For γ = 0.997185, the strange attractor in Figure 18 (left panel)
is detected. On this type of attractors the dynamics is chaotic: the dominant
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n γn qn = γn−γn−1

γn+1−γn
n γn qn = γn−γn−1

γn+1−γn

1 0.9957520 7 0.997150177 4.7
2 0.99675927 3.18 8 0.997150300 4.6
3 0.99707620 5.46 9 0.9971503270 4.8
4 0.997134254 4.59 10 0.99715033265 4.8
5 0.997146898 4.68 11 0.99715033382
6 0.997149598 4.66

Table 2. Approximate locations of the first eleven quasi-periodic
period doublings for ∆T = 24. In the third column the ratios of
the successive distances between the bifurcations are listed.

γ Figure λ1 λ2 λ3

0.99650 Figure 17A +3.2 × 10−7 −4.9 × 10−4 −1.2 × 10−3

0.99700 Figure 17B −2.2 × 10−7 −4.2 × 10−4 −1.3 × 10−3

0.99709 Figure 17C −6.0 × 10−7 −4.1 × 10−4 −8.9 × 10−4

0.99714 Figure 17D −1.8 × 10−7 −1.9 × 10−4 −4.0 × 10−4

0.997185 Figure 18 +4.5 × 10−4 −5.8 × 10−5 −4.0 × 10−4

Table 3. Lyapunov exponents for the attractors shown in the
listed Figures.

γ Number of windings γ Number of windings

0.997261 10-circle 0.998026 7-circle
0.997450 11-circle 0.998536 11-circle
0.997540 6-circle 0.998554 doubled 11-circle
0.997546 doubled 6-circle 0.999025 4-circle
0.997606 5-circle 0.999355 doubled 4-circle
0.997615 doubled 5-circle 0.999499 quadrupled 4-circle

Table 4. Values of γ in the chaotic range for ∆T = 24 for which
invariant circles occur and their number of windings.

Lyapunov exponent is positive, which means that nearby evolutions separate in an
exponentially fast way.

The structure of the attractor is visualised by a ‘slice’, that is points contained in

thin layers (width 5.0×10−3) centred around hyperplanes of the form {T̂0,0,1 = 1.8},
see Figure 18 (right panel). Observe that points in this slice are rather scattered.
We emphasize that this is not an error in the computations. Nor it is due to the
chosen thickness of the slice: the ‘fuzzyness’ of points in the slice persists when the
thickness of the slice is reduced. The reason for the fuzzyness can be explained by
wild foldings of an unstable manifold as in the case of the Hénon-like attractor of
Figure 12.

The attractor shown in Figure 18 is reminiscent of the so-called quasi-periodic
Hénon-like strange attractors, which are formed by the closure of the unstable
manifold of an invariant circle of saddle-type (Broer et al. [6]). These attractors
have been detected numerically in a seasonally forced Lorenz-84 model studied by
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Figure 17. Invariant circles of the Poincaré map for ∆T = 24
appearing after the first four period doublings. See Table 3 for the
values of γ and Lyapunov exponents. Left panels: projections on

(T̂0,0,0, T̂0,0,1). Right panels: projections on (T̂0,0,0, T̂0,0,2) of the

points belonging to the fattened slice |T̂0,0,1 − 1.8| ≤ 5.0 × 10−3.

Broer et al. [5]. In that case, both types of quasi-periodic doublings (1 and 2 above)
have been found to occur in the same sequence, and the strange attractor appears
when a homoclinic tangency of a saddle-periodic point destroys the twice-doubled
invariant circle.
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 0.8

 1.2

 1.6

 2

 2.4

 2.8

-2.88 -2.87 -2.86 -2.85 -2.84

T^ 0,
0,

1

T
^

0,0,0

 0.4

 0.5

-2.88 -2.87 -2.86 -2.85 -2.84

T^ 0,
0,

2

T
^

0,0,0

Figure 18. Strange attractor of the Poincaré map for ∆T = 24
appearing after the end of the period doubling cascade. Top

panel: projection on (T̂0,0,0, T̂0,0,1). Bottom panel: projections

on (T̂0,0,0, T̂0,0,2) of the points belonging to the fattened slice

|T̂0,0,1 − 1.8| ≤ 5.0 × 10−3.

Invariant circles in the chaotic range. From Figure 15 it is evident that the range
of values of γ for which the dominant Lyapunov exponent is positive is interrupted
with small windows for which the dominant Lyapunov exponent is zero. This means
that the parameter domains characterised by the occurrence of strange attractors
are interrupted by parameter sets where invariant circles occur. In turn, these
invariant circles can bifurcate again through quasi-periodic period doublings. This
scenario is similar to what happens in cascades of period doublings for periodic
orbits, cf. Figure 10.

The invariant circles can be detected numerically by taking small step sizes (∆γ <
3 × 10−6) in the chaotic range and brute force iteration of the Poincaré map. This
procedures results shows the existence of invariant circles with a number of windings
that differs from window to window. A summary of the results is presented in
Table 4.

4. Summary and discussion. In this paper we have studied the dynamics of a
model for the Atlantic Multidecadal Oscillation. Instead of using the traditional
high-dimensional models (often obtained by finite-difference discretisation schemes)
we have derived a low-order model by means of a Galerkin projection of the gov-
erning equations onto a finite-dimensional function space.

Results. The AMO appears in our model due to a supercritical Hopf bifurcation of a
stable equilibrium (associated with a steady ocean flow) by switching from restoring
to prescribed heat flux (i.e., by increasing the parameter γ from 0 to 1). This is
the typical bifurcation scenario associated with the AMO, see Te Raa and Dijkstra
[40] and Dijkstra et al. [21]. In addition, our low-order model captures the physical
signatures of the AMO: the multidecadal period, the westward propagation of sea
surface temperature anomalies, and the phase difference between the meridional
and zonal overturning anomalies. The period doubling bifurcations of the periodic
orbit associated with the AMO have also been detected in high-dimensional models
studied in Te Raa et al. [42].

The new element of this study is the introduction of periodic forcing in the surface
heat flux which can be interpreted as an annual cycle. Then, the stable equilibria
of the low-order model are replaced by stable periodic orbits. In particular, the
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AMO now appears as a quasi-periodic attractor through a Hopf-Nĕımark-Sacker
bifurcation of the periodic attractor associated with the annual cycle. For most
parameter values the dynamics is quasi-periodic which means that the periods of the
AMO and the annual cycle are incommensurate. In turn, the 2-torus can undergo
various quasi-periodic period doublings, and this leads to strange attractors which
are reminiscent to the quasi-periodic Hénon-like strange attractors discussed in
Broer et al. [5, 6].

The results of this paper provide ample motivation for further investigations of
both mathematical and physical topics.

Mathematical issues. Our low-order model is derived from a dynamical system with
an infinite-dimensional state space viz. a system of five partial differential equations.
It is a natural question whether the numerically observed dynamics in our low-
order model has any relation with the original infinite-dimensional system and what
part of the dynamics persists as the number of retained basis functions in the
Galerkin projection is increased. For this it is at least necessary to have a better
understanding of the state space of the original infinite-dimensional system, e.g., by
proving the existence of weak solutions and global attractors or inertial manifolds
along the lines of Robinson [36] or Temam [43].

Physical issues. The dynamically interesting results are obtained near the param-
eter value γ = 1, i.e., for forcing conditions which are almost prescribed. However,
prescribed heat flux in ocean models is a strong idealisation since it amounts to
net zero atmospheric damping—in reality sea surface temperature anomalies are
substantially damped by the atmosphere. It is expected that ‘realistic’ values of γ
satisfy γ < γH which implies that the AMO mode is damped (see Dijkstra et al.

[21]). On the other hand, it is known that the atmosphere itself exhibits variability
on various time and spatial scales. This leads to the following question:

Can atmospheric variability excite the weakly damped AMO mode?

Here, excitation means that multidecadal variability related to the AMO can be
observed for parameter values γ < γH.

This question has been addressed by Dijkstra et al. [21] and Frankcombe et al.

[24] by studying an ocean-only model where stochastic noise is used to model at-
mospheric variability. It was found that stochastic noise indeed excites the AMO
mode which is interpreted as a stochastic Hopf bifurcation. Moreover, white noise
only weakly excites the AMO mode, but the introduction of spatial and tempo-
ral coherence in the forcing can increase the amplitude of the variability to levels
corresponding with observations.

Current research by the authors is investigating whether intermittent atmo-
spheric behaviour may be involved in the excitation of the AMO. We adopt again
the setting of deterministic low-order models, where detailed dynamical analysis
can be carried out. As a starting point, the model described in this paper is being
coupled to the low-order atmospheric model of Sterk et al. [39].
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Appendix A. Coefficients of the low-order model. In the Galerkin projection
the fields T, ψ, and φ are replaced by the truncated series expansions. The resulting
equations are multiplied with the basis functions and integrated over the spatial
domain. This gives a set of ordinary differential equations for the time-dependent
expansion coefficients.

The coefficients in the equations for the low-order model are given by integrals
of (products of) the basis functions, which are readily implemented in an algebraic
manipulation program. To simplify the notation of the formulas below we will omit

subscripts of the summations signs—indices of the vectors T̂ run through the set

RT , and indices of the vectors ψ̂ and φ̂ run through the set RS (see Section 2.2).

The thermal wind balance. The equations (2)-(4) are so-called diagnostic equations,
i.e., they do not contain derivatives with respect to time. The Galerkin projections
of these equations are linear algebraic equations from which we can compute the ex-
pansion coefficients for the velocity potentials in terms of the expansion coefficients
of the temperature field.

After substitution of the stream functions, the thermal wind balance is given by

− EH

(
∂3ψ

∂x2∂z
+

∂3ψ

∂y2∂z

)
− EV

∂3ψ

∂z3
+
∂φ

∂z
=

∂p

∂x
, (13)

EH

(
∂3φ

∂x2∂z
+

∂3φ

∂y2∂z

)
+ EV

∂3φ

∂z3
+
∂ψ

∂z
=

∂p

∂y
, (14)

RaT =
∂p

∂z
. (15)

After the Galerkin projection we obtain the following system of linear equations:
∑

M(p,q,r),(m,n,k)ψ̂p,q,r − C(p,q,r),(m,n,k)φ̂p,q,r = f(m,n,k),
∑

M(p,q,r),(m,n,k)φ̂p,q,r + C(p,q,r),(m,n,k)ψ̂p,q,r = g(m,n,k).

In these equations, the coefficients due to mixing of momentum are given by

M(p,q,r),(m,n,k) = EH

∫ 1

0

b′′p(x)bm(x)dx

∫ 1

0

bq(y)bn(y)dy

∫ 0

−1

s′r(z)s
′
k(z)dz

+ EH

∫ 1

0

bp(x)bm(x)dx

∫ 1

0

b′′q (y)bn(y)dy

∫ 0

−1

s′r(z)s
′
k(z)dz

+ EV

∫ 1

0

bp(x)bm(x)dx

∫ 1

0

bq(y)bn(y)dy

∫ 0

−1

s′′′r (z)s′k(z)dz

and the coefficients due to the Coriolis force are given by

C(p,q,r,),(m,n,k) =

∫ 1

0

bp(x)bm(x)dx

∫ 1

0

bq(y)bn(y)dy

∫ 0

−1

s′r(z)s
′
k(z)dz.
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Finally, the coefficients of the right hand side are given by

f(m,n,k) = −Ra
∑

T̂p,q,r

∫ 1

0

cp(x)b
′
m(x)dx

∫ 1

0

cq(y)bn(y)dy

∫ 0

−1

cr(z)sk(z)dz,

g(m,n,k) = Ra
∑

T̂p,q,r

∫ 1

0

cp(x)bm(x)dx

∫ 1

0

cq(y)b
′
n(y)dy

∫ 0

−1

cr(z)sk(z)dz.

Observe that we have eliminated the pressure gradient from the projected equations.
Indeed, by performing an integration by parts the pressure gradient vanishes since a
gradient is orthogonal to a divergence-free field with a vanishing normal component
at the boundary.

The advection equation. The equation (6) is a so-called prognostic equation, i.e.,
containing a derivative with respect to time. The Galerkin projection of this equa-
tion is a system of ordinary differential equations with quadratic nonlinearities for
the time-dependent expansion coefficients of the temperature field.

After substitution of the stream functions, the advection equation is given by

∂T

∂t
− ∂ψ

∂z

∂T

∂x
+
∂φ

∂z

∂T

∂y
+

(
∂ψ

∂x
− ∂φ

∂y

)
∂T

∂z
= PH

(
∂2T

∂x2
+
∂2T

∂y2

)
+ PV

∂2T

∂z2

+B(TS − (T + T0))g(z).

The projected equation is given by

dT̂m,n,k

dt
=

∑
α(p,q,r),(h,i,j),(m,n,k)ψ̂p,q,rT̂h,i,j + β(p,q,r),(h,i,j),(m,n,k)φ̂p,q,rT̂h,i,j

+D(m,n,k)T̂m,n,k +
∑

γ(p,q,r),(m,n,k)(T̂S,p,q,r − T̂p,q,r).

In this equation, the coefficient α(p,q,r),(h,i,j),(m,n,k) equals

∫ 1

0

b′p(x)ch(x)cm(x)dx

∫ 1

0

bq(y)ci(y)cn(y)dy

∫ 0

−1

sr(z)c
′
j(z)ck(z)dz

−
∫ 1

0

bp(x)c
′
h(x)cm(x)dx

∫ 1

0

bq(y)ci(y)cn(y)dy

∫ 0

−1

s′r(z)c
′
j(z)ck(z)dz

and the coefficient β(p,q,r),(h,i,j),(m,n,k) equals

∫ 1

0

bp(x)ch(x)cm(x)dx

∫ 1

0

bq(y)c
′
i(y)cn(y)dy

∫ 0

−1

s′r(z)cj(z)ck(z)dz

−
∫ 1

0

bp(x)ch(x)cm(x)dx

∫ 1

0

b′q(y)ci(y)cn(y)dy

∫ 0

−1

sr(z)c
′
j(z)ck(z)dz

The dissipation coefficients are given by

D(m,n,k) = −π2
[
PH(m2 + n2) + PV k

2
]

Finally, the coefficients of the forcing terms are given by.

γ(p,q,r) =

∫ 1

0

cp(x)cm(x)dx

∫ 1

0

cq(y)cn(y)dy

∫ 0

−1

cr(z)ck(z)g(z)dz.
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Appendix B. Numerical analysis of the low-order model. The low-order
model is numerically investigated using continuation and integration techniques.
For continuation we have used the program AUTO–07p (Doedel and Oldeman [22]),
and most of the technology behind this software is described in Kuznetsov [33].

For numerical integration and the computation of Lyapunov exponents we have
written our own software, and we briefly describe the algorithms below.

B.1. The Taylor integrator. The low-order model can be written symbolically
as

dxi

dt
= Ci +

d∑

j=1

Lijxj +

d∑

j,k=1

Qijkxjxk, i = 1, . . . , d, (16)

where d = 27 is the dimension of the state space. This system is integrated nu-
merically by computing a truncated Taylor expansion of the solution around time
t0:

xi(t0 + h) =

N∑

n=0

x
[n]
i (t0)h

n +O(hN+1),

where the coefficients are given by

x
[n]
i (t0) :=

1

n!

dnxi

dtn

∣∣∣∣
t=t0

. (17)

Given a point x
[0]
i (t0), which is either an initial condition or a previously computed

point on the trajectory, we first compute

x
[1]
i = Ci +

d∑

j=1

Lijx
[0]
j +

d∑

j,k=1

Qijkx
[0]
j x

[0]
k .

Then, for n > 0, we have the recurrent relation

x
[n+1]
i =

1

n+ 1




d∑

j=1

Lijx
[n]
j +

d∑

j,k=1

n∑

m=0

Qijkx
[m]
j x

[n−m]
k



 ,

which follows by substituting the truncated Taylor series in (16) using the Leibniz
rule for differentiation of products.

We have chosen a tolerance ǫ = 10−16. This gives N = 20 as the optimal order.
The step size is then computed as hm = min{sm,1, sm,2}, where

sm,1 = exp

{
1

N − 1
log

(
ǫ
‖x[1]‖∞
‖x[N ]‖∞

)}
,

sm,2 = exp

{
1

N − 2
log

(
e2ǫ

‖x[1]‖∞
‖x[N−1]‖∞

)}
.

A very convenient aspect of the Taylor integration method is the possibility of
producing dense output by just evaluating the Taylor polynomial at time t + h
for any desired value of h < hm; the cost of evaluating the Taylor polynomial is
negligible in comparison to the computation of the coefficients.

The reader is referred to Jorba and Zou [30] for a detailed discussion on the
Taylor method and a ready-to-use implementation.
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B.2. Computing Lyapunov exponents and detecting the period doubling

cascade. Lyapunov exponents are computed as described in Simó [37]. After a
transient of L iterates of the Poincaré map P , let x(0) be the current point on the
orbit. In order to compute k Lyapunov exponents, we randomly generate a set
of orthonormal vectors ξj (j = 1, . . . , k). The differential of the Poincaré map is

applied to the ξj obtaining the vectors ηj = DP (x(0))ξj . The vectors ηj are orthog-
onalised (not yet normalised) to obtain vectors ζj . The vectors ζj are normalised to

obtain the new vectors ξj and a new point is computed on the orbit: x(1) = P (x(0)).
The process is iterated up to a maximum of N iterates. From this procedure we
compute the so-called Lyapunov sums

Sj(n) =
n∑

i=1

log ‖ζj(n)‖2

as a function of the number of iterations n.
The Lyapunov exponents are computed as the limit slopes of the sequences Sj(n)

as follows. Every M iterates of the Poincaré map we compute a linear fit for the
points (n, Sj(n)) based on the last fraction αi (i = 1, 2, 3) of the iterations; this

gives the slopes s
(i)
j . We stop the computations if either the maximum number of
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Figure 19. Top left: log(ℓ−γn) is plotted as a function of n, where
ℓ ≈ 0.99715033413 is the estimated limit of the cascade. Top right:
Lyapunov exponents after the end of the cascade as a function of γ.
The horizontal variable is 1010 × (γ − 0.997150334). Bottom: The
cascade is visualised by plotting the first two Lyapunov exponents,
multiplied by 104, as a function of − log10(ℓ− γ).
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iterations N is exceeded or when the slopes satisfy

∆ := max
j=1,...,k

{|s(1)j − s
(2)
j |, |s(3)j − s

(2)
j |} < µ,

where µ is a given tolerance. The last computed s
(2)
j are used as estimates for the

Lyapunov exponents and the last value of ∆ is used as an estimate for the error.
Typical values used in the computations are

k = 3, L = 105, M = 104, N = 106, α1 = 0.2, α2 = 0.4, α3 = 0.6.

The computation is especially delicate if Lyapunov exponents are used to detect
period doubling of invariant curves, because then the error should be small. The
values in Table 2 are obtained with the values of parameters given above and typical
errors in the Lyapunov exponents are ≈ 10−6. This is checked by repeating com-
putations with different random seeds. Figure 19 shows the estimated behaviour
of the accumulation of γn to a limit value, the evidence of the existence of strange
attractors shortly after the limit and the different bifurcations in a suitable scale.

Finally, we consider it also relevant to display the behaviour of the Lyapunov
sums as a function of the number of iterates. In the reducible case (Jorba [29] and
Broer et al. [4, 45]) we can expect the typical pattern of a linear system modulated
by a quasi-periodic change of variables. This is what can be guessed from Figure 20
left, which corresponds to γ ≈ γ4. Similar patterns are seen for smaller values of γ.
For larger γ, as in Figure 20 right for γ ≈ γ10, slightly wilder patterns are detected.
They become much more wild beyond the end of the cascade, see Figure 20 bottom.
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Figure 20. First two Lyapunov sums as a function of time. A
transient with L = 106 followed by M = 106 additional iterates of
the Poincaré map has been used. Only one point every 100 iterates
is plotted. Top left: The value of γ is close to γ4. Top right: The
value of γ is close to γ10. Bottom: γ = 0.997150335, after the end
of the period doubling cascade.
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Cantor invariants, Invent. Math., 80 (1985), 81–106.
[15] A. Chenciner, Bifurcations de points fixes elliptiques III. Orbites péridiquesde “petites”
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