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Abstract
This paper deals with families of planar diffeomorphisms undergoing a
Hopf–Neı̆marck–Sacker bifurcation and focuses on bifurcation diagrams of
the periodic dynamics. In our universal study the corresponding geometry
is classified using Lyapunov–Schmidt reduction and contact-equivalence
singularity theory, equivariant under an appropriate cyclic group. This approach
recovers the non-degenerate standard Arnol’d resonance tongues. Our main
concern is a mildly degenerate case, for which we analyse a 4-parameter
universal model in detail. The corresponding resonance set has a Whitney
stratification, which we explain by giving its incidence diagram and by giving
both two- and three-dimensional cross-sections of parameter space. We
investigate the further complexity of the dynamics of the universal model by
performing a bifurcation study of an approximating family of Takens normal
form vector fields. In particular, this study demonstrates how the bifurcation
set extends an approximation of the resonance set of the universal model.

Mathematics Subject Classification: 37G15, 37G40, 34C25

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Setting of the problem. We continue our study [5, 7] of resonance sets and their boundaries for
non-degenerate and mildly degenerate Hopf–Neı̆marck–Sacker (HNS) bifurcations of families
of planar diffeomorphisms. We recall that a HNS bifurcation occurs if a family has at least one
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real parameter, which under an appropriate variation causes the pair of conjugate eigenvalues
at a fixed point to cross the unit circle transversally [1, 12, 23]. As a consequence, an invariant
circle branches off the fixed point, which also undergoes a change in stability. The dynamics
on the invariant circle is either periodic or quasi-periodic. We focus on the periodic case,
requiring that the eigenvalues of a specific member of the family, the central singularity, are
of the form e±2π ip/q with gcd(p, q) = 1. This situation may lead to resonance sets, which are
regions in parameter space corresponding to the occurrence of q-periodic orbits near the fixed
point of the central singularity, and the boundaries of these sets correspond to the appearance
or merging of such periodic orbits, typically through a saddle-node bifurcation [5].

Our aim is to go one step beyond the classical scenario, which corresponds to the non-
degenerate case. Excluding strong resonances (q � 4), it is well known that a generic
2-parameter family has a tongue shaped resonance set in this situation [1, 5, 23]. Upon passage
of the corresponding boundaries a pair of q-periodic orbits appears or merges. For q � 7 a
novel mildly degenerate situation can be encountered, which occurs in generic 4-parameter
families. In this case there are bifurcations of up to four q-periodic orbits near the central
singularity [5].

In [7] we obtain universal models for non-degenerate and mildly degenerate families of
diffeomorphisms using Lyapunov–Schmidt reduction and Zq-equivariant contact-equivalence
singularity theory. These universal models, depending on two and four parameters,
respectively, determine the local geometry of the resonance sets in generic families.

Our contribution is twofold. The main issue is the description of the resonance set of
the mildly degenerate 4-parameter model of [5], which has a Whitney stratification. We
present the corresponding incidence diagram and both two-dimensional and three-dimensional
tomograms, i.e. cross-sections of the resonance set in four-dimensional parameter space. We
also describe how the resonance set of the universal model is embedded in the bifurcation set
by considering a corresponding approximating Takens normal form family of vector fields,
compare with [6, 11].

Recovering the non-degenerate case. We first briefly reconsider the classical case of weak
resonance, i.e. when q � 5. In this approach a planar universal diffeomorphism family is
given by Pσ : C → C, see [5, 7], determined by

Pσ (z) = ω((1 + σ + |z|2)z + z̄q−1) + O(|σ |2, |z|q) (1)

(throughout we identify R
2 with C). Here ω is a primitive qth root of unity and σ = σ1 + iσ2 is

a ‘small’ complex parameter. Our focus is on the q-periodic orbits of Pσ of which each point
satisfies P

q
σ (z) = z. The number of these orbits changes at the boundary of the resonance set.

Applying generalized Lyapunov–Schmidt reduction and Zq-equivariant contact-equivalence
singularity theory, see [5], we obtain this boundary as the discriminant set of the real-valued
polynomial rσ : R+ → R given by

rσ (u) = |σ + u|2 − uq−2. (2)

The number of local zeros of this polynomial equals the number of local q-periodic orbits of
Pσ and the corresponding discriminant set is a (q − 2)/2-cusp in the parameter plane given by

σ 2
2 = (−σ1)

q−2 + O(|σ1|2q−4). (3)

Hence, our approach recovers that in this case the resonance set is the standard Arnol’d
resonance tongue.

A study of the dynamics of Pσ is simplified by examining a Takens normal form vector
field approximation [37] denoted by Nσ . The relation between Pσ and Nσ is given by

Pσ (z) = �p/q ◦ N1
σ (z) + O(|σ |2, |z|q), (4)
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Table 1. Relations between the dynamics of the universal family of the non-degenerate case Pσ

and its Takens normal form vector field approximation Nσ . The transformation �p/q is a rotation
over 2πp/q around the origin.

Pσ Nσ

Fixed point Equilibrium
q-periodic orbit q different equilibria invariant under �p/q

HNS bifurcation Hopf bifurcation
Saddle-node bif. of q-periodic orbit Saddle-node bif. of q different equilibria

Figure 1. Bifurcation diagram of the Takens normal form vector field Nσ for the universal family
of diffeomorphisms Pσ with q = 7. The bifurcation diagram contains a tongue shaped resonance
set and a dashed Hopf-line.

where �p/q is the rotation over 2πp/q around the origin, assuming ω = e2π ip/q in (1) and N1
σ

is the time-1-map of the flow of the vector field Nσ . As a consequence, the vector field family
Nσ written as a map is of the form

Nσ (z) = (σ + |z|2)z + z̄q−1 + O(|σ |2, |z|q). (5)

Since Pσ is approximated by the time-1-map of Nσ composed with a rotation, the dynamics of
both families is closely related, see also table 1. The advantage of studying the approximating
family of planar vector fields instead of the universal family of diffeomorphisms is that vector
fields provide better visibility of the dynamics.

The bifurcation diagram of Nσ is presented in figure 1. Perturbation arguments,
based on transversality theory, normally hyperbolic manifold theory and bifurcation
theory [1, 16, 19, 23, 38], are used to recover the dynamics and bifurcations of Pσ , which
are induced by those of Nσ . This is fully in line with the approach of, e.g. [6, 11, 22, 37].
Non-degenerate features of Nσ are expected to persist generically in Pσ , a list is given in
table 1. We emphasize that all dynamical properties and bifurcations displayed in figure 1
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Figure 2. Several two-dimensional tomograms of the discriminant set of p1,σ,τ for q = 7, compare
with [5].

(and listed in table 1) are persistent under perturbations. Therefore, the bifurcation diagram of
Pσ straightforwardly follows from figure 1: it consists of a curve of saddle-node bifurcations
of periodic orbits and a line of HNS bifurcations of a fixed point.

Mildly degenerate resonance sets. The main focus of this paper is to understand the resonance
set of the mildly degenerate universal diffeomorphism family Pσ,τ : C → C, see [5, 7], given by

Pσ,τ (z) = ω((1 + σ + τ |z|2 + |z|4)z + z̄q−1) + O(|σ |2, |τ |2, |z|q), (6)

where σ = σ1 + iσ2 and τ = τ1 + iτ2 are ‘small’ complex parameters and ω is a primitive
qth root of unity, with q � 7, assuming weak resonance. In this case we obtain the boundary
of the resonance set as the discriminant set of the real-valued polynomial p1,σ,τ : R+ → R

given by

p1,σ,τ (u) = |σ + τu + u2|2 − uq−2. (7)

Again the number of local zeros of p1,σ,τ corresponds to the number of local q-periodic orbits
of Pσ,τ . The discriminant set of p1,σ,τ is analysed partially in [5] by providing a parametrization
and an incomplete set of two-dimensional tomograms, similar to figure 2 (as in [5, figure 3], the
value of τ = (τ1, τ2) is fixed in all two-dimensional tomograms of the resonance set presented
in this paper).

As we presently show, the family Pσ,τ exhibits several other types of bifurcations beyond
those of, e.g., saddle-node or cusp type belonging to the boundary of the resonance set. As
above, the study of these additional bifurcations is here undertaken by the classical approach
of examining a Takens normal form vector field approximation of the universal model Pσ,τ ,
given by

Nσ,τ (z) = z(σ + τ |z|2 + |z|4) + z̄q−1 + O(|σ |2, |τ |2, |z|q). (8)

For this family we detect Hopf bifurcations, codimension 1 and 2 heteroclinic and homoclinic
bifurcations of equilibria as well as codimension 2 degenerate Hopf and Bogdanov–Takens
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Figure 3. Resonance tongues in the Arnol’d family [8].

bifurcations. In this mildly degenerate case, all local features of the bifurcation diagram
of Nσ,τ (including the local phenomena listed in table 1) generically translate directly into
corresponding phenomena for Pσ,τ . On the other hand, global phenomena such as heteroclinic
and homoclinic bifurcations are generically expected to yield regions in parameter space
characterized by tangles, i.e., transversal heteroclinic or homoclinic intersections of invariant
manifolds [1, 19, 22, 23, 37].

Related work on resonance sets. In many applications, a family of planar diffeomorphisms
is obtained from a family of vector fields by taking a suitable Poincaré map corresponding to
a section transverse to a periodic orbit [5]. The eigenvalues of the derivative of the Poincaré
map are the Floquet exponents of the periodic orbit. In particular, this approach also works
for non-autonomous systems of differential equations depending periodically on time.

A toy model for the array of tongues of the HNS bifurcation is formed by the Arnol’d
family of circle maps [1], given by x �→ x + 2πα + β sin x, where x ∈ R/(2πZ). Here in
the (α, β)-plane tongues appear with their tips in (α, β) = (

p

q
, 0) and stretching out into the

regions β �= 0, see figure 3. The order of tangency of the tongue boundaries at the tip has
the same asymptotics as in the HNS case, compare with [5, 6, 16]. For background regarding
weak and strong resonances we refer to Takens [37], Newhouse et al [28], Arnol’d [1],
Krauskopf [22] and Broer et al [5, 6, 12]. For resonance studied in Hamiltonian or reversible
settings, etc see Broer and Vegter [11] or Vanderbauwhede [39]. For a study of dynamical
features for parameter values ‘far’ from resonant HNS bifurcations, like the loss of smoothness
of invariant circles, we refer to [2, 3, 10, 40].

The type of resonance mentioned in this paper is investigated before in [1, 9, 28, 37]. In
general, these works study both the geometry of the resonance sets and the complete dynamics
near resonance. On the other hand, the work of Broer et al [5–7], which is continued
here, addresses the problem how to determine resonance sets in a general setting without
being concerned with stability, other bifurcations and similar dynamical issues. The method
used to solve this problem involves Lyapunov–Schmidt reduction opposed to the more often
applied (Poincaré) normal form theory. It turns out that this approach simplifies studying more
degenerate cases than those already investigated in earlier work [1, 9, 28, 37].
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The research programme of Peckham et al reflected in [24, 25, 30–32] views resonance
sets as projections on a ‘traditional’ parameter plane of saddle-node bifurcation sets in the
product of parameter and phase space. This approach has the same spirit as ours and many
interesting geometric properties of resonance sets are discovered and explained in this way.

In [13–15] Chenciner considers a 2-parameter unfolding of a degenerate HNS bifurcation.
This bifurcation also appears in our study of the mildly degenerate case.

Outline of the paper. Section 2.1 contains a general description of Whitney stratifications.
In particular, it is explained how to obtain such a stratification for a certain discriminant set.
Section 2.2 presents the first main result, which is the Whitney stratification of the discriminant
set of p1,σ,τ given in (7). Section 3 contains our second main result, which consists of a
bifurcation study of the Takens normal form family of vector fields Nσ,τ given in (8), compare
with figure 1. Finally, all proofs of the theorems in section 2 are provided in appendix A.

2. Analysis of the resonance set

As mentioned above, we aim to improve our understanding of the geometry of the discriminant
set of p1,σ,τ defined in (7). We follow the catastrophe theory approach, which amounts to
determining the corresponding Whitney stratification [4, 33]. The presentation of such a
stratification usually involves providing parametrizations of the strata and showing several
tomograms. Because of the complexity of the studied discriminant set, we extend such a
presentation by displaying incidence relations between strata explicitly in incidence diagrams.
Before actually providing the results (see section 2.2), we give a general definition of Whitney
stratification in section 2.1, where we also indicate how to obtain such a stratification for a
discriminant set.

2.1. Preliminaries

Whitney stratification. A stratification of a set V ⊂ R
n is a partition X of V into smooth

path-connected submanifolds, called strata, such that (i) every point in V has a neighbourhood
in R

n which meets only finitely many strata and (ii) if X ∩ Ȳ �= ∅ with X, Y ∈ X , then
X ⊂ Ȳ . We speak of a Whitney stratification if for all x ∈ X ⊂ Ȳ with X, Y ∈ X and for all
yi ∈ Y with limi→∞ yi = x, the tangent space T = limi→∞ Tyi

Y satisfies TxX ⊂ T [17]. A
consequence of this condition is that a neighbourhood of every point on a particular stratum is
homeomorphic to a neighbourhood of any other point on that stratum [18].

As an example we provide the Whitney stratification for the Whitney umbrella W [4],
given by

W = {(x, y, z) ∈ R
3 | x2y + z2 = 0}. (9)

It is not hard to see that the Whitney stratification of W contains two codimension 1 surfaces,
two codimension 2 half-lines and one codimension 3 point, where the Whitney umbrella is
pinched, see figure 4.

Whitney stratification of a discriminant set. We start with the definition of a discriminant set
of a family of polynomials pµ(x), with x ∈ R and µ = (µ1, . . . , µn) ∈ R

n, a multiparameter.
To this end we consider the manifold M(pµ) = {(x, µ) ∈ R × R

n | pµ(x) = 0}. The
corresponding discriminant set D(pµ) consists of the singular values of the natural projection
π : M(pµ) → R

n, see [1]. This geometric point of view leads directly to the algebraic
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Figure 4. Whitney stratification of the Whitney umbrella W given in (9).

definition of the discriminant set D(pµ) given by

D(pµ) =
{
µ ∈ R

n | pµ(x) = 0,
∂pµ

∂x
(x) = 0 for some x

}
. (10)

It follows that the discriminant set is an algebraic set, i.e. it coincides with the zeros of a set of
polynomials.

Strata of D(pµ) are determined by parameter values for which the multiplicity of one zero
of pµ remains constant and is greater than 1 or by parameter values, where closures of strata
intersect transversally. Firstly, the strata for which one zero, say x0, has multiplicity m > 1 are
of codimension m − 1 and of type Am [17], if (i) they are determined by the following system
of equations,

∂jpµ

∂xj
(x0) = 0, j = 0, . . . , m − 1 and

∂mpµ

∂xm
(x0) �= 0 (11)

and (ii) for parameter values on these strata the following versality condition holds,

rank




∂

(
pµ,

∂pµ

∂x
, . . . ,

∂m−1pµ

∂xm−1

)

∂(µ1, µ2, . . . , µn)
(x0)


 = m − 1. (12)

Conditions (11) and (12) are called recognition conditions for strata of type Am. We note that
strata of discriminant sets are semi-algebraic sets, because they are determined by a set of
polynomial equations and inequalities. Secondly, if closures of strata intersect transversally,
then the intersection points form a stratum of codimension equal to the sum of the codimensions
of the ‘intersecting’ strata. As usual, the set of intersection points of, e.g., closures of strata of
type Am and An is denoted by AmAn if m �= n and by A2

m if m = n. To distinguish different
strata of the same type, we add an extra subscript to the corresponding labels, see, e.g. figure 5.

We illustrate the above in figure 5 for pa,b(x) = x3 + ax + b, with x, a and b real, yielding
a singularity of type A3, i.e. the standard cusp [33]. More precisely, figure 5 depicts the
two-dimensional manifold M(pa,b) and points for which π : M(pa,b) �→ {(a, b)|a, b ∈ R}
is singular. By definition the image of these points under the projection π is D(pa,b). The
corresponding Whitney stratification consists of a stratum of type A3 and of two strata of
type A2, which are given by the image under the projection π of the points where M(pa,b)

folds. Figure 5 also depicts the incidence diagram of D(pa,b). Similarly, the set D(rσ ) with
rσ as in (2) yields the boundary of the standard Arnol’d tongue. The corresponding Whitney
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Figure 5. Discriminant set of pa,b(x) = x3 + ax + b and the corresponding incidence diagram.
The set D(pa,b), containing strata of type A2 and A3, is determined by the singular values of
π : M(pa,b) → {(a, b)|a, b ∈ R}.

Figure 6. Arnol’d tongue for q = 7 and the corresponding incidence diagram, compare with
figure 1.

stratification is provided in figure 6. As in this figure, from now on we refer to the central
singularity of D(rσ ) as a singularity of type Rq . Also for D(p1,σ,τ ) with p1,σ,τ as in (7) we can
determine the stratification. Below we show that strata of codimension 1 up to and including
4 appear, which are usually named after their local geometry, see table 2.

Remark 2.1.

(1) The labels used for fold, cusp and swallowtail singularities are standard in catastrophe
theory [17, 33, 38].

(2) For obvious reasons, we label the central singularities of the resonance sets encountered
in this paper with Rq and we add a hat to refer to the mildly degenerate case. To explain
the geometry of D(p1,σ,τ ) we consider a closely related set below in section 2.2, whose
central singularity does not depend on q and is therefore labelled with R̂∞.

(3) We apply a catastrophe theory approach to study the discriminant set of a real polynomial,
compare with [33]. Usually, this polynomial depends on an unrestricted variable, as in
the example of the singularity of type A3, where pa,b depends on x ∈ R. However, the
polynomials rσ and p1,σ,τ depend on u ∈ R+, leading to extra strata for u = 0, which
might not be there if u ∈ R. We say these extra strata are of boundary type, since they are
always part of the boundary of another stratum. They are labelled by prefixing a ∂ to the
type of stratum of which they form a part of the boundary. An exception to this are the
labels Rq, R̂q and R̂∞, which are in fact also of boundary type.
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Table 2. Codimensions and names of strata of a particular type. The pinch point appeared already
in the Whitney umbrella (9) and the collapsed mildly degenerate resonance set is introduced in
section 2.2. For more explanation on use of labels we refer to remark 2.1.

Cod. Type

1 A2 (fold)
2 A3 (cusp)
2 Rq (central singularity of non-degenerate Arnol’d resonance tongue)
3 A4 (swallowtail)
3 P (pinch point)

4 R̂∞ (central singularity of collapsed mildly degenerate resonance set)

4 R̂q (central singularity of q-dependent mildly degenerate resonance set)
m ∂Am (stratum of boundary type)

(4) We keep each graph with incidence relations clear by only displaying relations between
strata that differ by 1 in codimension, see figures 8 and 10. In this case, the incidence
diagram is determined by the corresponding transitive closure, which extends the depicted
graph G with edges between pairs of vertices that (i) correspond to strata that differ by
m > 1 in codimension and that (ii) are joined by a path of length m in G.

2.2. Geometry and incidence relations of D(p1,σ,τ )

The geometry of D(p1,σ,τ ) is complicated. However, the polynomial p1,σ,τ given in (7) can
be regarded as a ‘singular perturbation’ of the polynomial p0,σ,τ : R+ → R given by

p0,σ,τ (u) = |σ + τu + u2|2, (13)

which has a simpler discriminant set D(p0,σ,τ ). In fact, D(p1,σ,τ ) can be scaled to a
neighbourhood of D(p0,σ,τ ) as follows.

Relation between D(p1,σ,τ ) and D(p0,σ,τ ). We relate p1,σ,τ and p0,σ,τ by a scaling φε :
R+ × C

2 → R+ × C
2 given by

φε : (u, σ, τ ) �→ (εu, εσ, ε2τ), (14)

with ε ∈ R+. Using the notation p�(u, σ, τ ) = p�,σ,τ (u) and defining pε = ε−4p1 ◦ φε, we
obtain pε,σ,τ : R+ → R given by

pε,σ,τ (u) = |σ + τu + u2|2 − εq−6uq−2, (15)

which ‘interpolates’ between p1,σ,τ and p0,σ,τ . It follows that D(pε,σ,τ ) for ε �= 0 is
diffeomorphic to D(p1,σ,τ ) by the scaling φε. Moreover, the set D(pε,σ,τ ) for ε �= 0 is a
singular perturbation of the ‘geometric centre’ D(p0,σ,τ ), as is illustrated in figure 7. More
precisely, considering the Hausdorff metric [27] dH given by

dH (X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (16)

where X, Y ⊂ R
n are bounded and d is the Euclidean metric, we obtain

dH (D(pε,σ,τ ), D(p0,σ,τ )) = O(ε(q−6)/2),

see appendix A.1.
A useful property of pε,σ,τ and D(pε,σ,τ ) is that they have a Z2-symmetry, since they are

invariant under the involution t : R
4 → R

4 given by

t (σ1, σ2, τ1, τ2) = (σ1, −σ2, τ1, −τ2). (17)
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Figure 7. A two-dimensional tomogram of D(pε,σ,τ ) for τ = (−0.1, 0.005) and varying ε.

Figure 8. Graph generating the incidence diagram of D(p0,σ,τ ) by taking the transitive closure.
The top row gives the codimension 3 strata, the second the codimension 2 strata and the third the
codimension 1 stratum. Moreover, the set O is the only connected open region in R

4. The central
singularity is omitted, since it is incident to all other strata.

Whitney stratification of D(p0,σ,τ ). We continue with an analysis of D(p0,σ,τ ), which already
demonstrates several features of D(pε,σ,τ ) for ε �= 0.

Theorem 2.1 (Whitney stratification of D(p0,σ,τ )). An implicit representation of D(p0,σ,τ )

is given by

{(τ1, τ2, σ1, σ2) ∈ R
4 | τ 2

2 σ1 − τ1τ2σ2 + σ 2
2 = 0, sign(σ2) = −sign(τ2)},

which is diffeomorphic to a subset of the product of the real line and the Whitney umbrella W .
The set D(p0,σ,τ ) contains the following strata.

cod.1 One codimension 1 stratum of type A2.
cod.2 Two codimension 2 strata of type A2

2 and ∂A2.
cod.3 Two codimension 3 strata of type ∂A2

2 and P . Both strata only occur for τ1 < 0.
cod.4 The codimension 4 stratum of type R̂∞, which is the central singularity situated at

(σ, τ ) = (0, 0).

The incidence diagram of D(p0,σ,τ ) is the transitive closure of the graph displayed in figure 8.

For a proof see appendix A.2.
The stratification provided in theorem 2.1 is illustrated by three-dimensional tomograms

of D(p0,σ,τ ), see figure 9. As in this figure, the value of τ1 is constant for every three-
dimensional tomogram of D(pε,σ,τ ) displayed in this paper (mostly the value τ1 = −0.1



Geometry and dynamics of mildly degenerate Hopf–Neı̆marck–Sacker families near resonance 2171

Figure 9. Three three-dimensional tomograms of D(p0,σ,τ ) showing its Whitney stratification for
−0.02 � τ2 � 0.02.

is used). In appendix A.5 it is shown that any three-dimensional tomogram of D(p0,σ,τ ) is
diffeomorphic to one of the tomograms depicted in figure 9. The relation between the Whitney
umbrella and D(p0,σ,τ ) is clarified by comparing figures 4 and 9.

Whitney stratification of D(pε,σ,τ ) for ε �= 0. Now we present the Whitney stratification of
D(pε,σ,τ ) for ε �= 0.

Theorem 2.2 (Whitney stratification of D(pε,σ,τ ) for ε �= 0). Consider the stratification of
D(p0,σ,τ ), see theorem 2.1. In general, the set D(pε,σ,τ ) is in an O(ε(q−6)/2)-neighbourhood
of D(p0,σ,τ ) in the Hausdorff metric. In particular, for the strata of D(pε,σ,τ ) we have the
following.

cod.1 The five strata labelled with (A2)1, (A2)2, (A2)3, (A2)4 and (A2)5 are in an O(ε(q−6)/2)-
neighbourhood of the stratum of type A2 of D(p0,σ,τ ).

cod.2 The stratum labelled with Rq coincides with the stratum of type ∂A2 of D(p0,σ,τ ). The
two pairs of strata labelled with (A2

2)
±
1 and (A2

2)
±
2 are in an O(ε(q−6)/4)-neighbourhood

and an O(ε(q−6)/2)-neighbourhood respectively of the stratum of type A2
2 of D(p0,σ,τ ).

Finally, the two pairs of strata labelled with (A3)
±
1 and (A3)

±
2 are in an O(ε(q−6)/4)-

neighbourhood of the stratum P of D(p0,σ,τ ).
cod.3 The pair of strata labelled with (RqA2)

± is in an O(ε(q−6)/2)-neighbourhood of the
stratum of type ∂A2

2 of D(p0,σ,τ ). The two pairs of strata labelled with (A4)
±
1 and (A4)

±
2

are in an O(ε(q−6)/2)-neighbourhood and an O(ε(q−6)/4)-neighbourhood respectively
of the stratum of type P of D(p0,σ,τ ). Also for ε �= 0 all codimension 3 strata only
occur for τ1 < 0.

cod.4 The central singularity, which is of type R̂q coincides with the central singularity of type
R̂∞ of D(p0,σ,τ ).

For ε �= 0 the set D(pε,σ,τ ) separates the neighbourhood of (σ, τ ) = (0, 0) in the 3 connected
open regions O1, O2 and O3, for which the polynomial pε,σ,τ given in (7), has zero, two and
four local zeros, respectively.

The incidence diagram of D(pε,σ,τ ) for ε �= 0 is the transitive closure of the graph
displayed in figure 10.

For a proof see appendices A.3 and A.4. We note that theorem 2.2 is valid for all q � 7,
not only for q = 7, which is used in the figures.

The Z2-symmetry of D(pε,σ,τ ) for ε �= 0 implies that several strata are similar. More
precisely, the map t as defined in (17) transforms every superscript plus in a superscript
minus and vice versa, for instance t ((A4)

±
1 ) = (A4)

∓
1 . There is one exception, namely

t ((A3)
±
1 ) = (A3)

∓
2 . The strata labelled without superscript are invariant under t .
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Figure 10. Graph generating the incidence diagram of D(pε,σ,τ ) for ε �= 0 by taking the transitive
closure. The top row gives the codimension 3 strata, the second the codimension 2 strata and
the third the codimension 1 strata. The bottom row gives all connected open components in the
neighbourhood of (σ, τ ) = (0, 0). The central singularity is omitted, since it is incident to all other
strata.

Figure 11. Two generic three-dimensional tomograms of D(p1,σ,τ ) for −0.02 � τ2 � 0.02 and
q = 7. There are two shadings, if the corresponding two-dimensional tomogram with fixed τ has
two disconnected components.

Two generic three-dimensional tomograms of D(p1,σ,τ ) are displayed in figure 11.
Indeed, appendix A.5 shows that any generic three-dimensional tomogram of D(p1,σ,τ ) is
diffeomorphic to one of the tomograms in figure 11. The features of the three-dimensional
tomogram for τ1 < 0 are hard to distinguish; hence, we include figures 12 and 13 that zoom in
on the more interesting parts of this tomogram. Because of the Z2-symmetry, we may restrict
to the case τ2 < 0. To be precise, figure 12 depicts the geometry near the codimension 3
strata (A4)

−
1 and (R7A2)

− and figure 13 depicts the geometry near the codimension 3 stratum
(A4)

−
2 . The relation between figures 12(a) and 13(a) is that by decreasing τ2 the first continues

into the latter, which can be read off from the τ2-values for both plots. A consequence is that
the two-dimensional tomogram, which follows in figure 12(g) is figure 13(b). For clarity, the
standard geometry near a point of a stratum of type A4 is depicted in figure 14.

Finally, figure 15 presents all possible types of two-dimensional tomograms around τ = 0,
compare with figure 2. The top panel in figure 15 indicates the τ -values for which the geometry
of the tomograms changes. In appendix A.5 it is shown that these values correspond to the
projections on the τ -plane of all codimension 3 strata and of the curves T ±. The curves T ± are
given by the parameter values for which a two-dimensional tomogram with fixed τ is tangent
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Figure 12. A three-dimensional tomogram of D(p1,σ,τ ) for q = 7, τ1 = −0.1 and −0.011 � τ2 �
−0.006. Figures (b)–(g) give the corresponding two-dimensional tomograms for decreasing values
of τ2. There are two shadings if the corresponding two-dimensional tomogram with τ fixed has two
disconnected components. At a point on T − a two-dimensional cross-section of (σ, τ )-parameter
space is tangent to (A2

2)
−
1 . The importance of these points is discussed at the end of section 2.2 and

in appendix A.5.

to (A2
2)

+
1 or (A2

2)
−
1 , respectively. Hence, these curves are not strata in the Whitney stratification,

so they do not correspond to an extra type of bifurcation of Pσ,τ given in (6).

3. Bifurcation diagram of a Takens normal form approximation

The analysis of the resonance set of Pσ,τ is now extended by a numerical bifurcation study for a
Takens approximating family of vector fields Nσ,τ . This study is contained in sections 3.1–3.3
and is followed by a discussion of the features, which are expected to persist in the universal
family Pσ,τ (section 3.4).

The Takens approximating family is derived in analogy with the non-degenerate case
presented in the introduction (see (4)):

Pσ,τ (z) = �p/q ◦ N1
σ,τ (z) + O(|σ |2, |τ |2, |z|q), (18)

where z = x + iy, σ = σ1 + iσ2 and τ = τ1 + iτ2 are ‘small’ complex numbers, �p/q is the
rotation over 2πp/q around the origin and N1

σ,τ is the time-1-map of Nσ,τ . For q = 7, taking
ω = exp(2π i/7) in (6) yields

Nσ,τ (z) = z(σ + τ |z|2 + |z|4) + z̄6 + O(|σ |2, |τ |2, |z|7). (19)

Exploration of the bifurcation set by two-dimensional tomograms. A full study of the four-
dimensional parameter space of Nσ,τ would be too cumbersome, due to the large number of
bifurcations occurring. We restrict to selected two-dimensional tomograms (obtained with τ
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Figure 13. A three-dimensional tomogram of D(p1,σ,τ ) for q = 7, τ1 = −0.1 and −0.02 �
τ2 � −0.011. In the figures (b)–(d) the corresponding two-dimensional tomograms are given
for decreasing fixed values of τ2. (b) shows a wedge shaped region with vertices that are points
from the strata (A2

2)
−
1 , (A3)

−
1 and (A3)

−
2 and edges that are points from the strata (A2)3, (A2)4 and

(A2)5, see also figure 12. Points inside the wedge area belong to O3. For comparison, the standard
geometry near a point of type A4 is given in figure 14.

Figure 14. Standard geometry near a point of type A4. This geometry is locally diffeomorphic
to the geometry of D(p1,σ,τ ) near points of type A4, see figures 12 and 13. The transformation
relating (ρ, κ, λ)-coordinates and (σ1, σ2, τ2)-coordinates is provided in appendix A.4. (b) shows
the projections of codimension 2 and 3 strata in figure (a) on the (κ, ρ)-plane.

fixed) that do not contain codimension 3 and 4 bifurcations. More specifically, we aim to
recover generic tomograms of the resonance set by considering τ -values that are separated by
projections of codimension 3 strata on the τ -plane, see figure 15. By the results of section 2.2,
we focus on the following three cases.

(1) The parameter τ between the τ -plane projections of (A4)
+
1 and (A4)

−
1 : the two-dimensional

tomograms of the resonance set consist of two disconnected parts, a detached ‘swallowtail’
(i.e. the wedge shaped region) and a stratum of type A2, see figure 15(a). A representative
tomogram with τ = (−0.1, 0) is analysed in section 3.1.

(2) The parameter τ between the τ -plane projections of (A4)
−
1 and (A4)

−
2 : the two-dimensional

tomograms of the resonance set consist of one connected part which also contains a
‘swallowtail’, see figure 15(c). A representative tomogram with τ = (−0.1, −0.0339) is
analysed in section 3.2. By the Z2-symmetry in (17) this also represents tomograms with
τ -values between projections of (A4)

+
1 and (A4)

+
2 .
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Figure 15. Overview of two-dimensional tomograms of D(p1,σ,τ ) for q = 7, compare with
figures 12 and 13. The top panel contains a sketch of the τ -values for which the geometry of two-
dimensional tomograms changes. These values are given by the projections of (A4)

±
1 , (A4)

±
2 , T ±

and (R7A2)
± on the τ -plane, see appendix A.5.

(3) The parameter τ ‘outside’ the τ -plane projections of (A4)
+
2 and (A4)

−
2 : the two-dimensional

tomograms of the resonance set consist of one connected cusp-shaped part, see figure 15(i).
A representative tomogram with τ = (−0.1, −0.056) is analysed in section 3.3.

Remark 3.1.

(1) Within each tomogram the parameters σ1 and σ2 are used for the bifurcation study of Nσ,τ ,
while τ1 is fixed throughout.

(2) Since the τ -values are chosen not to coincide with strata of codimension 3 or higher, only
strata of type A2 and A3 are found in the tomograms. These strata are labelled consistently
with section 2.2.

(3) The τ -plane region between curves T ± and (R7A2)
± is not explored, because it does

not contain more types of codimension 1 and 2 bifurcations than those obtained in
sections 3.1, 3.2 and 3.3.

(4) The numerical methods of [36] are used for the continuation of bifurcations and for the
computation of invariant manifolds. The Taylor integrator of [21] is used to compute the
flow of the vector field Nσ,τ .

(5) By [23] the central equilibrium of Nσ,τ undergoes a non-degenerate Hopf bifurcation for
σ1 = 0 if σ2 �= 0 and τ1 �= 0. This bifurcation is supercritical (subcritical) if τ1 is negative
(positive). Degenerate Hopf bifurcations [23] occur for (σ1, τ1) = (0, 0) and σ2 �= 0.
By the results of section 2, the mildly degenerate resonance set is attached to this set of
codimension 2 bifurcations.
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Figure 16. Bifurcation set of the planar Takens normal form vector field Nσ,τ given in (19)
for τ = (−0.1, 0), with two subsequent magnifications in the σ -parameter plane near interesting
regions, see section 3.1 for the meaning of the symbols. The curves of type A2 are fatter to facilitate
identification of the resonance set as illustrated in figure 15(a).

(6) In [7] the universal families Pσ as in (1) and Pσ,τ as in (6) are obtained by applying Zq-
equivariant contact-equivalences. These transformations, which do not preserve stability,
allow all constant non-zero coefficients to be scaled to 1 in Pσ and Pσ,τ . By (4) and (18)
the same holds for the corresponding Takens normal form families. On the other hand, if
normalizing transformations are used that do preserve stability, not all constant coefficients
can be scaled to 1, see, e.g. [13].

3.1. Tomogram with detached swallowtail

We now extend the two-dimensional tomogram of the resonance set in figure 15(a). For
τ = (−0.1, 0) the vector field Nσ,τ possesses the extra Z2-symmetry generated by

σ2 �→ −σ2, y �→ −y, (20)

which is used to simplify the presentation of the corresponding bifurcation diagram.

Strata in the bifurcation set. The bifurcation set displayed in figure 16 contains the following
curves.

(1) A curve Ho of Hopf bifurcations.
(2) Curves of saddle-node bifurcations of equilibria corresponding to strata of type A2 in the

resonance set.
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Figure 17. Phase portraits of the Takens normal form vector field Nσ,τ in (19). The top of each
plot shows the region in the parameter plane (see figure 16) and the values of σ1, σ2 and τ2.

(3) Two curves L± of saddle-node bifurcations of limit cycles.
(4) Four curves H±

1,2 of heteroclinic bifurcations of equilibria (see below for a definition).

Moreover, the following codimension 2 bifurcation points occur.

(1) Two cusp bifurcations of equilibria corresponding to the strata (A3)
−
1 and (A3)

+
2 in the

resonance set.
(2) Two points DH± of degenerate heteroclinic bifurcations of equilibria.
(3) Four points (A2H)±1,2 of degenerate heteroclinic bifurcations of equilibria.

The curves L± are tangent to the curves H±
1 at the points DH±, respectively (figure 16, top

right panel). The curve H−
1 terminates at the point (A2H)−1 on the saddle-node curve (A2)5

with a transversal intersection (figure 16, bottom panel). The curve H−
2 is contained in the

interior of the wedge and joins the points (A2H)−1 and (A2H)−2 . Note that H−
2 is tangent to

(A2)4 and transversal to (A2)5. We stress that the point (A2H)−1 is a codimension 2 bifurcation
(see below) and is not just a projection-induced overlap. A symmetric configuration is found
in the upper half of the σ -parameter plane.

The above curves induce a subdivision of the parameter plane in 16 regions characterized
by topologically equivalent phase portraits. We only present phase portraits for regions 1–10
(see figures 17, 18 and 19). Due to (20), phase portraits for regions 11 to 16 are symmetric to
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Figure 18. Continuation of figure 17. For region 8, two subsequent magnifications near one of the
saddles have been added in the boxes.

those for regions 2, 4, 5, 8, 9, 10. For this reason, only the lower half of the parameter plane
is discussed here.

Remark 3.2.

(1) Equilibria invariant under �1/7, which generates a Z7-symmetry, are from here on referred
to as Z7-symmetric equilibria.

(2) In the phase portraits, attracting (repelling) periodic orbits are represented by solid
(dashed) curves. Coherently, unstable (stable) manifolds of saddle equilibria are solid
(dashed) curves. Equilibria are plotted with different shapes according to their stability
type: attractors, repellors and saddles are plotted with small discs, squares and triangles,
respectively.

(3) Seven branches of unstable manifolds appear in figures 18 and 19, coming from outside of
the plotted region. These are due to a family of Z7-symmetric equilibria located outside of
the neighbourhood of the origin of our present interest. The bifurcations induced by these
saddles are not included in this study.

A neighbourhood of the origin consists of the four regions 1, 2, 7 and 11. Here a repelling
invariant limit cycle exists, which is phase-locked in a 1 : 7-resonance. It consists of seven
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Figure 19. Continuation of figure 18, see figure 16 and the text in section 3.1 for details.

Z7-symmetric repelling equilibria, seven Z7-symmetric equilibria of saddle type and the stable
manifolds of the latter. The transitions between the regions entail the following phenomena
(see the corresponding phase portraits).

region 1 → 2: an attracting limit cycle is created;
region 2 → 7: the limit cycle enters a 1 : 7-resonance, where it consists of seven Z7-symmetric
attracting equilibria, seven Z7-symmetric equilibria of saddle type and the unstable manifolds
of the latter;
region 7 → 11: two sets of Z7-symmetric equilibria disappear through a saddle-node
bifurcation taking place on the limit cycle. Due to the symmetry (20), regions 11 and 2
only differ by the the orientation of the spiralling around the origin.

Heteroclinic bifurcations. Along curve H−
1 , an equilibrium of saddle type develops a

heteroclinic connection with another equilibrium of the same Z7-symmetric family, so a
heteroclinic cycle [23, section 9.5] is formed (figure 20, top left panel). Heteroclinic cycles
have various names in the literature, e.g. separatrix polygons [34], separatrix loops [35] and
polycycles [20, 26]. We adopt the latter terminology. By Reyn’s definition [34] polycycles
are polygons, the corner points of which are saddle points, and the sides are formed by the
separatrices connecting these saddle points.

In the generic case, more than one periodic orbit may arise by perturbing polycycles
consisting of more than one equilibrium (see the above references). In the present
Z7-symmetric case, polycycles formed by Z7-symmetric saddles are phenomenona of
codimension 1 (if suitable non-degeneracy conditions are assumed). Indeed, a Z7-symmetric
polycycle for Nσ,τ corresponds to a homoclinic saddle connection [19, section 6.1] for the
vector field induced by Nσ,τ on the quotient space defined modulo the Z7-symmetry. For this
reason, only one periodic orbit arises from the polycycle at H−

1 under parameter variation
(assuming transversality and non-degeneracy). The stability of the periodic orbit depends
on a quantity, which is a function of the eigenvalues of the equilibria in the polycycle [34].
We refer to this quantity as the saddle value (for analogy with the quotient case of saddle
connections).

A degenerate polycycle (saddle value is zero) occurs at DH−
1 . This codimension 2

bifurcation point splits H−
1 into two branches (figure 16): in the upper (lower) branch, the
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Figure 20. Top left: a heteroclinic connection forming a polycycle, occurring for parameters on
curve H−

1 . Top right: a heteroclinic connection for parameters on curve H−
2 (no polycycle is formed

here). Bottom left: degenerate polycycle occurring at point (A2H)−1 . The heteroclinic connection
between Wu(E1) and Ws(E3) is interrupted by the occurrence of a saddle-node equilibrium E2.
Bottom right: degenerate heteroclinic connection occurring at point (A2H)−2 . A heteroclinic
connection involves a family E2, E4, . . . , E14 of hyperbolic saddles and a family E1, E3, . . . , E13
of saddle-node equilibria, both families are Z7-symmetric. Connections are emphasized by only
plotting part of Wu(E2) and Ws(E3).

saddle value is negative (positive). The following transitions appear near DH−
1 :

region 2 → 3 (upper branch of H−
1 ): the attracting periodic orbit (born at the Hopf curve Ho)

disappears by merging into an attracting polycycle;
region 2 → 4 (lower branch of H−

1 ): from a repelling polycycle, a repelling periodic orbit
is created, which also persists in region 5;
region 4 → 3 (curve L−): the repelling and attracting periodic orbits disappear at a saddle-
node bifurcation; L− is also the boundary between regions 5 and 6.

The heteroclinic bifurcations on curve H−
2 involve saddles E1 and E2 belonging to two different

families of Z7-symmetric equilibria. For parameters on H−
2 , a branch of Wu(E1) is connected

to a branch of Ws(E2), see figure 20, top right panel. However, the other branch of Wu(E1)

(Ws(E2)) converges to an attracting (repelling) node, so no polycycle is formed here.
A degenerate polycycle occurs at point (A2H)−1 . Here a family of Z7-symmetric saddle-

node equilibria appears along the connection, see figure 20, bottom left panel. A family



Geometry and dynamics of mildly degenerate Hopf–Neı̆marck–Sacker families near resonance 2181

E1, E3, . . . , E13 of Z7-symmetric hyperbolic saddles coexists with a family E2, E4, . . . , E14

of Z7-symmetric saddle-node equilibria. One branch of Wu(E1) and one branch of Ws(E3)

converge to the two sides of the saddle-node equilibrium E2; the latter only has a one-
dimensional invariant manifold, which is Ws(E2). In other words, the polycycle is a centre
manifold for the saddle-node bifurcation.

Another degenerate polycycle occurs at point (A2H)−2 . Here each of the saddle-node
equilibria E1, E3, . . . , E13 has a heteroclinic connection (via its one and only one-dimensional
invariant manifold, which is a stable manifold) with the unstable manifold of the hyperbolic
saddles E2, E4, . . . , E14, see the bottom right panel of figure 20.

3.2. Tomogram with attached swallowtail

Figure 21 shows the extended bifurcation set corresponding to the two-dimensional tomogram
of the resonance set in figure 15 (c), for τ = (−0.1, −0.0339). The phase portraits of
several parameter regions are topologically equivalent to regions described in section 3.1 for
τ = (−0.1, 0). The same labels are used, because this effectively identifies four-dimensional
regions in (σ, τ )-parameter space. Phase portraits are deferred to appendix B and are only
shown for the new regions as compared with section 3.1.

Many bifurcation curves and points occurring for τ = (−0.1, 0) (see section 3.1) are also
present for τ = (−0.1, −0.0339). More precisely, the strata that reappear are the curves Ho,
L± and H +

1 , the saddle-node curves corresponding to points of type A2 strata in the resonance
set and the point DH +, where a polycycle with zero saddle value occurs. Additionally, the
bifurcation diagram now involves many new phenomena. We start from two organizing centres
HH1 and HH2, where codimension 2 polycycles occur.

Organizing centre HH1. Figure 22 (left) shows the phase portrait of region 21: two families
E1, E3, . . . , E13 and E2, E4, . . . , E14 of Z7-symmetric saddles coexist. A perturbation
argument suggests that five types of heteroclinic connections may develop for nearby
parameters. By Wi,j we denote a connection occurs between Wu(Ei) and Ws(Ej ): here
(i, j) can be (1, 3), (1, 4), (2, 3) and (2, 4).

Remark 3.3.

(1) By the Z7-symmetry, connection W1,2 also implies connection W3,4.
(2) Connections W1,3 and W2,4 are codimension 1 polycycles, see section 3.1.

At the bifurcation point HH1, all the above connections occur simultaneously, forming
a star-like polycycle, which involves two distinct families of Z7-symmetric saddles. Modulo
the Z7-symmetry (see section 3.1), each family would correspond to one saddle in the quotient
space, yielding two in total, so we conclude that HH1 is a codimension 2 bifurcation. All
the five heteroclinic connections Wi,j listed above are detected near HH1. Denote as Hi,j the
parameter locus where connection Wi,j occurs:

H1,2 is the boundary between regions 21 and 7 and between 23 and 8;
H1,3 is the boundary between 24 and 22;
H1,4 is the boundary between 21 and 24;
H2,3 is the boundary between regions 7 and 8 and between 26 and 23;
H2,4 is the boundary between regions 18 and 19 and between 22 and 25.

The left panel in figure 23 displays a qualitative sketch of a neighbourhood of HH1. The
saddle value is always positive (negative) for the polycycles on bifurcation curve H1,3 (H2,4),
corresponding to the creation of a repelling (attracting) periodic orbit. The ‘corridor’ between
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Figure 21. Bifurcation set of (19) for τ = (−0.1, −0.0339), with four subsequent magnifications in
the σ -parameter plane near interesting regions. The curves of type A2 are fatter to ease identification
of the resonance set as illustrated in figure 15(c). See sections 3.1 and 3.2 for the meaning of the
symbols. For phase portraits we refer to figures 17, 18 and 19 in section 3.1 and figures 25, 26
and 27 in appendix B.

Wu(E2) and Ws(E3) is rather narrow, see figure 22. Hence, the unstable manifolds Wu(E1)

and Wu(E2) are very close to each other, as are the stable manifolds Ws(E3) and Ws(E4).
As a result, the curves H1,3 and H1,4 are extremely close to each other in the parameter plane.
What seems a single curve separating regions 21 and 22 in figure 21 is in fact a thin strip
(region 24), bounded by H1,4 at the left and by H1,3 at the right, see the left panel of figure 23.

Actually, infinitely many other heteroclinic connections occur between H1,4 and H1,3.
Indeed, consider again the left panel in figure 22 and denote the attracting nodes with
N1, . . . , N7. If H1,4 is crossed transversally from left to right, then Wu(E1) crosses Ws(E4)
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Figure 22. Left: magnification of phase portrait corresponding to region 21, illustrating that various
types of heteroclinic connections can occur for nearby parameter values. Right: magnification of
phase portrait corresponding to region 29, indicating that a heteroclinic connection can occur for
nearby parameter values.
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Figure 23. Magnifications of the bifurcation set in figure 21 near double heteroclinic points HH1
(left panel) and HH2 (right panel).

and is ultimately attracted by the node N3 (not visible in the figure). For parameters near
H1,3, the unstable manifold Wu(E1) approaches E3. However, before Wu(E1) can connect
with Ws(E3), it must subsequently cross Ws(E6), Ws(E8) and so on. The bifurcation curves
corresponding to these connections have not been computed.

Topological arguments suggested by the numerical results indicate that curves H1,2 and
H2,3 have a transversal intersection across point HH1, whereas H1,3 and H1,4 terminate at HH1

where they are tangent to H2,4. At the other endpoints, all these heteroclinic connection curves
are tangent to the saddle-node curve A2 corresponding to the resonance set in figure 15(c).
One of these tangency points is close to a cusp, suggesting the presence of a codimension 3
cusp-heteroclinic connection in (σ, τ )-parameter space. Curve L− becomes very close to H2,4

near the point HH1. Since the saddle value along H2,4 is negative, curve L− is not tangent to
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H2,4, and the only possibility is that it ends at HH1 as well. It has been impossible to verify
this with sufficient accuracy, due to the numerical limitation of double precision computations.

Closeness in parameter space corresponds to closeness of invariant manifolds in phase
space. Hence, the two ‘star-like’ periodic orbits merging at L− are always ‘indistinguishably’
close to each other in phase portraits for region 25, which is a very narrow subset of
parameter space. The configuration of the latter phase portraits is topologically the same
as the configuration for region 19, with the addition of seven repelling nodes and seven saddles
created at a saddle-node curve. Similarly, the topology corresponding to region 26 is the same
as the one corresponding to region 20 with the addition of seven nodes and seven saddles. The
phase portrait of region 24 is difficult to interpret, because various invariant manifolds are very
close to each other.

Organizing centre HH2. The right panel in figure 22 shows the phase portrait for region 29, in
which saddles are denoted consistently with the left panel. Repelling periodic orbits surround
Z7-symmetric attracting equilibria. By a perturbation argument, a heteroclinic connection is
expected between the ‘downward’ branch of Wu(E3) and the ‘upward’ branch of Wu(E4)

for nearby parameter values. This leads to connection W1,2 described above. After this
has taken place, a saddle homoclinic connection of E3 can occur. Another route starts again
from region 29. For nearby parameter values the left branch of Wu(E4) can have a heteroclinic
connection W4,3 with the ‘downward’ branch of Ws(E3). After this has occurred, a homoclinic
bifurcation of E4 is possible. At bifurcation point HH2 a codimension 2 polycycle is formed
by the two simultaneous connections W1,2 and W4,3. The following bifurcation curves emerge
from HH2.

H1,2 (also connected to HH1) forms the boundary between regions 23 and 8, between regions
29 and 30 and between regions 32 and 31;
H4,3 forms the boundary between regions 8 and 35 and between 34 and 29;
Hom4 forms the boundary between regions 27 and 33 and between 28 and 3;
Hom3 forms the boundary between regions 30 and 35.

The right panel in figure 23 presents a qualitative sketch of a neighbourhood of HH2. Two
periodic orbits are created at the saddle-node bifurcation of limit cycles curve L2. The attracting
orbit disappears at Hom4, consistently with the saddle value of E4 being negative [19, 23].
Since the saddle value of E3 is positive along Hom3, a repelling periodic orbit is created there,
which is visible in the phase portraits of regions 27, 29, 30 and 33. It has proved impossible to
draw the phase portrait of region xx, since the curves L2 and Hom4 are too close to each other
to be resolved in double precision arithmetics. In phase space, this corresponds to an extreme
closeness of the repelling periodic orbit to the homoclinic connection at Hom4. Region 34 is
also very narrow, due to the narrowness of the ‘corridor’ between the stable manifolds Ws(E3)

and Ws(E4), see the right panel in figure 22.
The two branches Hom3 and Hom4 end at the two Bogdanov–Takens points BT1,

belonging to (A2)1 and BT2 belonging to (A2)2, respectively. These points are also connected
by a curve of Hopf bifurcations of equilibria. This Hopf curve is split into a supercritical and a
subcritical branch (Hosup and Hosub, respectively) by a degenerate Hopf point DHop, where
curve L2 terminates, see the last panel of figure 21. The repelling periodic orbit born at the
subcritical branch Hosup is the same as the one discussed above. The attracting periodic orbit
born at the supercritical branch Hosub disappears at Hom4. Additional degenerate Hopf points
might be searched for by computing the first Lyapunov coefficient [23, section 3.5]. Presently
we have not done so, only relying on phase portraits and topological reasoning.
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Figure 24. Bifurcation set of (19) for τ = (−0.1, −0.056), with five subsequent magnifications
in the σ -parameter plane near interesting regions. The curves of type A2 are plotted with fatter
lines to ease identification of the resonance set as illustrated in figure 15(i). See sections 3.1, 3.2
and 3.3 for the meaning of the symbols. For phase portraits we refer to figures 17, 18 and 19 in
section 3.1 and figures 25, 26, 27 and 28 in appendix B.

3.3. Tomogram without swallowtail

This section deals with the extension of the two-dimensional tomogram of the resonance set
in figure 15(i), for τ = (−0.1, −0.056). In this case, all of the bifurcation curves occur for
τ = (−0.1, −0.0339) as well, so the same notation as in the previous section has been retained.
However, the relative positions of these curves is different and this yields several new regions in
the parameter plane, see figure 24. Specifically, regions 36–41 are new, see appendix B for the
phase portraits. We summarize the differences with the case described in the previous section.

• A new organizing centre HH3 appears, where the two homoclinic bifurcation curves Hom3

and Hom4 intersect the curve H2,4 of heteroclinic connections. The lower left panel in
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figure 24 suggests that Hom3 meets H2,4 transversally and Hom3 seems to intersect Hom4

transversally as well. The saddle value along both branches Hom3,4 is negative. Indeed, an
attracting periodic orbit is seen in regions 39 and 33 to approach the saddle connection.

• Curve H2,4 crosses curve H + past the intersection point HH3, see figure 24, lower left panel.
The saddle value along H2,4 is always negative, implying that an attracting periodic orbit
is formed and that curve L− is not tangent to H2,4. It has been impossible to compute L−

slightly above HH3, since L− is too close to H2,4. Additional undetected regions must occur,
such as a strip between 39 and 40, bounded from above by L− and from below by H2,4. Here
a repelling periodic orbit coexists with an attracting periodic orbit and the former bounds an
area in which the latter is contained, similar to the situation in region 19. Entering region 39
across H2,4, the attracting periodic orbit disappears by merging with the heteroclinic cycle,
whereas the repelling periodic orbit persists, see the phase portrait of region 39. A similar
transition occurs between region 33 and 41.

• The saddle-node bifurcation of limit cycles curve L2 is attached to degenerate Hopf points
DHo1 and DHo2. Therefore, the Hopf curve is split into the pair of supercritical branches
Ho1

sup and Ho2
sup and the subcritical branch Hosub, bounded between DHo1 and DHo2.

3.4. Expectations for mildly degenerate universal family of diffeomorphisms

We now discuss the implications for the universal family of planar diffeomorphisms, Pσ,τ given
in (4), of the bifurcation diagram of the planar vector field family Nσ,τ , given in (19), described
in the previous sections. We recall that these families are related by

Pσ,τ (z) = �p/q ◦ N1
σ,τ (z) + O(|σ |2, |τ |2, |z|q).

First of all, local phenomena are persistent under O(|σ |2, |τ |2, |z|q) perturbations. This
holds for all hyperbolic equilibria, their linear type and corresponding local bifurcation strata.
So, e.g., a hyperbolic equilibrium of Nσ,τ corresponds to a hyperbolic periodic point of Pσ,τ

and a saddle-node bifurcation of equilibria for Nσ,τ corresponds to a saddle-node bifurcation
of periodic orbits for Pσ,τ . A list of features which are expected to persist for Pσ,τ with trivial
(or, in any case, not too involved) modifications is summarized in the top part of table 3.
The persistence properties of more degenerate local bifurcations of Nσ,τ and Pσ,τ , which are
excluded from table 3 are easily deduced from the given information.

Heteroclinic and homoclinic connections of Nσ,τ do not persist generically for Pσ,τ .
The expectation is that they are generically replaced by heteroclinic and homoclinic tangles,
respectively, which are transversal heteroclinic or homoclinic intersections of invariant
manifolds [1, 19, 23, 22, 37]. Such transversal intersections are persistent under small
perturbations: therefore, curves such as H−

1 in figure 16 ‘split’ into open domains within (σ, τ )-
parameter space. Chaotic dynamics, due to the presence of horseshoes, may be expected in
such domains [11, 23] and chaotic attractors may occur near the expected tangencies between
invariant manifolds, which is a codimension 1 phenomenon [29].

4. Conclusion and future work

This paper presents a study of the resonance set of a universal 4-parameter HNS family
of planar diffeomorphisms, providing a Whitney stratification and thereby yielding a better
understanding of the corresponding geometry. Our approach consists of analysing the Whitney
stratification by explicitly determining the incidence relations between the strata and taking
appropriate two- and three-dimensional tomograms. This approach serves as a paradigm for
the investigation of other complicated higher dimensional (bifurcation) sets.
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Table 3. Relations between the dynamics of the universal family of the mildly degenerate case
Pσ,τ and its Takens normal form vector field approximation Nσ,τ . Here �p/q is a rotation over
2πp/q around the origin. Combinations of the listed bifurcations also occur, see sections 3.1, 3.2
and 3.3. Degenerate HNS bifurcations in families of maps are studied in [13].

Pσ,τ Nσ,τ

Fixed point Equilibrium
q-periodic orbit q different equilibria invariant under �p/q

(Degenerate) HNS bifurcation (Degenerate) Hopf bifurcation
Saddle-node (A2) bif. of q-periodic orbit Saddle-node (A2) bif. of q different equilibria
Cusp (A3) bifurcation of q-periodic orbit Cusp (A2) bif. of q different equilibria
Homoclinic tangle Homoclinic connection
Heteroclinic tangle Heteroclinic connection

We also show that the resonance set, up to a small diffeomorphic distortion, forms only
a small part of a more complicated bifurcation set, which is obtained using a Takens normal
form vector field approximation of the family of diffeomorphisms. The two-dimensional
tomograms of parameter space investigated for this family of vector fields demonstrate a rich
variety of bifurcations including (degenerate) Hopf, homoclinic, heteroclinic and Bogdanov–
Takens bifurcations. A more complete study of the bifurcation set of both the mildly degenerate
universal family and the corresponding vector field approximation remains future work.

Moreover, we plan to extend our work on, e.g., recognition problems [7] and visualization
of bifurcation and resonance sets to families of flows near resonance. The development of
effective methods requires a combination of symbolic and numerical methods.
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Appendix A. Computations

In this appendix we present proofs of the theorems given in section 2.2. We start with a
parametrization of D(pε,σ,τ ) with pε,σ,τ as in (15), then we prove theorem 2.1. Finally, we
prove theorem 2.2 by first providing parametrizations of the codimension 3 strata in D(pε,σ,τ )

in appendix A.3 and then check the versality conditions for these strata in appendix A.4.

Appendix A.1. Parametrization of D(pε,σ,τ )

In theorem A.1 we give a parametrization of D(pε,σ,τ ). As a consequence the Hausdorff
distance between D(pε,σ,τ ) and D(p0,σ,τ ) is easily computed.

Theorem A.1 (Parametrization of D(pε,σ,τ )). The map �ε,± : R+ × R
2 → R

4, which gives
a parametrization of D(pε), is given by

�ε,±(u, τ ) = (σ10(u, τ ) + Mε,±(u, τ ), σ20(u, τ ) + Nε,±(u, τ ), τ1, τ2), (21)

with

σ10(u, τ ) = −u(τ1 + u),

σ20(u, τ ) = −τ2u,

http://www.willisresearchnetwork.com
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Mε,±(u, τ ) = 1

2D(u, τ)
((q − 2)εq−6uq−3(τ1 + 2u)

±ε(q−6)/2τ2u
(q−2)/2

√
4D(u, τ) − (q − 2)2εq−6uq−4),

Nε,±(u, τ ) = 1

2D(u, τ)
((q − 2)εq−6τ2u

q−3

∓ε(q−6)/2(τ1 + 2u)u(q−2)/2
√

4D(u, τ) − (q − 2)2εq−6uq−4),

where

D(u, τ) = (τ1 + 2u)2 + τ 2
2 . (22)

Proof. First of all we rewrite pε,σ,τ given in (15) by putting τ = τ1 + iτ2 and σ = σ1 + iσ2,
resulting in

pε,σ,τ (u; σ, τ) = −εq−6uq−2 + u4 + 2τ1u
3 + (|τ |2 + 2σ1)u

2 + 2(τ1σ1 + τ2σ2)u + |σ |2.
Secondly, we use that (τ1, τ2, σ10(u, τ ), σ20(u, τ )) parametrizes D(p0,σ,τ ), which immediately
follows from p0,σ,τ (u) = 0 and (∂p0,σ,τ /∂u)(u) = 0. A parametrization of D(pε,σ,τ ) is then
obtained as a perturbation by putting

(σ1, σ2) = (σ10(u, τ ) + M, σ20(u, τ ) + N).

Plugging this into the equations that define D(pε,σ,τ ), that is pε,σ,τ (u) = 0 and
(∂pε,σ,τ /∂u)(u) = 0, yields

M2 + N2 − εq−6uq−4 = 0,

2τ1M + 2τ2N + 4Mu − (q − 2)εq−6uq−3 = 0
(23)

These equations have the 2 real solutions Mε,± and Nε,± as defined in theorem A.1 for M and
N , respectively. �

The latter proof allows us to show that the Hausdorff distance between D(pε,σ,τ ) and
D(p0,σ,τ ) is O(ε(q−6)/2). The first step is restricting to bounded sets. Therefore, we assume
that u � U and |τ | � T , since then �ε,± parametrizes a bounded subset of D(pε,σ,τ ) near
(σ, τ ) = (0, 0) for each ε. In this case, an upper bound for the Hausdorff distance between
D(pε,σ,τ ) and D(p0,σ,τ ) is determined as follows,

dH (D(pε,σ,τ ), D(p0,σ,τ ))
2 � sup

u�U,|τ |�T

{d(�ε,±(u, τ ), �0,±(u, τ ))2}

= sup
u�U,|τ |�T

{Mε,±(u, τ )2 + Nε,±(u, τ )2}.

Since Mε,± and Nε,± are solutions to (23), this results in dH (D(pε,σ,τ ), D(p0,σ,τ )) �
ε(q−6)/2U(q−4)/2.

A.2. Proof of theorem 2.1

Here theorem 2.1 is proven by giving an extended version.

Theorem A.2 (Whitney stratification of D(p0,σ,τ )). The discriminant set D(p0,σ,τ ) is
given by

D(p0,σ,τ ) = {(σ1, σ2, τ1, τ2) ∈ R
4 | σ1 = −u(τ1 + u), σ2 = −τ2u, u ∈ R+}, (24)

which is the closure of the stratum of type A2. This set is diffeomorphic to the product of the
real line and a subset of the Whitney umbrella W defined in (9).
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The set D(p0,σ,τ ) has a codimension 2 stratum of type A2
2 given by the following set,

A2
2 = {(σ1, σ2, τ1, τ2) ∈ R

4 | τ1 � 0, τ2 = 0, 0 � σ1 � −τ 2
1 /4, σ2 = 0}.

The codimension 2 stratum of type ∂A2 is given by

∂A2 = {(σ1, σ2, τ1, τ2) ∈ R
4 | σ1 = 0, σ2 = 0}. (25)

For all fixed τ1 � 0 the stratum of type A2
2 is attached to the codimension 3 strata of type ∂A2

2
and P given by

∂A2
2 = {(σ1, σ2, τ1, τ2) ∈ R

4 | τ1 � 0, τ2 = 0, σ1 = 0, σ2 = 0}
and

P =
{
(σ1, σ2, τ1, τ2) ∈ R

4 | τ1 � 0, τ2 = 0, σ1 = −τ 2
1

4
, σ2 = 0

}
.

This implies that the strata of type ∂A2
2 and P meet in (σ1, σ2, τ1, τ2) = (0, 0, 0, 0), the central

singularity.

Proof. The parametrization of D(p0,σ,τ ), by definition the closure of all strata of type
A2, follows from theorem A.1. This parametrization leads to the implicit representation of
D(p0,σ,τ ) given by

{(σ1, σ2, τ1, τ2) ∈ R
4 | τ 2

2 σ1 − τ1τ2σ2 + σ 2
2 = 0, sign(σ2) = −sign(τ2)},

which is diffeomorphic to the product of the real line and a subset of the Whitney umbrella W

given in (9). Moreover, the condition sign(σ2) = −sign(τ2) implies that the stratum of type
A2 is attached to a stratum of type ∂A2 given in (25).

To determine a parametrization of the stratum of type A2
2 and the codimension 3 strata it

is attached to, we rewrite the implicit equation giving D(p0,σ,τ ) for τ2 �= 0 to

σ1 = −σ 2
2

τ 2
2

+
τ1σ2

τ2
= −

(
σ2

τ2
+

τ1

2

)2

+
τ 2

1

4
, (26)

which gives a parabola in the σ -plane, if τ1 and τ2 are considered as parameters. This parabola
gets narrower as τ2 tends to 0, so comparing with the Whitney umbrella we conclude that for
τ2 = 0 there are self-intersection points in D(p0,σ,τ ). The parametrization in (24) yields that
σ1 assumes all values of the set [0, τ 2

1 /4) twice for u ∈ [0, −τ1/2) ∪ (−τ1/2, −τ1], giving
intersection points if τ2 = 0 (this implies σ2 = 0 by (24)). These points only occur for τ1 < 0,
because u > 0, so the self-intersection points (A2

2) are given by (25). �

A.3. Parametrizations of codimension 3 strata in D(pε,σ,τ )

Here we prove the incidence relations of the Whitney stratification of D(pε,σ,τ ) presented in
theorem 2.2. Therefore, we show that independent of q, there are only 3 pairs of codimension 3
strata attached to (σ, τ ) = (0, 0), see theorem A.3. These strata determine all incidence
relations, which are deduced from two- or three-dimensional tomograms of D(p1,σ,τ ), see
section 2.2.

Moreover, the Hausdorff distances between strata given in theorem 2.2 follow immediately
from the parametrizations given in theorem A.3. We note that this theorem also contains a
parametrization of T ± to show that they meet in (σ, τ ) = (0, 0), see figure 15.
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Theorem A.3. There are 3 pairs of codimension 3 strata attached to (σ, τ ) = (0, 0). The
strata (A4)

±
1 are parametrized by �

ε,±
1 : R+ → R

4 given by

�
ε,±
1 (u) =

{
u2 + O(εq−6), ∓ (q − 2)ε(q−6)/2u(q−2)/2

2
+ O(εq−6),

−2u + O(εq−6), ± (q − 2)ε(q−6)/2u(q−4)/2

2
+ O(εq−6)

}
. (27)

The curves T ± are parametrized by �
ε,±
2 : R+ → R

4 given by

�
ε,±
2 =

{
1

a
u2 + O(εq−6), ∓bε(q−6)/2u(q−2)/2 + O(εq−6),

−1

a
u + O(εq−6), ±bε(q−6)/2u(q−4)/2 + O(εq−6)

}
, (28)

where b = (a(q−2)/2 + (1 − a)(q−2)/2)/(a(q−4)/2(1 − 2a)) and a is a solution of

d
(1 − a)(q−2)/2 + a(q−2)/2

2a − 1
da

= 0. (29)

For q = 7 this gives a = 1/2 − √
5/6.

The strata (RqA2)
± are parametrized by �

ε,±
3 : R+ → R

4 given by

�
ε,±
3 (u) = {0, 0, −u + O(εq−6), ±ε(q−6)/2u(q−4)/2 + O(εq−6)}. (30)

Finally, the strata (A4)
±
2 are parametrized by �

ε,±
4 : R+ → R

4 given by

�
ε,±
4 (u) = {u2 + O(εq−6), ∓

√
2ε(q−6)/4u(q+2)/4 + O(ε(q−6)/2),

− 2u + O(ε(q−6)), ±
√

2ε(q−6)/4u(q−2)/4 + O(ε(q−6)/2)}. (31)

For proving theorem A.3 we use the following lemma containing parametrizations of Rq

and of strata of type A3.

Lemma A.1. The entire τ -plane except for τ = 0 consists of points of type Rq .
Furthermore, a parametrization of strata of type A3, assuming that τ1 +2u = O(εq−6) and

that τ2 is of lower order than O(ε(q−6)/2), is given by �ε,±◦t
ε,±
1 , where t

ε,±
1 : R+×R → R+×R

2

is given by

t
ε,±
1 : (u, τ1) �→ (u, τ1, τ2) = (u, τ1, ±

√
2ε(q−6)/4u(q−2)/4 + O(ε(q−6)/2)).

If τ2 + 2u = O(εq−6) and τ2 = O(ε(q−6)/2), then a local parametrization of A3 points is given
by �ε,± ◦ t

ε,±
2 , where t

ε,±
2 : R+ × R → R+ × R

2 is given by

t
ε,±
2 : (u, τ1) �→ (u, τ1, τ2) =

(
u, τ1, ±q − 2

2
ε(q−6)/2u(q−4)/2 + O(εq−6)

)
.

Proof. The statement that the τ -plane apart from τ = 0 is a stratum of type Rq follows
immediately from the recognition conditions for strata of type Rq given in [7]. This result
is obtained by returning to the family Pσ,τ given in (6), which gives rise to pε,σ,τ . It follows
that for σ = 0 and τ �= 0 the corresponding generalized Lyapunov–Schmidt reduction is
Zq-equivariant contact-equivalent to the Lyapunov–Schmidt reduced central singularity of Pσ

as in (1). Moreover, the generalized Lyapunov–Schmidt reduction of Pσ,τ is a versal unfolding
of these singularities.
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Now we turn to determining parametrizations for strata of type A3. For this we use that
these points are on the discriminant set Dε and also satisfy (∂2pε,σ,τ /∂u2)(u) = 0, yielding

τ 2
2 = 1

2 (q2 − 5q + 6)εq−6uq−4 − 6u2 − 6τ1u − τ 2
1 − 2σ1. (32)

Next we substitute the σ1-component of �ε,±, from now on denoted by (�ε,±)σ1 , in (32), which
yields

τ 2
2 = −6u2 − 6τ1u − τ 2

1 + 2u(τ1 + u) ± 2
ε(q−6)/2τ2u

(q−2)/2√
τ 2

2 + (τ1 + 2u)2
+ O(εq−6),

assuming that τ2 is of lower order in ε than τ1 + 2u. More specifically, a non-trivial solution
for τ2 is obtained if 2u + τ1 = O(εq−6) and τ2 is of lower order than O(εq−6). Indeed, in that
case the latter equation reduces to

τ2 = ±
√

2ε(q−6)/4u(q−2)/4 + O(ε(q−6)/2).

It turns out that two other real solutions of (32) can be obtained if τ2 = O(ε(q−6)/2) and
τ1 + 2u = O(εq−6). In this case, we have that D(u, τ) as defined in (22) is of order O(εq−6),
so we need to substitute (�ε,±)σ1 entirely in (32). Keeping only the terms that are of lowest
order in ε yields

0 = 4D(u, τ) − (q − 2)2εq−6uq−4 + O(ε2(q−6)) (33)

which has the following real solutions,

τ2 = ±q − 2

2
ε(q−6)/2u(q−4)/2 + O(εq−6).

We note that if τ2 is assumed to be of higher order than O(ε(q−6)/2), a contradiction with
τ1 + 2u = O(εq−6) easily follows. �

Finally, we are in the position to prove theorem A.3.

Proof. We start with computing the parametrizations of (A4)
±
1 and (A4)

±
2 . These points are

attached to strata of type A3 and, additionally, satisfy (∂3pε,σ,τ /∂u3)(u) = 0, yielding

τ1 = −2u + 1
12 (q − 4)(q − 3)(q − 2)εq−6uq−5, (34)

this means τ1 + 2u = O(εq−6). Consequently, the results of lemma A.1 can be used.
Substituting the latter equation in t

ε,±
1 and t

ε,±
2 yields that the τ2 component of the codimension

3 strata satisfies either

τ2 = ±
√

2ε(q−6)/4u(q−2)/4 + O(ε(q−6)/2)

or

τ2 = ± (q − 2)ε(q−6)/2u(q−4)/2

2
+ O(εq−6).

Substituting the latter equations and τ1 = −2u + O(εq−6) in �ε,± gives approximate
parametrizations of (A4)

±
2 and (A4)

±
1 , respectively.

Here we determine a parametrization of the curves (RqA2)
±. By lemma A.1 parameter

values on Rq satisfy σ = 0, yielding

pε,0,τ (u) = u2(−εq−6uq−4 + u2 + 2τ1u + |τ |2).
This is also a point of type A2 if

pε,0,τ (u)

u2
= 0 and

∂pε,0,τ /u
2

∂u
(u) = 0,
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which is easily solved by

τ1 = −u +
q − 4

2
εq−6uq−5

and

τ2 = ±ε(q−6)/2u(q−4)/2 + O(εq−6).

Substituting these in �ε,± yields the parametrization of (RqA2)
±.

Next we obtain the parametrizations for T ±. We recall that T + and T − are determined
by the points where a two-dimensional tomogram with τ fixed is not transversal to the self-
intersection strata (A2

2)
+
1 and (A2

2)
−
1 , respectively. Hence, we start with a parametrization of

(A2
2)

±
1 taking into account that the pair T ± belongs to the subset of D(pε,σ,τ ) parametrized

by �ε,−, see (21) and figure 15. Therefore, we determine when �ε,−(u, τ ) has 2 different
values of u denoted by u1 and u2 such that for τ fixed (�ε,−)σ1(u1, τ ) = (�ε,−)σ1(u2, τ ) and
(�ε,−)σ2(u1, τ ) = (�ε,−)σ2(u2, τ ). Clearly, this gives a self-intersection point for u1 �= u2.
First we consider (�ε,−)σ1 given by

(�ε,±)σ1(u, τ ) = −u(τ1 + u) + O(εq−6).

It follows that for u1 = −aτ1 + O(εq−6) and u2 = −(1 − a)τ1 + O(εq−6) with 0 < a < 1/2
this component has the same value. For (�ε,−)σ2 we obtain

− τ2u1 + ε(q−6)/2u
(q−2)/2
1 = −τ2u2 + ε(q−6)/2u

(q−2)/2
2 + O(εq−6), (35)

assuming that τ1 + 2ui = O(ε0) for i = 1, 2, which is the case for points that are not close to
(A4)

±
1 and (A4)

±
2 . Figure 12 shows that to solve this equation, we only need a parametrization

of self-intersection points for τ values between the projections of (A4)
±
1 and (RqA2)

± implying
the form

τ2 = ±bε(q−6)/2u(q−4)/2 + O(εq−6),

where b is some real number. Substituting the latter equation, u1 = −aτ1 + O(εq−6) and
u2 = −(1 − a)τ1 + O(εq−6) in (35) yields

b = ±a(q−2)/2 + (1 − a)(q−2)/2

a(q−4)/2(2a − 1)
. (36)

This means the self-intersection points near (RqA2)
± are parametrized by �ε,− ◦ t

ε,±
3 , where

t
ε,±
3 : R+ × R → R+ × R

2 is given by

t
ε,±
3 : (u, τ1) �→ (u, τ1, τ2) = (u, τ1, ±bε(q−6)/2u(q−4)/2 + O(εq−6)),

with b as given in (36). It remains to determine where these points are not transversal to a
tomogram with τ fixed, i.e. for which u the self-intersection points touch a two-dimensional
tomogram with especially τ2 fixed. Thus, we need to solve

∂(t±3 )τ2

∂u
(u, τ1, τ2) = 0.

Using that u = u1 = −aτ1 + O(εq−6), this leads to (29), which is difficult to solve for general
q; however, with the help of Mathematica [41] solutions can be obtained, see theorem A.3.
We remark that these solutions tend to 1/2, i.e. a → 1/2, for q → ∞, meaning that for large
q the condition τ1 + 2ui = O(ε0) for i = 1, 2 is broken. Consequently, for large q a different
approach from the one above is required to determine parametrizations for T ±. Since T ± is
not part of the Whitney stratification of D(pε,σ,τ ), we do not pursue this issue any further. �

A.4. Versality conditions

It remains to check the versality condition (12) for the strata in the Whitney stratification of
D(pε,σ,τ ). We first show that pε,σ,τ satisfies the versality conditions corresponding to points of
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type A4 at (A4)
±
1 and (A4)

±
2 . Instead of checking (12) for these strata, we use an observation

from [5] stating that pε,σ,τ is closely related to sε,κ,λ,ρ,τ1 : R+ → R given by

sε,κ,λ,ρ,τ1(u) = u4 − εuq−2 + 2τ1u
3 + ρu2 + λu + κ,

where ρ, κ, λ, τ1 ∈ R. In fact, the set D(pε,σ,τ ) is the pull back of D(sε,κ,λ,ρ,τ1) under the
singular map ψ : R

4 → R
4 given by

ψ(τ1, τ2, σ1, σ2) �→ (κ, λ, ρ, τ1) = (σ 2
1 + σ 2

2 , 2(τ1σ1 + τ2σ2), τ
2
1 + τ 2

2 + 2σ1, τ1).

A short computation reveals that this map has at least rank 2 for small parameter values and
the singular set of this map is given by

S(ψ) = {(τ1, τ2, σ1, σ2)
∣∣τ 2

2 σ1 − τ1τ2σ2 + σ 2
2 = 0}.

We recall that a subset of this set has appeared before as D(p0,σ,τ ). By [4, 5, 33] the family
sε,0,0,0,τ1 is right-equivalent to u4 and sε,κ,λ,ρ,τ1 is a versal unfolding of the central singularity
u4 for all τ1 near τ1 = 0. Consequently, the set D(sε,κ,λ,ρ,τ1) is the product of a real line and a
geometry of type A4 [4, 5, 33]. The relation between D(sε,κ,λ,ρ,τ1) and D(pε,σ,τ ) near (A4)

±
1

and (A4)
±
2 is made apparent in the following theorem.

Theorem A.4. The map ψ maps (A4)
±
1 and (A4)

±
2 to a set of points of type A4 of sε,κ,λ,ρ,τ1 .

Moreover, if τ1 < 0, then the geometry of type A4 can locally around ψ((A4)
±
1 ) and

ψ((A4)
±
2 ) be pulled back diffeomorphically to D(pε,σ,τ ) for ε �= 0. Consequently, also

D(pε,σ,τ ) shows this geometry near (A4)
±
1 and (A4)

±
2 .

This theorem is clarified by figure 14 showing the geometry of type A4 of D(s0,κ,λ,ρ,0)

and figure 13 showing the pull back of this geometry in D(pε,σ,τ ) near (A4)
±
2 .

Proof. The first claim is that the pair of curves (A4)
±
1 and (A4)

±
2 are mapped by ψ to the points

of type A4 of D(sε,κ,λ,ρ,τ1). This easily follows from the fact that the components of ψ are the
coefficients of pε,σ,τ and sε,κ,λ,ρ,τ1 , so ψ is an identity as far as the coefficients are concerned.
The degeneracy of a zero of pε,σ,τ and sε,κ,λ,ρ,τ1 depends only on the coefficients, so all 3-fold
degenerate points of pε,σ,τ map to the 3-fold degenerate points of sε,κ,λ,ρ,τ1 .

For ε �= 0 and τ1 < 0 a small neighbourhood of (A4)
±
1 does not intersect with the singular

set S(ψ), which implies that the geometry of type A4 near ψ((A4)
±
1 ) can be pulled back

diffeomorphically by ψ−1 to D(pε,σ,τ ). Using the relation between S(ψ) and D(p0,σ,τ ), we
can prove that for ε �= 0 the sets (A4)

±
1 and S(ψ) do not intersect by showing that given τ , the

value of the σ1 component of (A4)
±
1 is larger than the maximal σ1 value of D(p0,σ,τ ). Indeed,

by appendix A.2 the σ1 component of D(p0,σ,τ ) is parametrized by −u(τ1 +u), so its maximum
value is τ 2

1 /4. On the other hand, for (A4)
±
1 we first require a higher order approximation of

(�
ε,±
1 )σ1 than given in (27), for which (27), (33) and (34) are used. Substituting these in

(�ε,±)σ1 as given in (21) yields

(�
ε,±
1 )σ1 = 1

4
τ 2

1 +
(q − 4)(q − 3)

6
εq−6

(−τ1

2

)q−4

+ O(ε2(q−6)),

which is bigger than τ 2
1 /4 for q � 7, ε �= 0 and τ1 < 0.

The proof is more involved for (A4)
±
2 . First, we need to compute (�

ε,±
4 )σ1 and (�

ε,±
4 )σ2

to higher order than given in theorem A.3. Using (21), (31) and (34), we obtain

(�
ε,±
4 )σ1 = u2 − ε(q−6)/2u(q−2)/2 + O(εq−6), (37)

(�
ε,±
4 )σ2 = ∓

(√
2ε(q−6)/4u(q+2)/4 +

q − 2

2
√

2
ε3(q−6)/4u3q/4−5/2

)
+ O(εq−6). (38)

The stratum (A4)
±
2 intersects with D(p0,σ,τ ) if given τ there is a value of σ1 and σ2 on

D(p0,σ,τ ) that equal (37) and (38), respectively. Using the parametrization of D(p0,σ,τ ) given
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Figure 25. Phase portraits of the vector field Nσ,τ given in (19). The values of σ1, σ2 and τ2, as
well as the corresponding region in the parameter plane (see figure 21), are indicated on top of each
plot. For the bifurcations that occur between neighbouring regions, we refer to figure 21.

in appendix A.2 this amounts to solving the following equations,

u2
1 = u2

2 − ε(q−6)/2u
(q−2)/2
2 + O(εq−6), (39)

√
2ε(q−6)/4u

(q+2)/4
1 =

√
2ε(q−6)/4u

(q+2)/4
2 − q − 2

2
√

2
ε3(q−6)/4u

3q/4−5/2
2 + O(εq−6). (40)
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Figure 26. Continuation of figure 25. For the bifurcations that occur between neighbouring regions,
we refer to figure 21.

Substituting u1 as in (40) in the left hand side of (39) gives

q − 2

2
ε(q−6)/2u

(q−4)/2
2 = ε(q−6)/2u

(q−2)/2
2 + O(εq−6)

Using (34), this equation reduces to

q − 2

2
ε(q−6)/2

(−τ1

2

)(q−4)/2

= ε(q−6)/2

(−τ1

2

)(q−2)/2

+ O(εq−6),

which only holds for ε = 0 or τ1 = 0. The solution τ1 = 2−q +O(ε(q−6)/2) can be discarded,
since it is not close to zero. �
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Figure 27. Continuation of figure 26. For the bifurcations that occur between neighbouring regions,
we refer to figure 21.
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Figure 28. Continuation of figure 27. For the bifurcations that occur between neighbouring regions,
we refer to figure 24.
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The versality conditions of strata in D(pε,σ,τ ) of codimension less than 3 are checked by
computing (12) explicitly. For points of type A2 we obtain

∂(pε,σ,τ , (∂pε,σ,τ /∂u))

∂(σ1, σ2, τ1, τ2)

∣∣∣∣
(σ,τ )∈D(pε,σ,τ )

=




± 2ε
q
2 −3

τ2u
q/2√

τ2
2+(τ1+2u)2

2(τ1 + 2u)

∓ 2ε
q
2 −3

uq/2(τ1+2u)√
τ2

2+(τ1+2u)2
2τ2

± 2ε
q
2 −3

τ2u
q
2 +1√

τ2
2+(τ1+2u)2

2u(τ1 + 2u) ± 2τ2u
q/2ε

q
2 −3√

τ2
2+(τ1+2u)2

∓ 2ε
q
2 −3

u
q
2 +1

(τ1+2u)√
τ2

2+(τ1+2u)2
2u

(
τ2 ∓ ε

q
2 −3

u
q
2 −1

(τ1+2u)√
τ2

2+(τ1+2u)2

)




.

Since the latter matrix has rank 2 for all points on D(pε,σ,τ ) the versality condition is also
satisfied for all points of codimension less than 3.

To check the versality condition of (RqA2)
± we cannot use sε,κ,λ,ρ,τ1 , since D(sε,κ,λ,ρ,τ1)

does not contain a stratum of type RqA2. Therefore, we verify directly whether closures of
type Rq and type A2 strata intersect transversally at (RqA2)

±. In the previous section we
determined that Rq consists of parameter values for which σ = 0 and τ �= 0, so the closures
of strata intersect transversally if the following is non-zero

det

(
∂((�ε,±)σ1 , (�

ε,±)σ2)

∂(τ1, τ2)

)∣∣∣∣
τ∈(RqA2)±

= τ 2
1 + O(εq−6).

The latter equation is non-zero, because τ1 �= 0 on (RqA2)
±.

A.5. Diffeomorphic two- and three-dimensional tomograms

In this section we determine all open regions of τ -values for which two-dimensional tomograms
with τ fixed of D(pε,σ,τ ) for ε �= 0 are diffeomorphic, see figure 15. By [4] we have that the
boundary of such regions consists of the values for which a two-dimensional tomogram of
parameter space with τ fixed is not transversal to a stratum of D(pε,σ,τ ) for ε �= 0. We recall
that two manifolds are transversal if they do not intersect or if their tangent spaces span the
entire space at their intersection points. Consequently, strata of codimension 3 or 4 can only be
transversal to a two-dimensional tomogram if they do not intersect. This means the boundaries
of the open regions of interest are given by the projections of all codimension 3 and 4 strata on
the τ -plane and by the projections of the curves T ±, since at these curves a two-dimensional
tomogram is tangent to a codimension 2 stratum. Similar reasoning and using, e.g., figure 15
yields that three-dimensional tomograms with τ1 fixed of D(pε,σ,τ ) are diffeomorphic for either
positive values or negative values of τ1.

B. Phase portraits for sections 3.2 and 3.3

Here we present phase portraits for section 3.2, in figures 25, 26 and 27 and also those for
section 3.3, in figure 28. For explanation of the bifurcations between neighbouring regions we
refer to sections 3.2 and 3.3. We note that if a region in parameter space occurs in more than
one of the cases discussed in section 3, only one representative phase portrait is displayed.
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