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Abstract. This paper focuses on the parametric abundance and the ‘Canto-
rial’ persistence under perturbations of a recently discovered class of strange
attractors for diffeomorphisms, the so-called quasi-periodic Hénon-like. Such
attractors were first detected in the Poincaré map of a periodically driven model
of the atmospheric flow: they were characterised by marked quasi-periodic in-

termittency and by Λ1 > 0, Λ2 ≈ 0, where Λ1 and Λ2 are the two largest
Lyapunov exponents. It was also conjectured that these attractors coincide
with the closure of the unstable manifold of a hyperbolic invariant circle of
saddle-type.

This type of attractor is here investigated in a model map of the solid torus,
constructed by a skew coupling of the Hénon family of planar maps with the
Arnol′d family of circle maps. It is proved that Hénon-like strange attrac-
tors occur in certain parameter domains. Numerical evidence is produced,
suggesting that quasi-periodic circle attractors and quasi-periodic Hénon-like
attractors persist in relatively large subsets of the parameter space. We also
discuss two problems in the numerical identification of so-called strange non-
chaotic attractors and the persistence of all these classes of attractors under
perturbation of the skew product structure.

1. Introduction. The study of the geometric structure and statistical properties
of attractors of maps is a central problem in Dynamical Systems theory. Several
mathematical characterisations have been found since the 1990’s. A basic example
is provided by the Hénon family of maps [21]:

Ha,b : R2 → R2, (x, y) 7→ (1 − ax2 + y, bx), (1)

2000 Mathematics Subject Classification. Primary: 37D45, 70K43; Secondary: 37M25.
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where a and b are real parameters. Benedicks and Carleson [2, 3] proved that there
exists a set of parameter values S, with positive Lebesgue measure, such that for all
(a, b) ∈ S map (1) has a strange attractor coinciding with the closure Cl (Wu(p)) of
the unstable manifold of a saddle fixed point p. Here Cl (−) denotes the topological
closure. Similar techniques were then used to prove occurrence of strange attractors
in families of maps, near homoclinic tangencies in two or higher dimensions [29, 35,
40, 43], and near tangencies in the saddle-node critical case [16]. A general set-up
was established in [46] to prove existence of strange attractors with one positive
Lyapunov exponent in families of two-dimensional maps. The strange attractors
considered in these references are called Hénon-like [12, 16, 29, 43]. Essentially, all
the above results are obtained by perturbation of 1-dimensional maps. There is
limited understanding of the structure of attractors of larger topological dimension.
As positive exceptions we mention Viana [44] and Pumariño-Tatjer [36].

A ‘new’ class of attractors has been conjectured to occur in a Poincaré map of
an atmospheric model subject to periodic forcing [9, 10, 45]. Figure 1 (A) shows
an attractor of such a Poincaré map, which is a diffeomorphism of R3 = {x, y, z}.
A cross-section Σ displays a folded structure (Figure 1 (B)), similar to that of the
Hénon attractor. The image of Σ under the Poincaré map is a folded curve looking
like a planar Hénon attractor (box in Figure 1 (A)). This suggests that the attractor
in Figure 1 (A) is contained in the closure of the unstable manifold Wu(C ) of a
quasi-periodic invariant circle C of saddle type, where Wu(C ) is two-dimensional.
Pronounced quasi-periodic intermittency characterises the dynamics on attractors of
this type: this can be detected in the power spectrum [9, 10, 45]. Loosely speaking,
the dynamics on such attractors is ‘quasi-periodic product Hénon’: for this reason,
we coin the term quasi-periodic Hénon-like attractors. Parameter ranges where
quasi-periodic Hénon-like attractors occur are typically preceded and interspersed
by the occurrence of Hénon-like attractors and periodicity.

This paper aims to understand the structure of quasi-periodic Hénon-like attrac-
tors and their onset through bifurcations from the Hénon-like case. We consider
families of maps which, loosely speaking, contain a component for chaoticity and
a component for periodic/quasi-periodic transitions. This leads us to the following
model: 


x
y
θ


 7→




1 − (a + ε sin(2πθ))x2 + y
bx

θ + α + δ sin(2πθ)


 , (2)

defined on the solid torus R2 ×S1, where S1 = R/Z is the circle. Map (2) is a skew
product where the Hénon map (1) is driven by the Arnol′d family of maps of the
circle [1]:

Aα,δ : S1 → S1, θ 7→ θ + α + δ sin(2πθ). (3)

For the Arnol′d family, hyperbolic periodic attractors occur in the interior of count-
ably many resonance tongues in the (α, δ)-parameter plane (black in Figure 2 (A)),
constituting a large open set. Quasi-periodic dynamics occurs for a positive Lebesgue
measure subset of the complement of the tongues [1, 15]. For the Hénon family,
hyperbolic periodic dynamics occurs in a countable union of strips with non-empty
interior in the (a, b)-parameter plane (Figure 2 (B)). strange attractors occur for a
positive measure subset of the complement of the open periodicity strips [3]. Four
types of dynamics are obtained for map (2) with ε = 0, by combining the above de-
scribed ‘typical’ dynamics for the Arnol′d and Hénon maps, see Table 1. The main
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Figure 1. (A) Strange attractor of a Poincaré map of an atmospheric
model [9], projection on the (x, z)-plane. (B) Projection on the (x, ỹ)-
plane of a ‘slice’ Σ given by points of the attractor with |z| < 0.0001 (see
(A)), where ỹ = y − 0.133 ∗ z. The central box in (A) shows the image
P (Σ) under the Poincaré map.

question addressed here is: what are the persistent features of these four types of
dynamics for small perturbations ε << 1? We outline our results:

P
P

P
P

P
P

P
P

P
P

P
PP

Hénon
dynamics

Arnol′d
dynamics

periodic (ΛA < 0):
black in Fig. 2 (A)

quasi-periodic (ΛA = 0):
yellow in Fig. 2 (A)

periodic (ΛH < 0):
black in Fig. 2 (B)

case 1a case 1b

chaotic (ΛH > 0):
red in Fig. 2 (B)

case 2a case 2b

Table 1. Four dynamical behaviours for map (2) with ε = 0, aris-
ing from combining the dynamics of the Hénon (1) and Arnol′d (3)
maps. ΛA and ΛH denote the maximal Lyapunov exponent of a
typical orbit for the Arnol′d and Hénon family, respectively.

Case 1a: is trivial: this combination gives rise to a hyperbolic periodic attractor
in the solid torus R2 × S1 for map (2) in the uncoupled case ε = 0. This is
persistent for |ε| ≪ 1 and corresponds to the black regions in Figure 2 (C).

Case 1b: corresponds, in the uncoupled case ε = 0, to a normally hyperbolic
quasi-periodic invariant circle attractor for some iterate of map (2): we refer
to this as a periodically invariant quasi-periodic circle attractor for map (2).
We prove that this attractor has certain persistence properties for |ε| ≪ 1,
using centre manifold [23] and kam theory [5, 6] (Section 2.1). Attractors of
this type occur in a subset of the yellow domain in Figure 2 (C) located near
ε = 0. A different type of attractors occurs for larger ε: namely phenomena
related to the so-called strange nonchaotic attractors [17, 19, 20, 24, 25, 31, 32]
take place.

Case 2a: one of the main results of this paper is that map (2) has a Hénon-like
attractor which persists for |ε| ≪ 1 (Section 2.2). This type of attractors is
found in the red domains of Figure 2 (C), see Figure 3 for illustrations.
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Figure 2. Organisation of: (A) the (α, δ)-parameter plane of the
Arnol′d family (3); (B) the (a, b)-parameter plane of the Hénon family
(1); (C) the (α, ε)-parameter plane of map (2), for a = 1.25, b = 0.3,
δ = 0.6/(2π). Attractor types are classified according to their Lyapunov
exponents, see codes 1-4 in Table 2 and see Appendix A for the algorithm.
Initial point is the origin for (B): other initial points might converge to
different types of attractors in case of multistability.
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code colour Lyapunov exponents attractor type case

1 black 0 > Λ1 periodic attractor 1a

2 yellow 0 = Λ1 > Λ2 quasi-periodic invariant circle or
other types of attractor (see text
for details)

1b

3 red Λ1 > 0 > Λ2 Hénon-like strange attractor 2a

4 blue Λ1 > 0 = Λ2 quasi-periodic Hénon-like
strange attractors

2b

white no attractor detected

Table 2. Colour coding for Figure 2, attractors are classified by
their Lyapunov exponents Λ1 ≥ Λ2 ≥ Λ3. Rightmost column:
cases discussed in the Introduction for family (2).
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Figure 3. Hénon-like strange attractors of the model family (2), for
a = 1.3, b = 0.3, ε = 0.2. (A) Parameters are (α, δ) = (0.51, 0.116), in a
resonance tongue of period two for the Arnol′d family (3). (B) Same as
(A) for α = 0.33793, in an Arnol′d tongue of period three.
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Figure 4. Quasi-periodic Hénon-like strange attractor of the model
family (2), projection on the (u, v, w)-space, with u = (r + 4) cos(2πθ),
v = (r + 4) sin(2πθ), with r = x cos(2πθ) + 10y sin(2πθ), and w =
−x sin(2πθ) + 10y cos(2πθ). Parameter values: a = 1.85, b = −0.2,

δ = 0, α = (
√

5 − 1)/2, ε = 0.1.
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Case 2b: we prove that a quasi-periodic Hénon-like attractor occurs for map (2)
in the uncoupled case ε = 0 (Section 2.3). This attractor has the form
Cl (Wu(C )) , where C is a normally hyperbolic quasi-periodic invariant circle
of saddle type. We provide numerical evidence suggesting that this phenome-
non persists for |ε| ≪ 1: this corresponds to the blue regions in Figure 2 (C)),
see Figure 4 for an illustration.

We present a combination of theoretical and numerical results concerning the issues
of persistence of the above four cases, and we also address the following question:
which of the above features are persistent under perturbation of the skew product
structure of (2), and what changes occur for the non-persistent features?

Our theoretical results are formulated for more general families, of which (2) is a
special case, see Section 2 (all longer proofs are postponed to Section 4). Numerical
evidence, conjectural results and open problems are discussed in Section 3.

2. Analytical study. Our theoretical results are formulated in the next three
subsections, while longer proofs are postponed to Sections 4.1 and 4.2.

2.1. Invariant circles of saddle type and basins of attraction. We generalise
an unpublished result of Tangerman and Szewc [34, Appendix 3] to families of maps
obtained by perturbing the product of a planar map times a rotation on S1. Consider
a dissipative (i.e., area contracting) diffeomorphism

K = (K1, K2) : R2 → R2, (4)

of class Cn with n ≥ 1. Denote by Rα : S1 → S1 the rigid rotation Rα(θ) = θ + α.
We define the following family of diffeomorphisms of the solid torus R2 × S1:

Pα,ε : R2×S1 → R2×S1, (x, y, θ) 7→
(
K1(x, y)+P1, K2(x, y)+P2, θ+α+P3

)
, (5)

where Pj , for j = 1, . . . , 3, is a smooth function of (x, y, θ, α, ε) such that Pj = 0
for ε = 0. Model map (2) is a special case of (5), however the latter is not a skew
product, given the full coupling of the two components. A hyperbolic fixed point p
of K (4) corresponds to a normally hyperbolic invariant circle Cα,0 = {p} × S1 for
the map Pα,ε at ε = 0.

Proposition 1. (normally hyperbolic invariant circle) Suppose that K
has a hyperbolic fixed point p = (x0, y0). Then for all α ∈ [0, 1] the map Pα,0 has
a normally hyperbolic invariant circle Cα,0 = {p} × S1. The manifold Cα,0 is r-
normally hyperbolic for all integers r with 1 ≤ r ≤ n. Moreover, for all r < n there
exists an εr > 0 such that for all ε < εr and all α ∈ [0, 1], Pα,ε has a normally
hyperbolic invariant circle Cα,ε of class Cr, which is Cr-close to Cα,0.

Proof. The dynamics of Pα,0 on Cα,0 is parallel with rotation number α. This
implies that Cα,0 is an r-normally hyperbolic invariant manifold for all r ≤ n and,
therefore, it is of class Cn. So Cα,0 (as well as its stable and unstable manifolds), is
persistent under Cn-small perturbations. This directly follows from [23, Theorem
1.1].

Proposition 1 allows us to construct a basin of attraction with nonempty interior
for the invariant set Cl (Wu(Cα,ε)), provided that p is a saddle point, while the
one-dimensional unstable manifold Wu(p) ⊂ R2 of the map K, see (4), does not
escape to infinity. For (x, y, θ) ∈ R2 × S1, denote by ω(x, y, θ) the ω-limit set of
(x, y, θ) under Pα,ε.
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Theorem 2.1. (attractor contained in Cl (Wu(C ))) Fix integers n and r
such that n ≥ 2 and 1 ≤ r < n. Choose ε < εr as in Proposition 1 and let α ∈ [0, 1].
Suppose that K : R2 → R2 is of class Cn and satisfies:

1. K has a saddle fixed point p ∈ R2 and a transversal homoclinic point q ∈
W s(p) ∩ Wu(p).

2. K is uniformly dissipative: there exists κ < 1 such that |det(DK(x, y))| ≤ κ
for all (x, y) ∈ R2.

3. Wu(p) is contained in a bounded subset of R2.

Then there exists an ε∗ < εr such that for all ε < ε∗ there exists an open, nonempty
bounded set U ⊂ R2 × S1 such that for all (x, y, θ) ∈ U

ω(x, y, θ) ⊂ Cl (Wu(Cα,ε)) . (6)

Remark 1. By taking iterates of the map Pα,ε, Theorem 2.1 can be adapted to the
case where p is a saddle periodic point. In this context we have the inclusion (6),
where Cα,ε is a periodically invariant circle, i.e. a circle which is invariant under
some iterate of Pα,ε.

Under the conditions of Theorem 2.1, the invariant set Cl (Wu(Cα,ε)) attracts all or-
bits with initial state in an open set U . This holds for an open set of ε-values. In gen-
eral, however, Cl (Wu(Cα,ε)) is not an attractor, since it might be non-topologically
transitive. This occurs, for example, if Cl (Wu(Cα,ε)) contains a periodic attractor.

In the next Theorem we prove that at least the circle Cα,ε is quasi-periodic (and,
hence, topologically transitive) for a set of parameter values having large relative
measure.

Theorem 2.2. (normally hyperbolic quasi-periodic circles) Let Pα,ε be a
Cn-family of diffeomorphisms as in (5), where n ≥ 5. Choose εr as in Proposition 1.
Then there exists an ε∗∗ < εr such that for all ε < ε∗∗ the following holds.

1. There exists a set Dε ⊂ [0, 1] with Lebesgue measure meas(Dε) > 0 such that
for α ∈ Dε the restriction of Pα,ε to the circle Cα,ε is smoothly conjugate to
an irrational rigid rotation.

2. meas(Dε) tends to 1 for ε → 0.

Proofs of Theorems 2.1 and 2.2 are given in Section 4.1. Theorems 2.2 and 2.1 have
straightforward generalisations for the case where p is a hyperbolic periodic point.

2.2. Hénon-like attractors in a family of skew product maps. The invari-
ant set Cl (Wu(C )) is attracting under quite general circumstances (Theorem 2.1).
In general Cl (Wu(C )) may be not topologically transitive: in this case it is not
considered an attractor (see below for precise definitions). For the particular case
of map (2), we show that Cl (Wu(C )) contains Hénon-like attractors for a positive
measure set of parameter values. A few basic definitions are first recalled.
Definition 2.3. [16, 29, 43] Let F : M → M be a C1-diffeomorphism, where M
is an m-dimensional smooth manifold.

1. An F -invariant set A ⊂ M is called topologically transitive if there exists a
point z ∈ A such that the orbit Orb(z) = {F j(z)}j≥0 of z under F is dense
in A .

2. A set A ⊂ M is called an attractor if it is topologically transitive, compact,
F -invariant and if the stable set (basin of attraction) W s(A ) has nonempty
interior.
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3. An attractor A is called strange if there exist constants κ > 0, λ > 1, a dense
orbit Orb(z) ⊂ A and a vector v ∈ TzM such that

‖DFn(z)v‖ ≥ κλn for n ≥ 0.

4. The attractor A is called Hénon-like if there exist a saddle periodic orbit
Orb(p) = {p, F (p), . . . , Fn(p)}, a point z in the unstable manifold Wu(Orb(p)),
constants κ > 0, λ > 1, and tangent vectors v, w ∈ TzM , with w 6= 0, such
that

i) A = Cl (Wu(Orb(p))) , (7)

ii) Orb(z) is dense in A , (8)

iii) ‖DFn(z)v‖ ≥ κλn for n ≥ 0, (9)

iv) ‖DFn(z)w‖ → 0 as n → ±∞, (10)

where Cl(·) denotes topological closure.

Hénon-like attractors are strange, since they admit a dense orbit with a positive
Lyapunov exponent (by conditions (8) and (9)). Hénon-like attractors are also non-
uniformly hyperbolic: indeed they contain critical points (condition (10)), that is,
points belonging to a dense orbit for which a nonzero tangent vector w exists, which
is contracted both by positive and by negative iteration of the derivative DF .

We now consider the occurrence of Hénon-like strange attractors in the skew product
family

Tα,δ,a,ε : R2 × S1 → R2 × S1,




x
y
θ


 7→




1 − ax2 + εf
εg

Aα,δ(θ)


 . (11)

Here (α, δ, a, ε) are parameters, while f and g are functions of (a, x, y, θ, ε, α, δ).

Notice that the family (2) takes the form (11) after a rescaling y 7→
√
|b|y and

by choosing b = O(ε): this makes sense, since we focus on small values of b. We
perturb away from cases where (α, δ) is in one of the Arnol′d resonance tongues,
see Figure 2 (A). We recall that the restriction of (11) to S1 is the Arnol′d family
of circle maps (3). Map (11) is a generalisation of the planar Hénon-like families
considered in [29, 43]: these are C3-small diffeomorphisms obtained as perturbations
of the Logistic family

Qa : R → R, x 7→ 1 − ax2. (12)

The x- and y-components of Tα,δ,a,ε also depend on the circle dynamics by the
perturbative terms f and g. The only requirement on f and g is that their C3-norms
are bounded on compact sets. Occurrence of Hénon-like attractors is proved in the
family Tα,δ,a,ε for all parameter values belonging to a set of positive (Lebesgue)
measure. For all values in this set, the parameters (α, δ) are such that the dynamics
of the Arnol′d family Aα,δ (3) is of Morse-Smale type: there exist periodic points

θs and θr in S1, such that θs is attracting and θr repelling for Aα,δ. By Aq/n we
denote the open resonance tongue in the (α, δ)-plane where these periodic points
have rotation number q/n [1, 15] and the width of the tongue in α behaves as δn

[8], compare with Figure 2 (A). The parameter space under consideration is the set
of all (α, δ, a, ε) ∈ R4 such that

α ∈ [0, 1], δ ∈
[
0, 1/(2π)

)
, a ∈ [0, 2], |ε| < 1. (13)
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The attractors that we obtain coincide with the closure of the one-dimensional
unstable manifold of a hyperbolic periodic orbit p = (x0, y0, θ

s) ∈ R2 ×S1 of saddle
type:

A = Cl (Wu (Orb(p))) .

For the statement of the result we need a few definitions and notations.

Definition 2.4. 1. A map M : J → J , where J ⊂ R is an interval, is called
topologically mixing if for any open intervals J1, J2 ⊂ J there exists n0 such
that

Mn(J1) ∩ J2 6= ∅ for all n ≥ n0.

2. The interval Ka = [Q2
a(0), Qa(0)] is called the core or the restrictive interval

of the Logistic family Qa (12).

It is well-known that Qa([0, 1]) = Qa(Ka) = Ka for all a, where Ka is the core of
Qa (12), see e.g. [27, Section II.5]. For a given integer n > 1, denote by Φ(n) the
set of all integers q such that q and n are relatively prime, where 1 ≤ q < n. For
n = 1 we put Φ(n) = {1}.

Theorem 2.5. (Hénon-like attractors in (11)) Choose a∗ ∈ (1, 2) such that
the quadratic map Qa∗ in (12) is topologically mixing on its core K = [1 − a∗, 1]
and its critical point c = 0 is preperiodic (that is, Qq

a∗(c) is a periodic point of Qa∗

for some integer q). Let n ≥ 1 be an integer. There exist a periodic point p0 of the
n-th iterate Qn

a∗ and positive constants ε̄n, ān and χn such that the following holds.

1. For all (α, δ, a, ε) as in (13), with

(α, δ) ∈ ∪q∈Φ(n) Cl
(
A

q/n
)

, |a − a∗| < ān, |ε| < ε̄n (14)

the map Tα,δ,a,ε has a saddle periodic point p, which is the analytic continua-
tion of p0 and such that the unstable manifold Wu(Orb(p)) is one-dimensional.

2. For all (α, δ, ε) as in (14) there exists a set Sα,δ,ε with

Sα,δ,ε ⊂ [a∗ − ān, a∗ + ān], meas(S) > χn

such that for all a ∈ Sα,δ,ε the closure Cl (Wu(Orb(p))) is a Hénon-like at-
tractor of Tα,δ,a,ε.

Corollary 1. The set of parameter values for which Tα,δ,a,ε has a Hénon-like at-
tractor contains the set

S =
⋃

n∈N

{
(α, δ, a, ε) | (α, δ) ∈ ∪q∈Φ(n) Cl

(
A

q/n
)

, |ε| < ε̄n, a ∈ Sα,δ,ε

}
,

and the set S has positive Lebesgue measure

meas(S) ≥ 2

∞∑

n=1

ε̄nχn

∑

q∈Φ(n)

measA
q/n.

Our proof of Theorem 2.5 is given in Section 4.2. It is based on a result of Dı́az-
Rocha-Viana [16, Theorem 5.2], and relies on the following facts:

1. For (α, δ) inside any tongue Aq/n, the asymptotic dynamics of Tα,δ,a,ε is de-
scribed by an O(ε)-perturbation of the n-th iterate Qn

a .
2. For all n the map Qn

a is a generic n-modal family, in the sense of [16, Section
5.2], also see the definition given in Section 4.2. To show this, we use that Qa∗

is a Misiurewicz map [28], and, therefore, it is Collet-Eckmann (see e.g. [27,
Section V.4]). See Section 4.2 for details.
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As we said above, family (2) takes the form (11) after a rescaling y 7→
√
|b|y and by

choosing b = O(ε). Therefore, by restricting the parameter δ to sufficiently small
values, both Theorem 2.5 and Theorem 2.1 may be applied to (2).

Corollary 2. Let a∗ and p0 satisfy the hypotheses of Theorem 2.5. Then there
exists a positive measure set of parameter values such that the family (2) has Hénon-
like attractors, contained in the closure of the unstable manifold of a periodically
invariant circle.

Proof. Take a∗ and p0 as in the hypotheses of Theorem 2.5. Then for all δ and for ε
and b sufficiently small, Theorem 2.5 applies. Moreover, for (ε, δ) = (0, 0) the circle
C = {p0}×S1 is periodically invariant under map (2). In particular, the conditions
of Theorem 2.1 are satisfied for b sufficiently small, since:

1. The periodic point (p0, 0) of Ha,0 has an analytic continuation p̄(b) for all b
sufficiently small, and p0 is chosen such that p̄(b) has transversal homoclinic
points, see Proposition 3.

2. det(DHa,b(x, y)) = b;
3. The unstable manifold of all periodic points of Ha,b is bounded for b sufficiently

small, since the invariant manifolds depend continuously on the map [29, Prop.
7.1].

So for (ε, δ, b) sufficiently small, the conclusions of Theorem 2.1 hold.

2.3. Quasi-periodic Hénon-like attractors. This paper has been partially mo-
tivated by the problem to find a diffeomorphism F with a strange attractor A such
that

A = Cl (Wu(C )) , (15)

where C is an F -invariant circle of saddle type with irrational rotation number, so
with quasi-periodic dynamics. In this context, the role of the saddle periodic orbit
in (7) is played by a quasi-periodic invariant circle of saddle type. By analogy with
the definition of Hénon-like strange attractors (see Section 2.2), we are led to the
following definition.

Definition 2.6. Let F : M → M be a C1-diffeomorphism, where M is an m-
dimensional smooth manifold. We say that the F -invariant set A is a quasi-periodic
Hénon-like attractor if there exist

1. A quasi-periodic invariant circle C of saddle type such that A = Cl (Wu(C )) .
2. A point x ∈ A such that Orb(x) is dense in A and
3. a dense set Z ⊂ A and constants κ > 0, λ > 1 such that for all z ∈ Z there

exist vectors v, w ∈ TzM such that conditions (9) and (10) hold.

The definition mimics the positive Lyapunov exponents and non-uniform hyper-
bolicity requirements in the definition of Hénon-like attractors and also asks for
transitivity. As usual, similar definitions can be given with F replaced by a power
F k.

Returning to the skew product context of the model family (2), in the Arnol′d
family Aα,δ we fix parameter values (α, δ) such that the dynamics of Aα,δ is quasi-
periodic. Recall that the set of all such (α, δ) has positive measure and is nowhere
dense [5, Chap. 1]. Next choose parameter values a and b such that the Hénon
map (1) has a Hénon-like strange attractor A

′, coinciding with the closure of the
unstable manifold of a saddle fixed point p: according to [2, 3, 29], such (a, b) form
a set of positive measure. Then, at ε = 0 map (2) has an attractor A = A ′ × S1
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coinciding with the closure of the unstable manifold of the quasi-periodic saddle
type invariant circle {p} × S1. It may be clear that requirement 3 of Definition 2.6
is satisfied by taking Z = Orb(z)×S1, where z is a point satisfying properties 4 ii),
iii) and iv) in Definition 2.3 of Hénon-like attractors. Only item 2 in Definition 2.6
remains to be verified, to prove that quasi-periodic Hénon-like occur in the product
case. This is achieved in the following lemma.

Lemma 2.7. (Transitivity of (2), uncoupled) Let T be a dissipative C1-
diffeomorphism in an open subset U ⊂ R2 such that

1. T has a hyperbolic fixed point p of saddle type.
2. The closure of the unstable manifold of p is an Hénon-like strange attractor

A ′.

Let Rα : x 7→ x + α mod 1 a rotation over angle α ∈ (0, 1) \ Q. Then the product
F = T × R has a dense orbit in A = A

′ × S1.

Proof. We claim that it is sufficient to prove the following:

(∗) Given two open sets U , V in A , there exists k ∈ N such that F k(U) ∩ V 6= ∅.

Indeed, if (*) is true, then Proposition 2 in [14] applies.

Next, let us prove (∗). Without loss of generality, assume that U = U ′ × (r −
δ, r + δ) and V = V ′ × (s − ε, s + ε) for some δ, ε > 0, where U ′, V ′ are open sets
in A ′. First, for fixed ε > 0 we note that given r, s ∈ S1 there exists an increasing
sequence {n1, n2, . . .} such that R

nj
α (r) ∈ (s − ε, s + ε), where 0 < n1 < N and

nj+1 − nj < N for all j, with N independent of r and s. As Wu(p) is dense in
A ′, there exists a point q′ ∈ Wu(p) ∩ V ′. Consider a preimage u = T−l(q′) such
that u and its first N iterates are close to p. By continuity, there are open sets
Z0, Z1, . . . , ZN around u, T (u), . . . , T N(u) whose images under T l, T l−1, . . . , T l−N

are contained in V ′.
Now, there exists a point x ∈ U ′ ∩ Wu(p) belonging to a dense orbit and also

having a positive Lyapunov exponent, such that T m(x) ∈ Z0 for some m ∈ N. It
is no restriction to assume that, for some m ∈ N, the image T m(U ′) intersects all
Zj, j = 0, 1, 2, . . . , N. Indeed, in the other case the Lyapunov exponent could not
be positive.

Since T l−j(Zj ∩ T m(U ′)) ⊂ V ′ for j = 0, . . . , N , one has

T l+m−j(U ′) ∩ V ′ 6= ∅ (16)

for all j = 0, . . . , N . To arrange that some of the iterates Rl+m−j
α (r) lie inside the

interval (s − ε, s + ε), observe that l + m is in between two consecutive values ni

and ni+1 for some ni as above. This implies that there exists j ≤ N such that
l + m − j = ni, which, together with (16), yields that T l+m−j(U) ∩ V 6= ∅.

3. Dynamical study. Section 3.1 discusses the links between the numerically ob-
served dynamics of map (2) and the theoretical results of Section 2. Several dy-
namical phenomena of map (2) are specific to its skew product structure: this is
discussed in Section 3.2.

3.1. The dynamics of the skew product map. Numerical evidence indicates
that all four cases discussed in the Introduction (see Table 1) occur in parameter
sets of positive measure for map (2), see the Lyapunov diagram in Figure 2 (C).
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Case 1b. Theorem 2.2 in Section 2.1 implies the existence of quasi-periodic attrac-
tors for a positive measure set in parameter space. In our numerical exploration, an
attractor is classified as a quasi-periodic invariant circle if it satisfies two criteria:
the maximal Lyapunov exponent Λ1 is zero and the variation test for invariant
circles is passed, see Appendix A for a discussion. Both criteria are satisfied for a
parameter subset near ε = 0 in Figure 2 (C).

The condition Λ1 = 0 is necessary but not sufficient for identifying quasi-periodic
invariant circles: there are parameter values for which Λ1 is numerically zero, but
where the variation test is not passed. This parameter subset is rendered in magenta
in the top panel of Figure 5. It is located away from ε = 0 and is particularly visible
near the resonance with rotation number 2/7, with narrower domains occurring near
other resonances.

This is explained as follows: the quasi-periodic attractors occurring for small ε
eventually seem to break down as ε increases (because the variation criterion is
no longer satisfied). Plots of the attractors resulting from this process look like
the so-called strange nonchaotic attractors [17, 19, 20, 24, 25, 31, 32]. Strange
nonchaotic attractors are fractal invariant sets with a negative maximal Lyapunov
exponent. At first instance one might be tempted to classify as strange nonchaotic
all those attractors of map (2) for which Λ1 = 0 and the variation test is not
passed. However, a deeper examination of several such cases shows that they are
in fact smooth invariant circles. In these cases, the failure of the variation test is a
consequence of too low numerical resolution. This causes a discrepancy between the
numerically observed dynamics and the actual dynamics. Although a full discussion
of this phenomenon is out of the scope of the present paper, we briefly present two of
the underlying mechanisms in Appendix C, also see [20] for a specific investigation.

In summary: not all parameter values for which Λ1 = 0 (yellow in Figure 2 (C))
correspond to smooth invariant circles; this explains our description of attractor
type for case 1b in Table 2. Also, not all the parameter values for which Λ1 = 0 and
the variation test is not passed (magenta in Figure 5 top) are strange nonchaotic
attractors. This motivates our description of attractor type for code 5 in Table 3.

Case 2a. A complementary situation regarding Theorem 2.2 occurs when the dy-
namics on the invariant circle is of Morse-Smale type. For the Arnol′d map, this
occurs in the resonance tongues of Figure 2 (A). By Corollary 2 in Section 2.2,
map (2) has a Hénon-like attractor for a positive measure set of parameter values.
This corresponds to the red domains in Figure 2 (C). It is to be noted that the
Hénon-like character of the attractors remains conjectural when specific values of
the parameters are considered: such is the case for the attractors of Figure 3.

Case 2b. Existence of quasi-periodic Hénon-like attractors is only proved for the
unperturbed case ε = 0 (Section 2.3). In the numerical context, such attractors are
identified by one positive, one negative, and one zero Lyapunov exponent. Numer-
ical evidence indicates that such attractors:

- persist for small (and not so small) values of (ε, δ), see Figures 4, 7;
- occur in a relatively large part of the parameter plane (blue in Figure 2 (C)).

Strange attractors similar to Figure 7 are observed in several numerical studies [31,
17, 19, 32]. A difference is that most of these studies deal with endomorphisms of
the interval with a skew product forcing by a rigid rotation. Strange nonchaotic
attractors are found in many of the above studies, see Appendix C.
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Figure 5. Top: magnification near ε = 0 of Figure 2 (C). Parame-
ter values in magenta correspond to candidates for strange nonchaotic
attractors, see the text for discussion and explanation. Such magenta
domains were shown in blue in Figure 2 (C). Bottom: same as top for
Figure 6. The colour coding is given in Tables 2 and 3.
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Figure 6. Organisation of the (α, ε)-plane for the fully coupled system
(17), for a = 1.25, b = 0.3, µ = 0.01 and δ = 0.6/(2π), see Tables 2 and 3
for the colour coding.
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Figure 7. Quasi-periodic Hénon-like attractor of the model fam-
ily (2). (A) Projection on the (θ, y)-plane. (B) Projection on the (x, y)-
plane (grey, in the background), with ‘slices’ of the attractor (black) for
2πθ ∈ [j/10, j/10 + 0.001], j = 0, 1, . . . , 62. Parameter values are fixed

at a = 0.8, b = 0.4, δ = 0, α = (
√

5− 1)/2, ε = 0.7, initial conditions are
x0 = 1.5, y0 = 0, θ0 = 0.
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code colour criterion attractor type

5 magenta Λ1 = 0,
variation criterion not sat-
isfied

candidate for strange non-
chaotic attractor (see text)

6 green Λ1 > 0, Λ2 < 0, Λ2 small,
clustering criterion is satis-
fied

quasi-periodic Hénon-like
strange attractor

7 light grey Λ1 > 0, Λ2 > 0, Λ2 small quasi-periodic Hénon-like
strange attractor

Table 3. Coding of the additional colours in Figures 5 and 6 (also
see Table 2). Additional criteria are used for the identification of
the attractor class, see text for details.

Figure 8. Attractor of map T in (17) for (α, ε, µ) = (0.31, 0.13, 0.01),
with two positive Lyapunov exponents: Λ1 ≈ 0.29530 and Λ2 ≈ 0.00016,
projection on variables (u, v, w) similar to Figure 4.

3.2. Perturbing the skew product. We here analyse the dynamical consequences
of the destruction of the skew product structure of map (2): a coupling term µy is
added to the angular dynamics, yielding the map

T = Tα,δ,a,b,ε,µ : R2×S1 → R2×S1,




x
y
θ


 7→




1 − (a + ε sin(2πθ))x2 + y
bx

θ + α + δ sin(2πθ) + µy


 . (17)

Map (17) has the form (5) and depends on six parameters (α, δ, a, b, ε, µ). Compar-
ison of the Lyapunov diagrams in the skew product case µ = 0 (Figure 2 (C)) and
in the fully coupled case µ > 0 (Figure 6) reveals these analogies:

- parameter regions with periodic attractors for µ = 0 are essentially preserved
for µ ≈ 0; in the latter case, however, more periodic regions are found near
resonances.
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- parameter regions with Hénon-like attractors (red) are quite similar in the
two cases;

- parameter regions with quasi-periodic attractors remain almost unchanged.

The latter two points indicate that the domain of validity of Theorems 2.2 and 2.5
are relatively large. Two remarkable differences occur between the skew and non-
skew cases:

- the maximal Lyapunov exponent Λ1 becomes positive for µ 6= 0, for essentially
all parameter values where ‘candidates for strange nonchaotic attractors’ are
found for µ = 0 (see the previous section). This behaviour has been observed
varying µ for a sample of values of (α, ε), even when µ is as small as 10−12.

- a (numerically) zero Lyapunov exponent Λ2 practically never occurs for µ 6= 0:
any small perturbation µ 6= 0 has the effect of shifting Λ2 away from zero, for
nearly all parameters where Λ2 = 0 for µ = 0 (the blue region of Figure 2 (C)).

Roughly speaking, the domain where Λ2 = 0 for the skew product case splits into
three parts for µ 6= 0: where Λ2 = 0, Λ2 < 0 and Λ2 > 0 respectively. The first
case is virtually absent. In the latter two cases, the value of Λ2 remains very small,
though definitely distinct from zero. The geometric structure of the corresponding
attractors shows no appreciable differences. Specifically, provided that µ is small
and the other parameters are kept fixed, plots of the attractors typically are very
similar

- in the skew product case µ = 0, when Λ1 > 0 and Λ2 = 0, and
- in the fully coupled case µ > 0, when Λ1 > 0 and Λ2 ≈ 0 (independently of

the sign).

Figure 8 shows an attractor with two positive Lyapunov exponents, where Λ2 >
0 is small. Parameters are (α, ε, µ) = (0.31, 0.13, 0.01), in the light grey region
of Figure 6. The attractor shape remains essentially unaltered if parameters are
changed to (α, ε, µ) = (0.28, 0.13, 0.01) (green region of Figure 6, where Λ2 < 0 and
is small) or to (α, ε, µ) = (0.28, 0.13, 0.00) (blue region in Figure 2, where Λ2 is
numerically zero). We expect that all these attractors are contained in the closure
Cl (Wu(C )) of a quasi-periodic invariant circle C of saddle type. However, further
study is needed to clarify the structural differences associated with the different
sign of Λ2.

4. Proofs.

4.1. Basins of attraction and quasi-periodic invariant circles. In this section
we give proofs of Theorem 2.1 (next section) and Theorem 2.2 (Section 4.1.2).

4.1.1. The Tangerman-Szewc argument generalised. Let K : R2 → R2 be a dissi-
pative diffeomorphism having a saddle fixed point p = (x0, y0). Suppose the stable
and unstable manifolds W s(p) and Wu(p) intersect transversally at the homoclinic
point q ∈ W s(p) ∩ Wu(p), see Figure 9. Also assume that Wu(p) is bounded as
a subset of R2. The Tangerman-Szewc Theorem (see e.g. [34, Appendix 3]) states
that the basin of attraction of the closure of Wu(p) contains the open region U ′

bounded by the two arcs ∂s ⊂ W s(p) and ∂u ⊂ Wu(p) with extremes p and q, see
Figure 9. This argument is used to prove existence of strange attractors (in par-
ticular, with non-trivial basin of attraction) near homoclinic tangencies of a saddle
fixed point of a dissipative diffeomorphism, cf. [29, 43, 46].
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c

d

p

q

∂u

∂s

U ′

Figure 9. Segments ∂s and ∂u of the stable and unstable manifold,
respectively, of a saddle fixed point p bound a region U , see text for more

explanation.

We first prove Theorem 2.1 for ε = 0. This is a straightforward generalisation of
the above Tangerman-Szewc Theorem. For small ε, the result is obtained by using
persistence of normally hyperbolic invariant manifolds [23, Theorem 1.1] and two
transversality lemmas.

Proof of Theorem 2.1. Consider the circle Cα = Cα,0, invariant under map Pα,0

in (5). The manifolds Wu(Cα) and W s(Cα) are given by Wu(p)×S1 and W s(p)×S1,
respectively. They intersect transversally at a circle H = {q} × S1, consisting of
points homoclinic to Cα. Consider the two arcs ∂s ⊂ W s(p) and ∂u ⊂ Wu(p) with
extremes p and q (Figure 9).They bound an open set U ′ ⊂ R2. Define Ds and Du

to be the portions of stable, and unstable manifold of Cα, respectively, given by

Ds = ∂s × S1 ⊂ W s(Cα) and Du = ∂u × S1 ⊂ Wu(Cα).

Both surfaces Ds and Du are compact, and their union forms the boundary of the
open region U = U ′ × S1, which is topologically a solid torus.

The volume of U decreases under iteration of Pα,0. Denoting by meas(·) the
Lebesgue measure both on R2 and on R2 × S1, due to condition 2 in Theorem 2.1
we have

meas(Pn
α,0(U)) = 2π

∫

Kn(U ′)

dxdy = 2π

∫

U ′

|detDKn| dxdy ≤ 2πκn meas(U ′).

This implies that the forward evolution of every point (x, y, θ) ∈ U approaches the
boundary of Pn

α,0(U):

dist
(
Pn

α,0(x, y, θ), ∂Pn
α,0(U)

)
→ 0 as n → +∞.

Indeed, suppose that this does not hold. Then there exists a ̺ > 0 such that for all
n there exists N > n such that the ball with centre PN

α,0(x, y, θ) and radius ̺ > 0 is

contained inside PN
α,0(U). But this would contradict the fact that meas(Pn

α,0(U)) →
0 as n → +∞.
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The boundary of Pn
α,0(U) also consists of two portions of stable and unstable

manifold of C :

∂Pn
α,0(U) = Pn

α,0(D
s) ∪ Pn

α,0(D
u).

The diameter of Pn
α,0(D

s) tends to zero as n → +∞, because all points in Ds are
attracted to the circle Cα. Since Wu(Cα) is bounded, all evolutions starting in U
are bounded and approach Wu(Cα), that is,

dist(Pn
α,0(x, y, θ), Pn

α,0(D
u)) → 0 as n → +∞

for all (x, y, θ) ∈ U . This implies that ω(x, y, θ) ⊂ Cl (Wu(Cα)) for all (x, y, θ) ∈ U .
To extend this result to small perturbations Pα,ε of Pα,0, the following transver-

sality lemmas are used.
Lemma 4.1. [37, Chap. 7] Consider a map f : V → M , where V and M are Cr-
differentiable manifolds and f is Cr. Suppose V is compact, W ⊂ M is a closed Cr-
submanifold and f is transversal to W at V (notation: f ⋔ W ). Then f−1(W ) is a
Cr-submanifold of codimension codimV (f−1(W )) = codimM (W ). Further suppose
that there is a neighbourhood of f(∂V )∪ ∂W disjoint from f(V )∩W , where ∂V and
∂W are the boundaries of V and W . Then any map g : V → M , sufficiently Cr-close
to f , is also transversal to W , and the two submanifolds g−1(W ) and f−1(W ) are
diffeomorphic.
Lemma 4.2. [22, Section 3.2] Let V1, V2, and M be Cr-differentiable manifolds
and consider two diffeomorphisms fi : Vi → M , i = 1, 2. Then f1 ⋔ f2 if and only if
f1× f2 ⋔ ∆, where f1 × f2 : V1 ×V2 → M ×M is the product map and ∆ ⊂ M ×M
is the diagonal: ∆ = {(y, y) | y ∈ M}.

Fix r ∈ N and take ε < εr, where εr is given in Proposition 1. Then the map
Pα,ε has an r-normally hyperbolic invariant circle Cα,ε of saddle type. Furthermore,
the manifolds Wu(Cα,ε), W s(Cα,ε), and Cα,ε are Cr-close to Wu(Cα), W s(Cα),
and Cα. We now show that the two manifolds Wu(Cα,ε), W s(Cα,ε) still intersect
transversally. To apply Lemma 4.1 we restrict to two suitable compact subsets
Au ⊂ Wu(Cα) and As ⊂ W s(Cα) as follows. Consider the segments pc ⊂ Wu(p)
and pd ⊂ W s(p) in Figure 9. Define

Au = pc × S1, As = pd × S1.

In this way, the circle H is the intersection of the manifolds Au and As, bounded
away from their boundaries. Consider the inclusions i : Au → M and j : As → M ,
where M = R2 × S1. By the closeness of Wu(Cα) to Wu(Cα,ε) there exists a
Cr-diffeomorphism h : Au → Au

ε ⊂ Wu(Cα,ε) such that the map i is Cr-close to
iε ◦ h, where iε : Au

ε → M is the inclusion [33, Section 2.6]. Similarly, there exists
a diffeomorphism k : As → As

ε ⊂ W s(Cα,ε) such that the map j is Cr-close jε ◦ k,
where jε : As

ε → M is the inclusion. By Lemma 4.2 the map i×j : Au×As → M×M
is transversal to the diagonal ∆. For ε small, the map (iε ◦h)× (jε ◦k) : Au ×As →
M × M is Cr-close to i × j:

Au × As i×j
−−−−→ M × M

h×k

y

Au
ε × As

ε
iε×jε
−−−−→ M × M.

Since ∆ is closed and Au × As is compact, Lemma 4.1 implies that there exists an
ε∗, with 0 < ε∗ < εr, such that (iε ◦ h) × (jε ◦ k) ⋔ ∆ for ε < ε∗. Furthermore, the
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submanifolds

(i × j)−1(∆) and
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆)

are diffeomorphic. We also have that
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆) is diffeomorphic to

Au
ε ∩ As

ε, and (i × j)−1(∆) = Au ∩ As = H .
This shows that the intersection Hε = Au

ε ∩ As
ε is diffeomorphic to H . De-

fine Du
ε as the part of Wu(Cα,ε) bounded by the invariant circle Cα,ε and the

circle of homoclinic points Hε. Define Ds
ε = k(Ds) similarly. Then the manifolds

Du
ε ⊂ Wu(Cα,ε) and Ds

ε ⊂ W s(Cα,ε) form the boundary of an open region U ⊂ M
homeomorphic to a torus. By the closeness of the perturbed manifolds W s(Cα,ε)
and Wu(Cα,ε) to the unperturbed W s(C ) and Wu(C ), both U and Wu(Cα,ε) are
bounded. Also notice that Pα,ε is dissipative: by taking ε∗ small enough, we ensure
that |det(DF (x, y, θ))| < c̃ < 1 for all ε < ε∗ and (x, y, θ) in U . Therefore, all
forward evolutions beginning at points (x, y, θ) ∈ U remain bounded. Like in the
first part of the proof, one has

ω(x, y, θ) ⊂ Cl (Wu(Cα,ε))

for all (x, y, θ) ∈ U , α ∈ [0, 1] and ε < ε∗.

4.1.2. An application of kam theory. So far, we did not discuss the dynamics in the
saddle invariant circle Cα,ε of map Pα,ε in (5). Generically, the dynamics on Cα,ε

is of Morse-Smale type. In this case, the circle consists of the union of the unstable
manifold of some periodic saddle. Theorem 2.2 describes a complementary case, for
which the dynamics is quasi-periodic. Fix τ > 2 and define the set of Diophantine
frequencies Dγ by

Dγ =

{
α ∈ [0, 1] |

∣∣∣∣α −
p

q

∣∣∣∣ ≥ γq−τ for all p, q ∈ N, q 6= 0

}
, (18)

where γ > 0. Since we will apply a version of the KAM Theorem holding for
non-conservative, finitely differentiable systems (see [5, Chap. 5] and [6]), a certain
amount of smoothness of the circle Cα,ε is needed, depending on the Diophantine
condition specified in (18). Therefore we require that the perturbed family of maps
Pα,ε is Cn, for n large enough.

Proof of Theorem 2.2. Consider map Pα,0 in (5), and let p = (x0, y0) be a saddle
fixed point of the diffeomorphism K. The invariant circle Cα,0 = {p} × S1 of Pα,0

can be trivially seen as a graph over S1:

Cα,0 =
{
(x0, y0, θ) | θ ∈ S1

}
.

Fix r ∈ N large enough and ε < εr, where εr is taken as in Proposition 1. By the
Cr-closeness of Cα,0 and Cα,ε (Proposition 1), the circle Cα,ε of Pα,ε can be written
as a Cr-graph over S1:

Cα,ε =
{
(xε(θ), yε(θ), θ) ∈ R2 × S1 | θ ∈ S1

}
, (19)

where xε : S1 → R, xε(θ) = x0 +O(ε), and similarly for yε(θ). So the restriction of
Pα,ε to Cα,ε has the following form

Pα,ε
∣∣Cα,ε

: Cα,ε → Cα,ε, Pα,ε(θ) = θ + α + εgε(x0, y0, θ, α) + O(ε2).

By (19), we may consider Pα,ε as a map on S1. Fix γ > 0, τ > 3 and take Dγ

as in (18). For α ∈ Dγ , the map Pα,ε can be averaged repeatedly over the circle,
putting the θ-dependency into terms of higher order in ε, compare [8, Proposition
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2.7] and [11, Section 4]. After such changes of variables, Pα,ε is brought into the
normal form

Pα,ε(θ) = θ + α + c(α, ε) + O(εr+1).

In fact, it is convenient to consider α as a variable, and to define the cylinder maps

Pε : S1 × [0, 1] → S1 × [0, 1], Pε(θ, α) = (Pα,ε(θ), α)

R : S1 × [0, 1] → S1 × [0, 1], R(θ, α) = (Rα(θ), α),

where Rα : S1 → S1 is the rigid rotation of an angle α. We now apply a version
of the KAM Theorem, holding for non-conservative, finitely differentiable systems
(see e.g. [5, Chap. 5] and [6]), to the family of diffeomorphisms Pε. There exists an
integer m with 1 ≤ m < r and a Cm-map

Φε : S1 × [0, 1] → S1 × [0, 1], Φε(θ, α) = (θ + εA(θ, α, ε), α + εB(α, ε)), (20)

such that the restriction of Φε to S1 × Dγ makes the following diagram commute:

S1 × Dγ
R

−−−−→ S1 × Dγ

Φε

x Φε

x

S1 × Dγ
Pε−−−−→ S1 × Dγ .

The differentiability of Φε restricted to S1 ×Dγ is of Whitney type. Since Pα,ε
∣∣Cα,ε

is Cm-conjugate to a rigid rotation on S1, the circle Cα,ε is in fact Cm. This proves
parts 1 and 2 of the Theorem.

Furthermore, the constant γ in (18) can be taken equal to εr. This gives that
the measure of the complement of Dγ in [0, 1] is of order εr as ε → 0.

4.2. Hénon-like attractors do exist. Our proof of Theorem 2.5 is based on a
result of Dı́az-Rocha-Viana [16]. We begin by stating this result.

4.2.1. Perturbations of multimodal families. Two definitions from [16, Section 5.2]
are introduced now. For more information about the terminology, we refer to [27,
Sections II.5, II.6].

Definition 4.3. Let J ⊂ R be a compact interval. Fix d ≥ 1, k ≥ 3, a∗ ∈ R, and
an interval of parameter values U = [a−, a+], with a∗ ∈ IntU. A Ck-family of maps
Ma : J → J , with a ∈ U, is called a d-family if it satisfies the following conditions:

1. Invariance:: Ma∗(J) ⊂ Int(J);

2. Nondegenerate critical points:: Ma∗ has d critical points {c1, . . . , cd}
def

= CrMa∗

that satisfy

M ′′
a∗(ci) 6= 0 for all i and Ma∗(ci) 6= cj for all i, j;

3. Negative Schwarzian derivative:: SMa∗ < 0 for all x 6= ci, where

Sf(x) =
f ′′′(x)

f ′(x)
−

3

2

(
f ′′(x)

f ′(x)

)2

;

4. Topological mixing:: There exists an interval J ′ ⊂ Int(J) such that Ma∗(J) =
Ma∗(J ′) = J ′ and such that map Ma∗ is topologically mixing on J ′ (see
Definition 2.4);

5. Preperiodicity:: for each 1 ≤ i ≤ d there exists mi such that pi = Mmi

a∗ (ci) is
a (repelling) periodic point of Ma∗ ;
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6. Genericity of unfolding:: For all ci ∈ Cr Ma∗ , denote by ci(a) and pi(a) the
continuations of ci and pi, respectively, for a close to a∗. Then

d

da

(
Mmi

a (ci(a)) − pi(a)
)
6= 0 at a = a∗.

Next we introduce the notion of η-perturbation of a d-family Ma, with a ∈ U and
d ≥ 1 fixed.

Definition 4.4. Fix σ > 0 and consider the family Ma obtained by extending Ma

as follows:
Ma : J × Iσ → J × Iσ, Ma(x, y)

def

=(Ma(x), 0). (21)

Also denote by M the map

M : U × J × Iσ → J × Iσ, M(a, x, y)
def

= Ma(x, y) = (Ma(x), 0).

Given a Ck-family of diffeomorphisms

Ga : J × Iσ → J × Iσ, a ∈ J,

for a k ≥ 3, denote by G its extension

G : U × J × Iσ → J × Iσ, G(a, x, y)
def

= Ga(x, y).

Then G is called a η-perturbation of the d-family {Ma}a if

‖M − G‖Ck ≤ η,

where ‖·‖Ck denotes the Ck-norm over U × J × Iσ.

The following proposition is used in the sequel to prove existence of Hénon-like
attractors for the map (2). See [2, 3, 29, 35, 41, 43, 46] for similar results.
Proposition 2. [16, Theorem 5.2] Let {Ma}a be a d-family and p a periodic point
of Ma∗. Then there exist η > 0, ā and χ > 0 such that, given any η-perturbation
{Ga}a of {Ma}a the following holds.

1. For all a with |a − a∗| < ā the map Ga has a periodic point pa which is the
continuation of the periodic point (p, 0) of the map Ma in (21).

2. There exists a set S, contained in the interval [a∗ − ā, a∗ + ā] ⊂ U, with
meas(S) > χ, such that for all a ∈ S there exists z ∈ Wu(pa) satisfying:
(a) the orbit {Gn

a(z) | n ≥ 0} is dense in Cl (Wu(Orb(pa)));
(b) Ga has a positive Lyapunov exponent at z, i.e., there exist k > 0, λ > 1

and v 6= 0 such that ‖DGn
a(z)v‖ ≥ kλn for all n ≥ 0;

(c) there exist w 6= 0 such that ‖DGn
a (z)w‖ → 0 as n → ±∞.

4.2.2. Multimodal families arising from powers of the Logistic map. The proof of
Theorem 2.5, which we present in this section, is based on three facts. First, suppose
that a∗ ∈ [0, 2] is such that the quadratic family Qa(x) = 1 − ax2 in (12) is a d-
family in the sense of Definition 4.3, with d = 1. Then for all n ≥ 1 the family

Ma
def

= Qn
a given by the n-th iterate of Qa is a d-family for some d ≤ 2n. Second,

for all η1 > 0, the composition of an η1-perturbation of Qa with an η1-perturbation
of Qn

a is an η2-perturbation of Qn+1
a , where η2 = C(n)η1 and C(n) is a positive

constant depending on n. Third, for each n > q ≥ 1 and for each (α, δ) ∈ Aq/n, the
asymptotic dynamics of Tα,δ,a,ε is described by a map that turns out to be an η-
perturbation of the d-family Ma, with η = O(ε). Moreover, Ma has a periodic point
p such that its analytic continuation in the family Tα,δ,a,ε possesses a transversal
homoclinic intersection. Application of Proposition 2 to the point p concludes the
proof.
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In the next lemma we show that Ma is a d-family. For each ã ∈ [0, 2) there exists
a β > 0 such that for all a with a ∈ [0, ã] the interval J = [−1 − β, 1 + β] ⊂ R

satisfies Qa(J) ⊂ Int(J). In the sequel, it is always assumed that the family Qa is
defined on such an interval J , and that the values of a we consider are such that
Qa(J) ⊂ Int(J).

Lemma 4.5. Suppose a∗ ∈ [0, 2)
def

= U is such that the quadratic family

Qa : J → J, Qa(x) = 1 − ax2

satisfies hypotheses 4 and 5 of Definition 4.3. Then for all n ≥ 1 there exists d ≥ 1
such that the family

Ma : J → J, Ma
def

= Qn
a

is a d-family with d ≤ 2n − 1 critical points.

Proof. Take a∗ as above. We first prove the case n = 1, that is, Qa : J → J
is a 1-family. Conditions 1, 2, 3 of Definition 4.3 are obviously satisfied by Qa.
Condition 6 will now be proved. By conditions 4 and 5 (assumed by hypothesis),
Qa∗ is a Misiurewicz map [28], i.e., it has no periodic attractor and c 6∈ ω(c), where
c = 0 is the critical point of Qa∗ . Moreover, by [27, Theorem III.6.3] the map Qa∗

is Collet-Eckmann (see e.g. [27, Section V.4]), that is, there exist constants κ > 0
and λ > 1 such that ∣∣∣∣

d

dx
Qn

a∗(Qa∗(c))

∣∣∣∣ ≥ κλn for all n ≥ 0. (22)

Therefore, by combining [42, Theorem 3] with the Collet-Eckmann condition (22)
we get

lim
n→∞

d
daQn

a(c) |a=a∗

d
dxQn−1

a∗ (Qa∗(c))
> 0. (23)

Assume Qk
a∗(c) = p, with p periodic (and repelling) under Qa∗ . By p(a) denote the

continuation of p for a close to a∗. Then, for all n sufficiently large,

d

da
Qn

a(c) |a=a∗

=
∂Qn−k

a

∂a
(Qk

a∗(c)) |a=a∗ +
∂Qn−k

a

∂x
(Qk

a∗(c)) |a=a∗

d

da
Qk

a(c) |a=a∗=

=
∂

∂a
Qn−k

a (p) |a=a∗ +
∂

∂x
Qn−k

a (p) |a=a∗

d

da

[
p(a) + Qk

a(c) − p(a)
]
|a=a∗=

=
d

da

(
Qn−k

a (p(a))
)
|a=a∗ +

∂

∂x
Qn−k

a∗ (p)
d

da

[
Qk

a(c) − p(a)
]
|a=a∗ .

(24)

The point Qn−k
a (p(a)) belongs to a hyperbolic periodic orbit, that varies smoothly

with the parameter a. Therefore, its derivative with respect to a (which is the first
term in the last equality) is uniformly bounded in n. On the other hand,

d

dx
Qn−1

a∗ (Qa∗(c)) =
∂

∂x
Qn−k

a∗ (p)
d

dx
Qk−1

a∗ (Qa∗(c)).

Therefore, by (22), (23), and (24) we conclude that

0 < lim
n→∞

d
daQn

a(c) |a=a∗

d
dxQn−1

a∗ (Qa∗(c))
=

d
da

[
Qk

a(c) − p(a)
]
a=a∗

d
dxQk−1

a∗ (Qa∗(c))
. (25)

This proves that Qa satisfies condition 6 of Definition 4.3.
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We now show that the n-th iterate Ma of the quadratic map is a d-family for all
n > 1 and for some d ≤ 2n. For simplicity, we denote Qa∗ by Q for the rest of this
proof. Condition 1 holds for Ma∗ since it holds for Qa∗ . Condition 3 follows from
the fact that the composition of maps with negative Schwarzian derivative also has
negative Schwarzian derivative, see e.g. [27, II.6]. Condition 4 is obviously satisfied.

Condition 2 is now proved by induction on n, where the case n = 1 is obvious.
Obviously, the set CrMa∗ of critical points of Ma∗ has cardinality d ≤ 2n − 1.
Moreover,

CrMa∗ = Q−1
(
Cr Qn−1

)
∪ CrQ =

n−1⋃

j=0

(Q−j)(Cr Q). (26)

Suppose that condition 2 holds for a given n ≥ 1. We first show that

(Qn+1)′′(x) 6= 0 for all x ∈ CrQn+1. (27)

By (26), if x ∈ Cr Qn+1 then either x = c, or Q(x) ∈ Cr Qn. If x = c then

(Qn+1)′′(x) = (Qn)′ (Q(c)) · (Q)′′(c). (28)

The second factor is nonzero. If the first factor is zero, then

0 = (Qn)′ (Q(c)) = Q′(Qn(c)) . . . Q′(Q(c)).

Therefore there exists j such that Qj(c) = c, so that c is an attracting periodic
point of Q. But this contradicts the fact that Q is Misiurewicz, so that (28) is
nonzero. The other possibility is that c 6= x and Q(x) ∈ CrQn. In this case,

(Qn+1)′′(x) = (Qn)′′ (Q(x)) · Q′(x)2,

which is nonzero. Indeed, Q′(x) 6= 0, otherwise x = c. Moreover (Qn)′′ (Q(x)) 6= 0
by the induction hypotheses since the critical points of Qn are nondegenerate. This
proves (27), from which the first part of condition 2 follows.

We now prove, again arguing by contradiction, that

Qn+1(x) 6= y for all x, y ∈ CrQn+1.

Suppose that there exist x, y ∈ CrQn+1 such that Qn+1(x) = y. By (26) there exist
i and j such that Qi(x) = Qj(y) = c, where 0 ≤ i, j ≤ n. This would imply that

Qn+1+j−i(c) = Qj(Qn+1(x)) = Qj(y) = c,

with n + 1 + j − i ≥ 1 and, therefore, c would be an attracting periodic point of Q,
which is impossible since Q is Misiurewicz. Condition 2 is proved.

To prove condition 5, fix y ∈ CrMa∗ and j ≥ 0 such that Qj(y) = c. Since c is
preperiodic for Q by hypothesis, there exists k ≥ 1 such that Qj+k(y) = p, where p
is periodic under Q with period u ≥ 1. The orbit of y under Ma∗ is, except for a
finite number of initial iterates, a subset of the orbit of p under Q. This shows that
y is preperiodic for Ma∗ .

To prove condition 6, take y ∈ CrMa∗ , j, u, k and p ∈ J as in the proof of
condition 5. Then there exist integers l and m, with 0 ≤ l < u and m ≥ 1, such
that

Mm
a∗(y) = Qk+l(c) = Ql(p) ∈ OrbQ(p). (29)

By condition 5 (assumed by hypothesis) and by (29), the point z = Ql(p) is periodic
(and repelling) under Ma∗ . Denote by y(a), z(a), and p(a) the continuations of y,
z, and p, respectively, for a close to a∗. In particular,

Qj
a(y(a)) = c and Ql

a(p(a)) = z(a).
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We have to show that

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ 6= 0. (30)

By the chain rule we get

d

da
Ql+k

a (c)
∣∣
a=a∗

=
∂Ql

a

∂a
(Qk

a(c))
∣∣
a=a∗

+
∂Ql

a

∂x
(Qk

a(c))
∣∣
a=a∗

dQk
a

da
(c)|a=a∗ =

=
∂Ql

a

∂a
(p(a))

∣∣∣∣
a=a∗

+
∂Ql

a∗

∂x
(p)

dQk
a

da
(c)

∣∣∣∣
a=a∗

,

d

da
Ql

a(p(a))
∣∣
a=a∗

=
∂Ql

a

∂a
(p(a))

∣∣∣∣
a=a∗

+
∂Ql

a∗

∂x
(p)

d

da
p(a∗),

where p = p(a∗) = Qk
a∗(c). Therefore,

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ =
d

da

[
Qk+l

a (c) − Ql
a(p(a))

]∣∣
a=a∗

=

=
∂Ql

a∗

∂x
(p)

d

da

[
Qk

a(c) − p(a)
]∣∣

a=a∗
.

The factor d
da

[
Qk

a(c(a)) − p(a)
]∣∣

a=a∗
is nonzero by (25). The same holds for the

other factor, otherwise p would be an attracting periodic point of Qa∗ . This proves
inequality (30).

Proposition 2 does not provide a nontrivial basin of attraction for the closure
Cl (Wu(pa)). We now show that, under the hypotheses of Theorem 2.5, there exists
a periodic point pa for which a nontrivial basin of attraction of Cl (Wu(pa)) can be
constructed. Therefore, in this case Cl (Wu(pa)) is a Hénon-like attractor.

Proposition 3. Consider the map {M∗
a}a = Qn

a∗ , where Qa∗ satisfies the hypothe-
ses of Lemma 4.5. There exist a periodic point p of Qa∗ , and positive constants η, ā
and χ such that for any η-perturbation {Ga}a of {Ma}a = Qn

a∗ the following holds.

1. For all a with |a − a∗| < ā the map Ga has a periodic point pa which is the
continuation of the periodic point (p, 0) of the map Ma in (21). Moreover, pa

has a transversal homoclinic intersection.
2. There exists a set S, contained in the interval [a∗ − ā, a∗ + ā] ⊂ U, with

meas(S) > χ, such that for all a ∈ S the set Cl (Wu(Orb(pa))) is a Hénon-
like attractor of the map Ga.

Proof. To construct a non-trivial basin of attraction for Cl (Wu(Orb(pa))), it is
sufficient to find a periodic point pa of {Ga}a that has a transversal homoclinic
intersection. Then the basin is provided by the Tangerman-Szewc Theorem (see
Theorem 2.1 and subsequent remark). Indeed, for all η sufficiently small, all η-
perturbations of the map Q∗

a are uniformly dissipative. Moreover, the unstable
manifold of pa is bounded, since it is bounded for Qa∗ and since the invariant
manifolds of a map depend continuously on the map [29, Prop. 7.1]. Therefore,
the second part of the proposition follows from the first part, together with the
Tangerman-Szewc argument and Proposition 2.

To prove the first part, we claim that the map Qa∗ has a periodic point p be-
longing to a non-degenerate homoclinic orbit. Indeed, if the claim is true, then
for η sufficiently small and for a close to a∗, any η-perturbation of Ma possesses
a periodic point pa which is the analytic continuation of p and such that pa has a
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transverse homoclinic intersection. The latter property again follows from continu-
ous dependence of the invariant manifolds on the map [29, Prop. 7.1].

To prove the claim that Qa∗ has a periodic point p belonging to a non-degenerate
homoclinic orbit we first show that there exists a point y0 belonging to a degenerate
homoclinic orbit of Qa∗ . Since the critical point c of Qa∗ is preperiodic, there exist
positive integers k, h such that Qk

a∗(c) = y0 and y0 is periodic with period h. The
unstable manifold of any periodic point of Qa∗ is the whole core [1−a∗, 1], since Qa∗

is topologically mixing. Therefore, since the critical point c belongs to Wu(y0), by
taking preimages of c, a point q can be found such that q ∈ Wu

loc(y0), Ql
a∗(q) = c and

Ql+k
a∗ (q) = y0 for some integer l > 0. This means that y0 belongs to a degenerate

homoclinic orbit of Qa∗ .
We now prove that there exists a periodic point p of Qa∗ having a non-degenerate

homoclinic orbit. This is achieved by examining a power of Qa∗ for which all points
of the orbit of y0 are fixed. Denote by OrbQa∗

(y0) = {yj | j = 0, . . . , h − 1} the

orbit of y0, under Qa∗ , where yj = Qj
a∗(y0). Let m be the smallest multiple of h

which is larger than k, and denote f
def

= Qm
a∗ . Then, f(c) belongs to OrbQa∗

(y0) and
all points yj are fixed for f . We can assume that

f ′(yj) > 1 for all yj ∈ OrbQa∗
(y0) (31)

by taking f2 instead of f if necessary.
Brouwer’s fixed point Theorem and continuity arguments ensure the existence of

a fixed point p of f , a critical point c′ of f , and an interval I = (c′− δ, c′) such that:

1. f ′(p) < −1;
2. c′ lies in the interval (y, p);
3. f is monotonically increasing in I;
4. p falls in the interval f(I).

The configuration of c, c′ and y = f(c) within the graph of f looks like the sketch
in Figure 10, in the case y < c and f ′′(c) > 0 (the other combinations of the sign of
y − c and f ′′(c) are treated similarly). Since f is topologically mixing, the interval
f(I) is contained in the unstable manifold of p. Therefore p belongs to a homoclinic
orbit O.

Moreover, the homoclinic orbit O is non-degenerate. Indeed, if this was not the
case, then there would exist a critical point c′′ of f belonging to O, so that f j(c′′) = p
for some j ∈ N. However, according to (26), and since c is preperiodic, the orbit of
c′′ under Qa∗ eventually lands inside OrbQa∗

(y0). It follows that p ∈ OrbQa∗
(y0),

which is absurd, since f ′(p) < −1 whereas (31) holds.

In the next lemma we show that the composition of a small perturbation of the
map Qa(x, y) = (Qa(x), 0) (we use here the notation of Definition 4.4) with a small

perturbation of Qn
a(x, y) = (Qn

a (x), 0) yields a small perturbation of Qn+1
a (x, y). As

in Definition 4.4, denote by Q, Qn : [0, 2]×J × I → J × I the functions Q(a, x, y) =
(Qa(x), 0) and Qn(a, x, y) = (Qn

a (x), 0), respectively.

Lemma 4.6. For each η > 0 there exists a ζ > 0 such that for all F, G : [0, 2] ×
J × I → J × I such that

‖G − Q‖C3 < ζ and ‖F − Qn‖C3 < ζ, (32)

we have ∥∥G ◦ F − Qn+1
∥∥

C3
< η. (33)
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y cc′ p

p

f(c)

Figure 10. Graph of the map f from the proof of Proposition 3.
Only the relevant branches of the graph are plotted, in relation to the
fixed points y, p and the critical points c and c′. See the text for details.

Proof. Write

G(a, x, y) =

(
Qa(x) + g1(a, x, y)

g2(a, x, y)

)
and F (a, x, y) =

(
Qn

a(x) + f1(a, x, y)
f2(a, x, y)

)
.

Then

G ◦ F (a, x, y) −

(
Qn+1

a (x)
0

)

=

(
−2a(f1(a, x, y))2 − 2af1(a, x, y)Qn

a(x) + g1

(
a, f̃1(a, x, y), f2(a, x, y)

)

g2

(
a, f̃1(a, x, y), f2(a, x, y)

)
)

,

where f̃1(a, x, y) = Qn
a(x)+ f1(a, x, y). The C3-norm of the terms −2a(f1(a, x, y))2

and −2af1(a, x, y)Qn
a(x) is bounded by a constant times the C3-norm of f1. We

now estimate the norm of g̃1, defined by

g̃1(x0, x1, x2) = g1(a, f̃1(a, x, y), f2(a, x, y)).

Denote x0 = a, x1 = x, and x2 = y. Then any second order derivative of g̃1 is a
sum of terms of the following type:

∂2g1

∂xjxk

∂f̃k

∂xl
,

∂g1

∂xk

∂2f̃k

∂xjxl
,

where we put f̃2 = f2 to simplify the notation. For the third order derivatives a
similar property holds. Since the C3-norm of f̃k is bounded, we get that each term
in the third order derivative of g̃1 is bounded by a constant times the C3-norm of
the gj. This concludes the proof.
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Proof of Theorem 2.5. The Theorem will be first proved for a∗ < 2. The case
a∗ = 2 follows by choosing another value ā∗ < 2 sufficiently close to 2. Fix a∗ ∈ (1, 2)
verifying the hypotheses of Lemma 4.5. To begin with, we consider the case (α, δ) ∈
IntA1, the interior of the tongue of period one. Then the Arnol′d family Aα,δ on S1

has two hyperbolic fixed points θs
1 (attracting) and θr

1 (repelling), see [15, Section
1.14]. The θ-coordinate of both points depends on the choice of (α, δ) ∈ IntA1. So
for all θ ∈ S1 with θ 6= θr

1, the orbit of θ under Aα,δ converges to θs
1. This means

that the manifold

Θ1 =
{
(x, y, θ) ∈ R2 × S1 | θ = θs

1

}
⊂ R2 × S1

is invariant and attracting under Tα,δ,a,ε. Denote by Ga,1 the restriction of Tα,δ,a,ε

to Θ1:

Ga,1 : Θ1 → Θ1, (x, y, θs
1) 7→ (1 − ax2 + εf1, εg1, θs

1),

where f1 = f(a, x, y, θs
1, α, δ) and similarly for g1. Since Qa∗(J) ⊂ Int(J), there

exists a constant σ > 0 such that for all ε sufficiently small and all a close enough
to a∗,

Ga,1(J × Iσ × {θs
1}) ⊂ Int(J × Iσ × {θs

1}) and

Tα,δ,a,ε

(
J × Iσ × (S1 \ {θr

1})
)
⊂ Int

(
J × Iσ × (S1 \ {θr

1})
)
. (34)

Since Θ1 is diffeomorphic to R2, we consider Ga,1 as a map of R2. Then Ga,1, is
an η-perturbation of the quadratic family Qa(x), where η = O(ε). We now apply
Proposition 3 to the family Ga,1. Let p0 be the periodic point of Ma∗ as given
by Proposition 3. For all ε sufficiently small there exists a constant ā > 0 and a
set S of positive Lebesgue measure, contained in the interval [a∗ − ā, a∗ + ā], such
that the following holds. For all a ∈ [a∗ − ā, a∗ + ā], Ga,1 has a saddle periodic
point p̄ which is the continuation of the point p0. Furthermore, for all a ∈ S

the closure Ã = Cl
(
Wu(OrbGa,1

(p̄))
)

is a Hénon-like attractor of Ga,1 contained
inside Θ1. The point p = (p̄, θs

1) is a saddle periodic point of the map Tα,δ,a,ε,
and Wu(OrbTα,δ,a,ε

(p)) = Wu(OrbGa,1
(p̄)) × {θs

1}. Therefore A = Cl (Wu(p)) =

Ã × {θs
1} is a Hénon-like attractor of Tα,δ,a,ε. Moreover, the basin of attraction of

Cl (Wu(p)) has nonempty interior in R2×S1 because of (34). This proves the claim
for (α, δ) ∈ IntA1.

We pass to the case of higher period tongues. Suppose that (α, δ) ∈ IntAq/n,
with n > q ≥ 1. Then Aα,δ has (at least) two hyperbolic periodic orbits

Orb(θs
1) = {θs

1, θ
s
2, . . . , θ

s
n} attracting, and

Orb(θr
1) = {θr

1, θ
r
2, . . . , θ

r
n} repelling.

For j = 1, . . . , n, denote by Θj the manifold

Θj =
{
(x, y, θ) ∈ R2 × S1) | θ = θs

j

}
,

and define maps Gj as the restriction of Tα,δ,a,ε to Θj :

Gj : Θj → Θj+1 for j = 1, . . . , n − 1

Gn : Θn → Θ1, where

(x, y, θs
1)

Gj

7→ (Qa(x) + εfj, εgj, θs
j+1), for j = 1, . . . , n − 1

(x, y, θs
n)

Gn7→ (Qa(x) + εfn, εgn, θs
1).
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Here, fj = f(a, x, y, θs
j , α, δ). The manifold Θ1 is invariant and attracting under

the n-th iterate of the map Tα,δ,a,ε. For all (x, y, θ) in the complement of the set

{(x, y, θ) | θ ∈ Orb(θr
1)} ,

the asymptotic dynamics is given by the map

Ga,1,...n
def

= Gn ◦ Gn−1 ◦ · · · ◦ G1.

Notice that each of the Gj ’s is an ηj-perturbation of the family Qa in the sense of
Definition 4.4, where ηj = Bε and B can be chosen uniform on θs

j (and, therefore,

on (α, δ)).
Let p0 be the periodic point of Ma∗ as given by Proposition 3. Then (p0, 0) is

a saddle periodic point for the map Ma defined as in (21). Take η, ā, and χ as
in Proposition 3. By inductive application of Lemma 4.6 there exists an ε̄ > 0
depending on η and n such that

‖Ga,1,...n − Qn‖C3 < η,

for all (α, δ) ∈ IntAq/n and all |ε| < ε̄. That is, Ga,1,...n is an η-perturbation of Ma

for all q with 1 ≤ q < n and all (α, δ, a, ε) with

(α, δ) ∈ A
q/n, ε ∈ [−ε̄, ε̄].

By Proposition 3 there exist an ā > 0 and a set S contained in the interval
[a∗ − ā, a∗ + ā] such that meas(S) ≥ χ and the following holds. For all a ∈
[a∗ − ā, a∗ + ā] the map Ga,1,...,n has a periodic point p̄a which is the continu-

ation of the periodic point (p0, 0) of Ma. Moreover, for all a ∈ S the closure

Ã = Cl
(
Wu(OrbGa,1,...,n

(p̄a))
)

is a Hénon-like attractor of Ga,1,...,n, contained in-
side Θ1.

To finish the proof, observe that pa = (p̄a, θs
1) is a saddle periodic point of Tα,δ,a,ε.

The set A = Cl
(
Wu(OrbTα,δ,a,ε

(pa))
)

is compact and invariant under Tα,δ,a,ε. To
show that A has a dense orbit, fix parameter values as provided by Proposition 3

applied to Ga,1,...n. Let z ∈ Θ1 a point having a dense orbit in Ã and satisfying
properties (a)–(c) of Proposition 2. Then given η > 0 and a point

q = T j
α,δ,a,ε(q

′) ∈ T j
α,δ,a,ε(Ã × {θs

1}), with 1 ≤ j ≤ n − 1,

there exists m > 0 such that dist(Gm
a,1,...n(z), q′) < η. By continuity of T j

α,δ,a,ε, for
all ̺ > 0 there exists η > 0 such that

dist(T j
α,δ,a,ε(q

′′), T j
α,δ,a,ε(q

′)) < ̺ for all q′′ with dist(q′′, q′) < η.

We conclude that for all ̺ > 0 there exists m > 0 such that

dist(T j
α,δ,a,ε(G

m
a,1,...n(z)), T j

α,δ,a,ε(q
′)) = dist(T j+mn

α,δ,a,ε(z), q) < ̺.

This proves that the orbit of z under Tα,δ,a,ε is dense in A . Properties (9) and (10)
will now be proved. Since Ga,1,...,n = T n

α,δ,a,ε on Θ1, for any m ∈ N and any z ∈ A

we have

DT m
α,δ,a,ε(z) = DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z),

where s = m mod n and r = m− s. Take z as above and a vector v = (vx, vy, 0) ∈
TzA such that

∥∥DGs
a,1,...,n(z)v

∥∥ ≥ κλs for all s, where κ > 0 and λ > 1 are
constants. Since T r

α,δ,a,ε is a diffeomorphism for all r = 1, . . . , s− 1 and Gs
a,1,...,n(z)
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belongs to the compact set A for all s ∈ N, then there exists a constant c > 0 such
that

∥∥DT m
α,δ,a,ε(z)v

∥∥ =
∥∥DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z)v
∥∥ ≥ c

∥∥DGs
a,1,...,n(z)v

∥∥ ,

where c is uniform in r. This proves property (9). Property (10) is proved similarly.
This shows that the closure Cl (Wu(pa)) is a Hénon-like attractor of Tα,δ,a,ε.

Remark 2. At the boundary of a tongue Aq/n the Arnol′d family Aα,δ has a
saddle-node periodic point θ1. However, the basin of attraction of Orb θ1 still has
nonempty interior, so that the above conclusions hold for all (α, δ) in the closure
Cl

(
Aq/n

)
.

Acknowledgments. The authors are indebted to Henk Bruin, Àngel Jorba, Marco
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Appendix A. Numerical methods. Computation of Lyapunov exponents is an
important tool in the numerical exploration of dynamical systems. Consider an
orbit

{
xj = T j(x0), j = 0, 1, 2, 3, . . .

}
of a three-dimensional map T . Following [39],

three linearly independent vectors are selected. Consecutive iterates of these vectors
are computed under the derivative DT , after a transient along the orbit. The
vectors are orthonormalised at each step (or every given number of steps to speed
up the process). We now define the Lyapunov sums, for simplicity just considering
the iterates of one initial vector v0. Let vn = DT n

x0
(v0)/‖DT n

x0
(v0)‖ denote the

normalised tangent vector obtained after n iterations. Let v̂n+1 = DTxn
(vn). Then

vn+1 = v̂n+1/fn+1, where fn+1 = ‖v̂n+1‖. The Lyapunov sum is then defined as

LSn =

n∑

j=1

log(fj). (35)

The maximal Lyapunov exponent is the average slope of the Lyapunov sum (35) as
n → ∞, that is, the average logarithmic rate of increase of the length log(fj). The
other Lyapunov exponents are estimated as averages of Lyapunov sums in which
the coefficients fj are given by the Gram-Schmidt orthonormalisation, see [39] for
details.

In the numerical implementation, estimates are produced of the average slope
of LSn for different values of n up to a maximal number N of iterates. The com-
putations are stopped before N iterates in case of escape, or if a periodic orbit is
detected, or if different estimates of the average coincide within a prescribed toler-
ance ρ. Typical values for N and ρ in the computations for this paper are 107 and
10−6, respectively.

One of the major problems is to detect values of the Lyapunov exponents which
are very close to zero. Several procedures have been proposed to this end. Taking
into account that the driving behaviour is quasi-periodic or periodic in the skew
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product case, a method of successive filtering and fitting, similar to [7] can be
suitable. Another method, the MEGNO [13], is based of weighted averages and is
very useful to detect small values of the Lyapunov exponent, see [26] for a problem
which requires substantial usage of the MEGNO. However, we presently use the
Lyapunov sum (35), because this actually helps understand the behaviour of the
system in certain elementary cases, see Appendix C. Typically we considered a
Lyapunov exponent as equal to zero whenever |Λj| < 10−5, j = 1, 2.

Let Λ1 ≥ Λ2 ≥ Λ3 be the three Lyapunov exponents. Since the family (17) is
dissipative, the value of Λ3 is used to decide whether the normal behaviour is of
nodal type (Λ2 > Λ3) or of focal type (Λ2 = Λ3) for periodic or quasi-periodic
attractors. The values of Λ1 and Λ2 and their position with respect to zero play a
major role in classifying the detected attractor.

An alternative criterion is used, mainly for small ε, to decide whether the at-
tractor is quasi-periodic or has some ‘strange’ character. For our choice of the
parameter values (see the next Section) one may expect a period 7 invariant circle
if (α, δ) is in the quasi-periodic domain and ε is sufficiently small, in the skew prod-
uct case µ = 0. Similar behaviour can be expected for µ > 0 small, for a subset of
(α, δ) having large relative measure. Iterates of T 7 (where T is given in (17)), are
sorted, after a transient, by the values of θ. If the attractor is an invariant circle
(x(θ), y(θ)), then the variation of the coordinates (x, y) has to remain bounded and
tend to the true variation when the number of iterates increases. We refer to this
as the variation criterion for invariant circles. A similar idea is used to recognise
Hénon-like attractors for the fully coupled case µ > 0: the values of the angular
coordinate θ along the iterates should cluster around the periodic orbit obtained
for µ = 0. We refer to this as the clustering criterion.

Appendix B. On the selection of coefficients for the model map. Several
coefficients and parameters have been fixed in the family T given in (17), to perform
the numerical exploration. Our choice of δ = 0.6 yields a satisfactory compromise
between periodicity and quasi-periodicity in the driving Arnol′d family: resonant
zones are not too narrow, while quasi-periodic dynamics still occurs for most val-
ues of α. Concerning the Hénon family, the parameter b has been fixed to 0.3 for
historical reasons: indeed, it is the value used by Hénon [21], and provides a good
compromise between dissipation and visibility of the folds in the unstable manifold.
It was also used in [38], which studied the types of attractors and the role of homo-
clinic and heteroclinic tangencies as a function of a. The value a = 1.25 corresponds
to a periodic attractor of period 7 and allows for moderate values of the forcing ε
before escape occurs. The values µ = 0 and µ = 0.01 are used for the skew product
and the fully coupled case, respectively.

Appendix C. On the numerical identification of strange nonchaotic at-

tractors. We now discuss two distinct phenomena which illustrate the difficulty of
identifying strange nonchaotic attractors in a reliable way.

Arithmetic effects. The numerically computed orbit of a given system can depend
very strongly on the arithmetics used for the computations. Indeed, consider a
quasi-periodic attracting invariant circle for a map: then Λ1 = 0 and Λ2 < 0.
Therefore, the Lyapunov sums (see (35) in Appendix A) of Λ2 are decreasing on av-
erage. However, the Lyapunov sums can display arbitrarily wide oscillations around
a the average straight line whose slope is Λ2. Roundoff errors are locally amplified by
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a large factor, if the oscillations are sufficiently wide. This can result in numerically
observed behaviour which is entirely different from the actual dynamics.

We illustrate this effect with the Logistic family driven by a rigid rotation:

R× S1 → R× S1, (x, θ) 7→ (1 − (a + ε sin(2πθ))x2, θ + α). (36)

This is a particular case of family (2) for b = δ = 0 (though it is not a diffeo-
morphism). Denoting by γ the golden mean, we fix α = γ/1000: this small value
ensures that the attractor of (36) varies ‘adiabatically’ through the the sequence of
attractors corresponding to the ‘frozen’ values of θ. We also fix (a, ε) = (1, 30, 0.30),
thereby ensuring that the frozen values of (a + ε sin(2πθ)) range over the interval
[1, 1.6] : here the attractors of the Logistic family range from a period 2 sink to a
‘one-piece’ chaotic attractor (meaning that the support of the invariant measure has
a single connected component). The Lyapunov sum LSn =

∑n
j=1 log(2a|xj |) de-

creases during the first 600 iterates along an orbit (Figure 11), reaching a minimum
of about −665 (small oscillations of period 2 occur, but are neglected). Then LSn

increases for the next 800 iterates, reaching a maximum of about −460. Therefore,
local errors increase by about exp(−460+665) ≈ 1089 during the first 1400 iterates.

Clearly, roundoff errors produced by standard double precision accuracy are
quickly amplified, inducing a departure of the computed orbit from the true or-
bit. The consequences are illustrated in Figure 12. If sufficient arithmetic accuracy
is used (e.g. 150 digits), the computed orbit is indeed an invariant circle. With
insufficient accuracy (standard double precision or ‘only’ 60 decimal digits), the
computed orbit no longer is a circle and bears resemblance to a ‘strange nonchaotic
attractor’. Also the Lyapunov sums change with the number of digits. With suf-
ficient accuracy, the first minimum of LSn is about -646, attained at n = 562. A
maximum of -376 is then attained for n = 1459. The error amplification factor is
therefore exp(−376+646) ≈ 10117 showing the minimum number of digits required.

For ‘frozen’ θ the effective value of the parameter in the Logistic family is â =
a+ε sin(2πθ), see (36). Period two points of the frozen system are created through a
period doubling bifurcation at â = 3/4: on this orbit one has |D2T (x)| = 4|(â−1)|.
Hence, the Lyapunov sums (35) are Riemann sums of the integral

1

2α

∫ θ0+nα

θ0

log (|4(a − 1 + ε sin(2πθ))|) dθ. (37)

The value of this integral closely matches the curve of the Lyapunov sums obtained
with 150 digits in Figure 12.

Invariant circles with large oscillations. Normally hyperbolic invariant circles might
have geometric shapes which look fractal at a given scale of visualisation, although
they look smooth under sufficient magnification (possibly requiring larger numerical
accuracy than standard double precision). In particular, this can happen when
the invariant circle has very large local slope, when the phase-space coordinates
along the invariant circle are viewed as functions of the angular variable. Since the
Lyapunov exponent in the x variable is negative, continuation of the invariant circle
with respect to ε is still locally possible.

We illustrate this phenomenon in a quasi-periodically forced Logistic family:

(x, θ) 7→ (3x(1 − x) + ε sin(2πθ)), θ + γ(mod 1)) , (38)

in the form studied in [30], where γ is the golden mean. The authors of [30] claim
that there exists a parameter range starting at ε ≈ 0.1553, characterised by strange
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Figure 11. Lyapunov sums (35) of Λ2 as a function of the iterate
n for an orbit of (36) starting from (x0, θ0) = (0.123456789, 0.6), for
arithmetic in standard double precision (S), 60 and 150 decimal digits.
Increasing accuracy results in a larger (though still negative) estimate

for Λ2.

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

S

x
θ -0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

60

x
θ -0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

150

x
θ

Figure 12. Attractors of (36) with standard double precision (S),
60 and 150 decimal digits, for (a, ε, α) = (1.30, 0.30, γ/1000), where γ
denotes the golden mean.

nonchaotic attractors. The criterion used to identify the strange nonchaotic attrac-
tors is that the Lyapunov exponent in the x direction is negative, but the attractors
display a fractal structure. We now show that the actual dynamics takes place on
a smooth attracting invariant circle: the misinterpretation as a strange nonchaotic
attractor is due to a too coarse visualisation scale.

We compute N iterates of (38), after some transient. These points are sorted
with respect to θ and oscillations of the x variable are computed in the intervals
[0.0, 0.1], . . . , [0.9, 1.0]. Let I1

j1 := [j1/10, (j1 + 1)/10] be the interval with largest

oscillation. The process is repeated for the points in I1
j1

: 10N iterates are recom-
puted and sorted with respect to θ, and so on. This process is repeated until the
maximal slope, based on the computed points, is no longer changing in a significant
way. Figure 13(left) shows the results for ε = 0.1554: this attractor is a smooth
curve. The curve looks like a fractal when using a coarser resolution: this is due to
oscillations with very large slope. A similar conclusion is obtained for ε = 0.1555
(Figure 13 right), using a variety of methods: the largest slope seems to exceed 1018

in this case. We have used arithmetics with 30 to 40 decimal digits to overcome
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Figure 13. Invariant circles for map (38). Left: ε = 0.1554, with
(θ − 0.0070944247) × 1014 on the horizontal axis and x on the vertical.
Right: same as left for ε = 0.1555 and (θ − 0.007235958375) × 1016 on
the horizontal axis. Maximum slopes are 1.5× 1012 (left) and 4.0× 1014

(right).

accumulation of errors due to the large number of iterations performed. For further
examples and theoretical discussion we refer to [20, 24].

The phenomena discussed above do not imply that the ‘apparent’ results ob-
tained with standard double precision or with too coarse visualisation scale are not
important. Indeed, most mathematical models used for concrete applications are
approximations and, furthermore, ‘real life’ problems always contain noise. Round-
off errors play the role of noise in the above toy models. Therefore, the observed
behaviour of a real system can be closer to the left panel of Figure 12 rather than
its right panel.
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[20] A. Haro and C. Simó, To be or not to be a SNA: That is the question, preprint (2005),
available at http://www.maia.ub.es/dsg/2005 .
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