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Abstract

Dynamical phenomena are studied near a Hopf-saddle-node bifurcation of fixed
points of 3D-diffeomorphisms. The interest lies in the neighbourhood of weak
resonances of the complex conjugate eigenvalues. The 1 : 5 case is chosen here
because it has the lowest order among the weak resonances, and therefore it
is likely to have a most visible influence on the bifurcation diagram. A model
map is obtained by a natural construction, through perturbation of the flow
of a Poincaré-Takens normal form vector field. Global bifurcations arise in
connection with a pair of saddle-focus fixed points: homoclinic tangencies occur
near a sphere-like heteroclinic structure formed by the 2D stable and unstable
manifolds of the saddle points. Strange attractors occur for nearby parameter
values and three routes are described. One route involves a sequence of quasi-
periodic period doublings of an invariant circle where loss of reducibility also
takes place during the process. A second route involves intermittency due to
a quasi-periodic saddle-node bifurcation of an invariant circle. Finally a route
involving heteroclinic phenomena is discussed. Multistability occurs in several
parameter subdomains: we analyse the structure of the basins for a case of
coexistence of a strange and a quasi-periodic attractor and for coexistence of
two strange attractors. By construction, the phenomenology of the model map
is expected in generic families of 3D diffeomorphisms.
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1. Introduction

The Hopf-saddle-node (HSN) bifurcation for fixed points of 3D diffeomorphisms occurs when
the eigenvalues of the derivative at the fixed point are,

el g7 and 1, (1)
subject to the non-resonance conditions
el £ 1 forn=1,2,3,4, )

and to generic requirements on the higher-order terms and on the parameter dependence [14,
lemma 6]. HSN bifurcations of fixed points have been found as organizing centres for the
bifurcation diagrams of

(1) a3D atmospheric model subject to a slow periodic parametric forcing [12, 23], describing
the atmospheric baroclinic jet at midlatitudes in the Northern Hemisphere;

(2) a 48D autonomous atmospheric model used to study the phenomenon of low-frequency
variability [50].

Strange attractors were found near these HSN bifurcations, related to the breakdown of invariant
circles for suitable return maps: the global Poincaré map for model 1 and a local Poincaré map
near a periodic orbit for model 2. This paper aims to analyse the mechanisms leading to the
creation of strange attractors in such HSN bifurcations.

We consider a model map which is ‘as generic as possible’ in the class of diffeomorphisms
having a HSN bifurcation near a weak resonance [14]. The model map is constructed by
perturbing the flow of a truncated normal form for the HSN bifurcation for vector fields. The
advantage of this approach is to provide direct control on the location of relevant phenomena
in the parameter space of the model. We expect the rich phenomenology of the model to occur
in generic families of 3D diffeomorphisms. Our expectation is based on a modified version of
Takens’s theorem [51], stating that any HSN family of diffeomorphisms can be approximated
by the time-one map of a HSN family of vector fields [14, theorem 1].

1.1. Setting of the problem

For a HSN bifurcation of equilibria of vector fields, the eigenvalues are +iw and 0 (logarithms
of (1)) at the central singularity. This linear part induces a formal axial symmetry [3, 20, 52]
which allows a good approximation by a family of axially symmetric vector fields near the
central singularity in the product of phase space and parameter space, see [40, lemma 8.11].
In cylindrical coordinates (7, ¢, z), the planar vector field

F=r(—f—az — 2%, t=—p1— 2 —sr? 3)

is obtained by discarding the angular dynamics ¢ around the symmetry axis z. Here
a; € Rand s = *£1 are constants and 8; € R are parameters. The richest bifurcation
diagram occurs for the unfolding case a; < 0, s = 1, see figure 1. A sphere-like
heteroclinic connection occurs for the corresponding 3D vector field, for parameters on
the curve HET. In generic perturbations of this truncated normal form, the heteroclinic
sphere splits into a transversal heteroclinic structure, allowing for the occurrence of Shil'nikov
homoclinic bifurcations [21,30,31,40,45,46]. Our main question is as follows: what are
the bifurcation patterns for HSN diffeomorphisms corresponding to these homoclinic and
heteroclinic bifurcations? We attack this problem by studying the model map

G <w> N (ei(wowé)w[l _ J/(J//L+az + )/Zz)]> .\ <)/3(81u_}4 +8224)> ’

z z+y(—|w? =2 0

“
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Figure 1. Bifurcation diagram and phase portraits of (3) for s = 1, a; < 0 [40, section 8.5]. Hopf
and heteroclinic bifurcations are denoted as H and HET, respectively.
withw=x+iye C,z€e Randa =a, +ia; € C. Asin[l4] wefixe; =& =1,a, = —1,

a =1/ V/2: our choice for the coefficients is discussed in [57, appendix 4E]. Other values
have been tested and no relevant qualitative differences were observed. Map (4) therefore
depends on the real parameters (y, u, §), where § is a small detuning near the 1: 5 resonance
wo = 21 /5. This resonance is selected, because it has the lowest order compatible with (2): it
is therefore expected to have the most visible influence on the bifurcation diagram, amongst
all weak resonances. The construction of our model map is briefly sketched here, see [14, 15]
and [57, section 4.1.2] for details. Defining w = re'?, the 3D vector field

= (—f2 +io)w — awz — wz, = —B —sww — 72 (5)

is obtained by reintroducing the angular dynamics ¢ in (3). We focus on the parameter region
where Hopf and heteroclinic bifurcations occur (dashed triangle in the halfplane g; < O,
figure 1). The following transformation of time and variables is applied:

Br=-y B=yu, t=tly, w=yd, z=y: 6)

The first term in (4) is an approximate time-y map of the vector field (5) after transformation (6),
with hats removed for simplicity. To obtain the approximation the rotational part is included
in the e'*79 factor, while the flow of (5) is approximated by Euler’s method. The second
term of (4) consists of perturbative terms of order four, one of them resonant. By [14, theorem
1], this construction contains a subclass of generic phenomena for HSN diffeomorphisms.

1.2. A roadmap in the parameter space

The qualitative sketch in figure 2 summarizes our expectations for the bifurcation diagram of
model map G and serves as reference in our study. Map G can be seen as a perturbation of the
time-1 map of the 3D vector field (5): the latter map is an axially symmetric 3D diffeomorphism.
Figure 2(a) sketches the bifurcation diagram of this diffeomorphism in the parameter space
(y, u, w). We focus on the transition from region 3 to 4 in figure 2(a) (equivalently, from
region 3 to 4 in figure 1).

The equilibrium off the z-axis in the phase portraits of figure 1 corresponds to an invariant
circle attractor for the time-1 map of (5). This circle attractor will be denoted as % for the
rest of this section. When p decreases across zero the circle attractor 4 loses stability and an
invariant 2-torus branches off. For parameters on HE7 the 2-torus merges with an invariant
sphere formed by the invariant manifolds of two fixed points Py of saddle-focus type. These
points correspond to the equilibria on the z-axis in figure 1. Due to the scaling (6), P+ are
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Figure 2. Theoretical expectations for the bifurcation diagram of model map G (4) in the parameter
space (y, 4, w). (a) Bifurcation set for the time-1 map of the vector field (5). Parameter values
for which the rotation number on the invariant circle % is a fixed rational number p/q € Q
form a hypersurface 27/9. (b) Expected bifurcation set of G: the invariant circle % has rotation
number p/q for parameters in a resonance wedge 2?/9; transversal heteroclinic intersections and
tangencies occur in a wedge HE7 . Quasi-periodic Hopf bifurcations occur on a frayed boundary
H given by a Cantor-like foliation by curves where the rotation number of 4 is Diophantine.
See [14, 15] for details.

approximately located at the ‘poles’ = (0,0, £1). Note that for the map (4), even with
&1 = & = 0 the invariant sphere is destroyed and separatrix splitting occurs.

Figure 2(b) shows the structure of the parameter space for G, deduced from figure 2(a)
on the basis of perturbation theory, normal hyperbolicity and quasi-periodic bifurcation theory
[2,4-9,19,28,29,34]. Anormally hyperbolic invariant circle % still persists for u away from
zero. However, the dynamics on the circle is resonant for parameter values inside resonance
wedges. Quasi-periodic Hopf bifurcations occur for parameters on a frayed boundary H. This
frayed boundary consists of a Cantor set of curves contained inside a surface, the gaps of which
are filled up with resonance ‘bubbles’, see appendix A.

The parameter y will be fixed to 0.1 for the rest of this paper. This amounts to restrict
to a vertical plane in figure 2(b), parametrized by (u, §). The choice y = 0.1 is discussed
in [14] and [57, appendix 4E]. This value is small enough to be close to the bifurcation and
large enough to be able to detect numerically most of the relevant phenomena.

Remark 1: Shift of the Hopf and heteroclinic bifurcations. As proved in [14, lemma 2],
the Hopf bifurcation occurs for 4 — 1 as y — 0 for map (4), while it occurs for © — 0 as
y — 0 for vector field (3) (with the scaling (6)). Similarly, the location of HE7Z moves from
a negative value of p for (3) to a positive value for (4) as y — 0, all other parameters being
kept fixed at the selected values.

Figure 3 shows the bifurcation diagram of G in this (u, §)-parameter plane. The diagram
is computed by means of Lyapunov exponents, see [14,57] for details. To interpret figure 3
we recall that, by (6), to decrease u is roughly equivalent to decrease B, in figure 1.

(1) A circle attractor 6" occurs for large p and is 1:5-resonant within the strip pointed by
an arrow in figure 3. This strip corresponds to the intersection of the wedge AP/ in
figure 2(b) (for p/q = 1/5), with the vertical plane {y = 0.1}. The circle ¥ undergoes
a quasi-periodic Hopf bifurcation near © = 0.97. This frayed boundary corresponds to
the intersection of the Cantor-like set H (see figure 2(b)) with the plane {y = 0.1} (for
simplicity, this intersection is denoted as H as well). An intricate bifurcation structure
occurs at the intersection of the 1 : 5 resonance strip with H: this is the main topic of [14].
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Figure 3. Lyapunov diagram of model map G (see (4)). Parameters are scanned on a regular
grid, decreasing u along lines of constant §. For each (u, §), the detected attractor is classified
according to its Lyapunov exponents: see [14,15,49,57] for the algorithm and table 1 for the
colour code. Yellow and pale blue pixels are very rare, grey regions occur near the boundary of
the 1:5 resonance gap pointed to by an arrow. Quasi-periodic Hopf bifurcations take place on a
frayed boundary H near ;1 = 0.97, from which several resonance tongues emerge towards the left.

(2) A2-torus attractor .7_ branches off from the circle % at the quasi-periodic Hopf bifurcation
‘H. Two types of resonance can take place either independently or simultaneously in the
2-torus attractors. Generically this gives rise to a dense set of resonance tongues in the
parameter plane. This structure is studied in [15].

(3) Theregion between the curves I, and O in figure 3 corresponds toregion HE7 N{y = 0.1}
in figure 2(b) and it is denoted as HET for simplicity. This region is characterized by
the occurrence of heteroclinic intersections of the 2D manifolds W*(P_) and W*(P,),
where P, are the ‘polar’ saddle-focus fixed points. Figure 5 shows the configuration of
the invariant manifolds of P just before entering region HE7T, where the 2-torus attractor
still exists. The 2-torus is destroyed between curves I, and O, and strange attractors are
created through various routes. These phenomena are the focus of this paper.

1.3. Strange attractors and routes to chaos

Figures 3 and 4 show that strange attractors of G mostly occur in region HE7, and particularly
near curve I,. We call an attractor strange and the corresponding dynamics chaotic if the
maximal Lyapunov exponent £,. We identify two classes of strange attractors by the Lyapunov
exponents €| > £, > {3, see table 1:

£ > 0,4, <0 (yellow in figure 3): these will be called Hénon-like.
£y > 0, £, ~ 0 (red): these will be called quasi-periodic Hénon-like.

Hénon-like strange attractors coincide with the closure of the 1D unstable manifold of a
periodic orbit of saddle type [1,42,43,54,56] and possess one direction of instability [59],
while the remaining directions are contracting. Quasi-periodic Hénon-like strange attractors
coincide with the closure of the unstable manifold of a quasi-periodic invariant circle of saddle
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Figure 4. Magnification of the box highlighted in figure 3, showing the ‘tails’ of several resonance
tongues emanating from the frayed boundary H. The ‘broken’ boundaries of several domains give
good evidence of multiplicity of attractors.

Table 1. Colour coding for the Lyapunov diagrams in figures 3, 4. The attractors of model map
G (4) are classified by means of the Lyapunov exponents (€1, £2, £3).

Colour Lyapunov exponents  Attractor type

Red ;1 >0=14¥y >3 Strange attractor

Yellow L >0> 40y > U3 Strange attractor

Blue 1 =0>4f=143 Invariant circle of focus type
Green =4, =0> {3 Invariant 2-torus

Black 0 =0> 40y >3 Invariant circle of node type
Grey 0>4; >4 =143 Fixed point of focus type
Fuchsia 0>401 =40 2>1{3 Fixed point of focus type
Paleblue 0> ¢; >0, > {3 Fixed point of node type
White No attractor detected

type [12, 13, 16, 57]. Parameter regions with Hénon-like strange attractors are expected to be
nowhere dense sets of positive measure [1,42].

Remark 2: Classifying attractors. Throughout this paper, we will use numerical evidence
to classify the attractors (e.g. Hénon-like versus quasi-periodic Hénon-like). For example,
the classification in table 1 relies on the numerical computation of the Lyapunov exponents.
Other numerical indicators, such as the rotation vector (appendix B.5), will be used later on for
this purpose. Although these methods do not provide a proof of existence, it gives a coherent
indication on the nature of the underlying attractor.

The parameter regions characterized by strange attractors mostly surround the ‘tail’ of the
resonance tongues emerging from the quasi-periodic Hopf boundary H (figures 3 and 4). An
invariant circle attractor exists for parameters inside a tongue: the circle may be of focus or
node type in the normal direction (see table 1). Most tongues widen up and eventually overlap
for small w, as can be deduced from figure 4. Overlapping of resonance tongues with other
tongues yields coexistence of different invariant circles for the same parameter values.
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Figure 5. (a) Invariant 2-torus attractor 7_ of the diffeomorphism G (4) with the saddle-focus fixed
point P_ and portions of the manifolds W*(P_) and W* (P_), which are 2D and 1D, respectively.
Only points with y < 0 (y < 0.2) are shown for .7_ (respectively, W*(P_)). (b) J_ with the
saddle-focus fixed point P, and portions of the manifolds W*(P;) and W* (P_), which are 2D and
1D, respectively. Only points with y > 0 (y > —0.3) are shown for .7_ (respectively, W" (P;)).
(c) Equatorial intersections of the 2D manifolds W*(P_) and W*(P,) with the plane z = 0, with
a ‘slice’ of the attractors .7_ by a layer of width 2 x 10~ around the plane z = 0.

We analyse three routes to chaos. The first two routes start for parameters in the interior
of a resonance tongue and involve exiting the tongue across its ‘tail’ through a sequence of
quasi-periodic period doublings (section 2) or its ‘sides’ through a quasi-periodic saddle-node
bifurcation (section 3). The third route is related to the heteroclinic tangencies of the saddle-
focus fixed points Py (section 4). This leads to coexistence of an invariant circle attractor with
a strange attractor or coexistence of two strange attractors in certain parameter regions and we
study the structure of the basins of attraction in relation to the invariant manifolds of P.. Open
problems are summarized in section 5.

Remark 3: Novelty of our approach. The quasi-periodic period doubling route has been
already described [12, 16, 55], but we provide a more detailed analysis. The saddle-node route
is a novel phenomenon. To our best knowledge, none of these routes has been put in relation
to the HSN bifurcation for fixed points of diffeomorphisms. Also, the occurrence of these
routes and the coexistence of attractors near the heteroclinic tangencies cannot be predicted
from normal form analysis.

2. The quasi-periodic period doubling route

This is a typical route for the creation of quasi-periodic strange attractors [16]. It occurs
in many systems involving oscillatory instabilities, such as (geophysical) fluid dynamical
models [12,41,55,57]. Despite recent progress [32, 33, 38], the main theoretical questions
(existence of strange attractors and finiteness of the doubling sequence) remain unanswered.
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Sequences of quasi-periodic period doublings of an invariant circle [4, 5, 9] occur at the
‘tail’ of most resonance tongues in figure 4. The sequences are identified by the alternating
strips where an invariant circle of node/focus type occurs, preceding the parameter regions
with strange attractors (see table 1). Do finitely or infinitely many quasi-periodic doublings
precede the creation of a strange attractor?

The numerical evidence we have collected suggests that finitely many doublings take place
and we propose the following explanation. The invariant circle attractors lose reducibility
at some moment between two consecutive doublings (see appendix A for the meaning of
reducibility). Then a strange attractor is formed af once, when the maximal Lyapunov exponent
vanishes for a non-reducible invariant circle. This scenario is based on [32, 33], where a linear
version of the problem is studied, on [38], where a 1D example is worked out, and on [10],
which discusses several consequences of the lack of reducibility in linear problems. The
existence of a strange attractor is conjectural here as well as in all the above references.

Remark 4: Quasi-periodic period doublings and resonance ‘bubbles’. We shall describe
this route by examining the evolution of invariant circle attractors as the parameter u is varied.
Our detection of quasi-periodic bifurcations relies on monitoring the p-values where the second
Lyapunov exponent ¢, vanishes. As we explain in appendix A, we cannot ensure that the
dynamics is quasi-periodic exactly at the p-values where £, vanishes, due to the unavoidable
occurrence of resonance on the invariant circles. For this reason, we can only say that a quasi-
periodic bifurcation is expected for nearby (i, §)-parameter values. In the example below we
find, however, that the resonances of the invariant circles occupy a parameter set of very small
measure. The problem of resonances is avoided when studying skew-product families with an
irrational rotation [32, 33, 38].

This route starts from an invariant circle attractor %, (figure 6(A)), for parameters
inside a resonance tongue. Five consecutive quasi-periodic period doublings take place as
1 is decreased, where ‘doubled’ circle attractors .2, ..., .%s are created (% is shown in
figure 6(B)). These bifurcations are of ‘length doubling’ type: the ‘doubled’ circle attractor
%41 is one connected closed curve and its length is roughly twice the length of the circle .%;
which has lost stability [5, 12,22], also see appendix A.

A strange attractor replaces %5 by decreasing u (figure 7(A)). This ribbon-shaped strange
attractor is formed by the union of a finite number of narrow bands, closely winding around
the phase-space region previously occupied by %5. The multiple bands merge together as p
decreases (figure 7(B)). A similar band-merging process has been described for the Hénon-
Pomeau attractor in [47].

This is illustrated by ‘slicing’ the attractors, that is selecting points within thin horizontal
layers. The circle attractors in figure 6(A) and (B) intersect the plane z = 0 at 10 and 40
points, respectively. The strange attractor in figure 7(A) occurs after the breakdown of the
invariant circle attractors and has a four-banded structure. The four bands merge into a single
band for the attractor in figure 7(B). The banded structures are visualized in the ‘equatorial
slices” magnified in the boxes of figure 6. A similar merging process has been observed in [44]
for a model of thermal convection in binary fluid mixtures, using discretizations ranging from
3 x 2'%t0 3 x 2!2 modes.

The second Lyapunov exponent of the strange attractors in figure 7(A) and (B) equals zero
within the achieved numerical precision. All the above suggest that these strange attractors are
of quasi-periodic Hénon-like type, see section 1.3. In particular, the single-band attractor in
figure 7(B) might coincide with the closure of W*(.%)). We plan to investigate this possibility
in simpler models, such as that of [13].
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Figure 6. Quasi-periodic invariant circle attractors of the model map G (4) for §/(27) = 0.0324.
Top row: u = 0.53, projection on the (x, y)-plane (A) and the (x, z)-plane (Al). Bottom
row: i = 0.49, projection on the (x, y)-plane (B) and (x, z)-plane (B1). The boxes in the left
column magnify ‘slices’ of the attractors by a layer of width 2 - 10~ around the plane z = 0, in
the window (x, y) € [1.382, 1.408] x [—0.25, 0.17]. Points of the slices with x > 0 are added as
thick dots to (A) and (B). The dynamics on these attractors is classified on the basis of numerical
evidence, see remark 2. Lyapunov exponents £; and dimension Dy are given at the top of each
plot. Rotation numbers p; and uncertainties o, for j = 1, 2 are given below each plot together
with ratio p = p1/p> and related uncertainty o,,.

The lack-of-reducibility scenario is suggested by the evolution of the Lyapunov exponents
£y = €, > €3 as p is varied with fixed §. Quasi-periodic period doublings occur near (see
remark 4) the parameter values where £, vanishes (u; to us in figure 8). The doubled circle
attractor . is formed as y decreases across 11, where % loses stability. Near the bifurcation,
both circles are reducible and of node type in the normal direction: this explains the alternating
node/focus strips within the resonance tongues in figure 4.

At the second doubling (across ), one of the normal eigenvalues of .} crosses —1.
There exists an interval between w, and p; (labelled by C; in figure 8(a)) where the two
normal eigenvalues are complex: this is where ¢, = ¢3. A narrower such interval, labelled
by C,, occurs near u = 0.49. This process is typical for periodic points of diffeomorphisms
and is described in, e.g., [11, figure 12]. Loosely speaking, the normal eigenvalues of %} first
‘collide’, leaving the positive real axis to enter the complex plane, then race around the origin
and collide again on the negative real axis. This is the only way in which one eigenvalue can
cross —1, starting from the real positive axis. For this to be possible, however, the invariant
circle must be reducible [37].

The above process breaks down for smaller u: .25 and % never become of focus type.
As p is decreased, %5 crosses a parameter region N; where it ceases to be reducible: % is
reducible at the right of region N;, where the eigenvalues are real and positive, whereas the
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Figure 7. Quasi-periodic Hénon-like strange attractors of the model map G (4) for §/(2n) =
0.0324. Top row: = 0.48, projection on the (x, y)-plane (A) and the (x, z)-plane (A1). Bottom
row: i = 0.46, projection on the (x, y)-plane (B) and (x, z)-plane (B1). The boxes in the left
column magnify ‘slices’ of the attractors by a layer of width 2 x 10~ around the plane z = 0, in the
window (x, y) € [1.382, 1.408] x [—0.25, 0.17]. The ‘slices’ in (A) and (B) display a four-piece
and a single-piece Hénon-like structure respectively, compare with, e.g., [11]. The dynamics on
these attractors is classified on the basis of numerical evidence, see remark 2. Lyapunov exponents
¢ and dimension D, are given at the top of each plot. Rotation numbers p; and uncertainties o,
for j =1, 2 are given below each plot together with ratio p = p;/p> and related uncertainty o,.

eigenvalues are real and negative at the left of N; (figure 8(b)). The fact that £, # £; for
i € N is not an artefact due to the coarse resolution of figure 8(a), as illustrated by the
magnifications in the boxes of figure 8(b).

Lack of reducibility occurs in increasingly larger parameter sets for £, and .%5. Figure 8(c)
suggests that a strange attractor appears at once when %5 undergoes a quasi-periodic doubling,
where the second Lyapunov exponent vanishes: we conjecture that .% is not reducible at that
moment. The analysis is complicated here by the unavoidable occurrence of resonances for
the dynamics on the invariant circles as the parameter u is varied, see appendix A.

3. The intermittency route

This route is a novel phenomenon, to the best of our knowledge. It may be expected in systems
of ordinary differential equations with an invariant three-torus, since this would correspond
to a 2-torus for a Poincaré map. This route amounts to exit one of the resonance tongues in
figure 4 across its ‘sides’, straight into the parameter region where strange attractors occur.
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Figure 8. (a) Lyapunov exponents £; > £, > {3 (in green, red and blue, respectively), for §/(27)
fixed at 0.0324 and for a decreasing sequence of values of . (b),(c) Subsequent magnifications near
the formation of a quasi-periodic strange attractor. Locations of quasi-periodic period doublings
are labelled by 1 to 5. Normal behaviour of focus type occurs in the two parameter intervals labelled
by C1, C,. The boxes in (b) and (c) magnify parameter regions N, Na, N3 for which the invariant
circle attractors are non-reducible. Ny and N, are marked by arrows in (a).

The ‘side’ boundaries of the resonance tongues consist of quasi-periodic saddle-node
bifurcations of invariant circles: these occur on Cantor-like frayed boundaries, interspersed
by resonance ‘bubbles’ [4,9]. The dynamical complexity near these bifurcations has been
studied by Chenciner [25-27]. The intermittency route, however, does not depend on the
resonance ‘bubbles’. Our numerical results suggest that a phase-locked invariant 2-torus is
destroyed by a homo- or heteroclinic tangency inside a resonance tongue. When the two
invariant circles (the attractor and the saddle) merge and disappear through a quasi-periodic
saddle-node bifurcation, a strange attractor appears at once. This is similar to the second
scenario described in [11, section 3.2]: there the basic object is a periodic orbit, whereas it is
a quasi-periodic invariant circle in our case.

The intermittency route is now illustrated with a numerical example. The process starts
with a 2-torus attractor .7_ (figure 9(A)). As u is decreased, a resonance tongue is approached.
The dynamics on .7_ is characterized by intermittency near the tongue boundary (figure 9(B)),
due to the nearby occurrence of quasi-periodic saddle-node bifurcations (see remark 4). The
2-torus attractor .7_ becomes phase-locked within the tongue, that is 7 = £ U W*(%,),
where .Z_ is an invariant circle attractor (figure 10(A)) and . is a saddle.

Figure 11(a) shows the ratio p = p;/p, of the two rotation numbers on .7_. The largest
plateau of constant p identifies the 2: 15 resonance tongue where the circle attractor .Z_
in figure 10(A) exists. As explained in remark 4, it is not possible to determine whether
quasi-periodic saddle-node bifurcations of .Z,. occur exactly at the endpoints of the resonance
plateau. Indeed, these endpoints may fall into resonance ‘bubbles’ for the dynamics within
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Figure 9. Quasi-periodic invariant 2-torus attractors of the diffeomorphism G (4) for §/(2m) =
0.0247. Top row: u = 0.47, projection on the (x, y)-plane (A) and the (x, z)-plane (A1). Bottom
row: i = 0.466, projection on the (x, y)-plane (B) and (x, z)-plane (B1). The dynamics on these
attractors is classified on the basis of numerical evidence, see remark 2. Lyapunov exponents £
and dimension Dy, are given at the top of each plot. Rotation numbers p; and uncertainties o, ,
for j = 1, 2 are given below each plot together with ratio p = /02 and related uncertainty o ,.

the invariant circles, see appendix A. However, the numerical evidence of figure 11 suggests
that these resonances occupy parameter set of very small measure.

The ratio p converges with a square-root asymptotics to the value 2/15 as the resonance
tongue is approached, see the magnification in the box of figure 11(a). Higher-order resonances
are detected nearby, forming secondary plateaus of constant p. The 2-torus is phase-locked
to an invariant circle for parameters in each plateau: there the second Lyapunov exponent £,
is negative, see the box in figure 11(c). In the 2: 15 resonance plateau there is a parameter
subinterval where the Lyapunov exponents ¢, and £ are equal (figure 11(c)). Here the invariant
circle attractor .Z_ (figure 10 (A)) is of focus type.

We conjecture that the resonant 2-torus is destroyed by a homoclinic tangency of the
manifolds W*(.%,) and W*(.%,). A strange attractor shows up at once (figure 10(B)) after
Z_ merges with .Z, across the leftmost extreme of the resonance plateau. A slice of this
attractor by a thin ‘equatorial’ layer displays a folded curve structure in the transversal direction
(figure 12).

A regular pattern of resonance tongues persists also in the chaotic region after the
breakdown of the 2-torus. Many intervals are detected where the first Lyapunov exponent ¢, is
zero, see figure 11(d). Computation of the rotation vector (p;, o) confirms that these intervals
are resonance tongues where the strange attractor is phase-locked to an invariant circle attractor
(figure 11(c)). This pattern is reminiscent of the distribution of periodic windows (parameter
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Figure 10. Attractors of the diffeomorphism G (4) for §/(27) = 0.0247. Top row: quasi-periodic
invariant circle attractor for u = 0.46, projection on the (x, y)-plane (A) and the (x, z)-plane
(A1). Bottom row: quasi-periodic Hénon-like strange attractor for u = 0.4555, projection on the
(x, y)-plane (B) and (x, z)-plane (B1). The dynamics on these attractors is classified on the basis
of numerical evidence, see remark 2. Lyapunov exponents £; and dimension Dy, are given at the
top of each plot. Rotation numbers p; and uncertainties Opjs for j = 1, 2 are given below each
plot together with ratio p = p1/p> and related uncertainty o,,.

intervals where the dynamics is characterized by sinks) amid the chaotic range in the logistic
map, see, e.g., [13] for an illustration.

Remark 5: Tongue structure. There are striking analogies between the tongue structure of
figure 4 and that described in [11] for the ‘fattened Arnol’d map’ M, defined on the cylinder
R x $'. Map M is constructed as an approximate return map near a homoclinic tangency of
a fixed point of saddle type. Heuristically speaking, the map G can be seen as a perturbation
of the fattened Arnol’d map M where the role of the homoclinic tangency is played by a
heteroclinic tangency of the two fixed points of saddle-focus type. A study of the relationship
between the maps G and M is in preparation.

4. The heteroclinic route

For parameters on curve HET in figure 1, the vector field in (5) has a sphere-like heteroclinic
structure formed by the union of the z-axis (which contains W*(P_) and W*(P,)) with the
2D manifolds W*(P_) and W“(P,). Here P, are the saddle-focus fixed points located
near the poles (x,y,z) = (0,0,%1). The heteroclinic sphere splits into a transversal
heteroclinic structure for generic families obtained by perturbing the axially symmetric 3D
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Figure 11. (a) Ratior = p; /p; of the rotation numbers of the 2-torus .7 as a function of u. For u-
values where the 2-torus does not exist, the algorithm is applied to the detected attractor of G. The
large plateau of constant » = 2/15 identifies a 2 : 15 resonance tongue where .7_ is phase-locked
to a periodically invariant circle attractor. A sequence of higher-order resonances on .7_ is marked
by arrows labelled by an integer j which denotes resonance r = (9+2x%(j —1))/(70+15%(j — 1)),
for j = 1 to 8. The rightmost resonance j = 1 is magnified in the box. (b) A regular pattern of
resonance plateaus exists in the chaotic region for  at the left of the large 2 : 15 resonance plateau.
The indices j denote resonances r = (11 +2 % (j — 1))/(80+ 15 % (j — 1)), where j increases
from 1 to 20 (with some missing values). (c) Lyapunov exponents £; > £, > {£3 (red, green,
blue, respectively), same p-window as (a). Narrow intervals where £; = 0 and £, < 0 (see the
magnification in the box) correspond to the higher-order resonances labelled in (a). (d) €; (red)
and £, (green) for the same p-values of (b). Intervals where £; = 0 and ¢, < 0 match with the
resonances identified in (b).
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Figure 12. Left: an ‘equatorial slice’ of the attractor in figure 10(B), obtained by selecting
points in a layer of width 2 x 107> around the plane z = 0, projection on the (x, y)-plane.
Centre: magnification of a portion of the section. Right: further magnification. The magnifications
display the local Hénon-like structure of this ‘global’ attractor.
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Figure 13. Top row: sketches of configurations for the invariant manifolds of the saddle-focus fixed
points Py in region 5 (a), HET (b) and 4 (¢), labelling as in figure 2(b). The manifolds W*(P_)
(blue) and W*(P;) (red) are in fact two-dimensional. Bottom row: first ‘equatorial’ intersections
of W¥(P_) (blue) and W" (P, ) (red) with the {z = 0}-plane for the map G. Here first means closest
to P, or P_ in an adapted parametrization, see appendix B.3; note that W*(P_) and W* (P,) may
fold back and have infinitely many intersections with {z = 0}. From left to right, parameters are
fixed at (u, 8/(27)) = (0.6, 0), (0.32, 0) and (0, —0.1).

vector field in (5), see [3, 18,21, 39]. This allows for the occurrence of Shil’'nikov homoclinic
bifurcations [3, 21, 30, 31, 40, 45, 46].

Understanding the dynamics of the model map G requires a second perturbation step, this
one within the class of diffeomorphisms. Additional complications arise here due to splitting of
the manifolds at the tangencies. A Shil'nikov bifurcation for the vector field generically yields
a wedge in parameter space for the diffeomorphism, characterized by transversal homoclinic
intersections. This section aims to describe the organization of these homo/hetero-clinic
phenomena in the parameter plane of the map G and their relation with the onset of strange
attractors.

4.1. Heteroclinic tangencies

A perturbation argument based on phase portraits 4 and 5 in figure 1 suggests that the
invariant manifolds W*(P-) and W*(P,) undergo the sequence of configurations sketched
in figures 13(a)—(c) as u is decreased, compare with [30, figure 5]. We recall that to decrease
u for fixed (8, y) roughly amounts to decrease B, for fixed §; in figure 1.

Numerical investigation shows that map G exhibits precisely this behaviour. The 2D
manifold W*(P,) is enclosed in the volume bounded by W* (P_) for parameters at the right of
I, in figure 3, see figure 13(d). The configuration is reversed for parameters at the left of O,
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in figures 3, see 13(f). Transversal heteroclinic intersections occur for parameters between
I, and O, (figure 13(e)). By continuity, heteroclinic tangencies of W*(P_) and W (P,) are
expected for values of

(1) between those of figures 13(a) and (b): we will denote these as ‘inner’ tangencies;
(2) between those in figures 13(b) and (c¢) (‘outer’ tangencies).

Approximate parameter loci of these ‘inner’ and ‘outer’ heteroclinic tangencies are identified
by the grey curves I, and O, in figure 3, see appendix B for the algorithm.

In summary, the 2D stable manifold W*(P_) bounds an attracting invariant domain in
phase space (figure 13(a)) for large w. This domain is completely destroyed for small u
(figure 13 right). Indeed, no attractor is detected at the left of curve O, in figure 3, whereas (at
least) one attractor is found at the right of I,. For intermediate parameter values, the existence
of a transversal heteroclinic structure (figure 13 centre) implies that escape to z — —o0 is
possible for certain initial conditions within the concavity bounded by W*(P_).

The heteroclinic tangencies at I; can be seen as a route to chaos: a strange attractor appears
‘at once’ when crossing certain parts of curve I, from left to right in figure 4. This is the case
for the strange attractor in figure 14(a): its basin of attraction is bounded on the ‘outside’ by the
2D manifold W*(P_), see figure 14(e). The latter panel also shows that the manifold W* (P,.)
is in the basin of attraction of (a) and that W*(P,) is very close to W*(P_): the intersections
of these manifolds with the plane z = 0 dist 0.00002 from each other.

A slice of the strange attractor (a) near the plane z = 0 shows a global Hénon-like structure
winding around the origin without gaps (figure 14(c)). This strange attractor coexists with an
invariant circle attractor (figure 14(b)) with a much smaller basin of attraction, see figure 14(c)
and (d) for a magnification near the origin. Parameter values belong to the resonance tongue
at the centre of figure 4, just at the right of curve I,.

Remark 6: On multistability. In the region near the heteroclinic tangencies, multistability is
created by the foldings produced by the splitting of separatrices (which is exponentially small
in the analytic case). This cannot be detected by the normal form analysis. Indeed, in the
non-resonant HSN case, the normal form (truncated to any order) coincides with the time-one
map of a flow and has rotational symmetry. The only attractor is either an invariant circle or
an invariant torus. If resonant terms are added to a truncated normal form, one can expect
generically the occurrence of pairs of attracting and repelling invariant curves within the torus
attractor, but no multistability.

The position of the separatrix W*(P_) explains why attractors are detected for certain
parameter values between the heteroclinic tangency curves I, and O, and not for others.
Consider for example the finger-like tongues of figure 3, extending towards curve O,. The
attractors found for those parameter values are either invariant circles or band-like strange
attractors as in figures 6(C) and (D), respectively. In those cases, the basin of attraction
is ‘local’: it excludes a neighbourhood of the origin, see, e.g., the basin of the attractor of
figure 14(b). This feature allows these attractors to ‘survive’ in the region between curves I,
and O,. In that region, the existence of attractors with a ‘global’ basin (as in figure 14(a)) is
prevented by the transversal heteroclinic structure.

Coexistence of two strange attractors is also possible near the heteroclinic tangencies.
Figure 15(b) shows a ribbon-like quasi-periodic Hénon-like strange attractor occurring at the
end of a quasi-periodic doubling route (compare with figure 7(B1)) and coexisting with the
‘global’ quasi-periodic Hénon-like strange attractor of panel (a). The basins of these two
coexisting attractors are intertwined, see figure 15(d). The 2D manifold W*(P_) has non-
empty intersections with both basins, as shown in figure 15(e).
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Figure 14. Coexistence of attractors of the diffeomorphism G (4) for (8/2mw, pn) =
(0.0856,0.4784).  (a) Quasi-periodic Hénon-like strange attractor and (b) quasi-periodic
invariant circle attractor, Lyapunov exponents £; and dimension Dy, are given above the panels.
(c) ‘Equatorial slices’ of the attractors in (a) and (b) by a layer of width 2 x 1073 around the plane
z = 0. The slice of the attractor (@) has a similar shape to that of figure 12. The slice of the circle
attractor (b) consists of 20 points (thick dots): 10 of them lie close to the outer part of the slice of
(a). The intersection of the basin of (b) with the plane z = 0 is shown in green. (d) Magnification
of (c), displaying the Hénon-like structure of the ‘slice’ of (a). The five thick dots belong to an
‘equatorial slice’ of (b). (e) Magnification of (¢), displaying two thick dots in the ‘equatorial slice’
of (b). The intersection of the basin of (a) with z = 0 is shown in green. The outer edge of this
basin coincides with the first equatorial intersection (see appendix B) of W*(P_) with the plane
z = 0 (blue). The first intersection of W*(P,) (red) is contained in the basin of attraction of (a).

Lastly, the occurrence of a heteroclinic tangency does not necessarily imply that a strange
attractor is formed. For example, in suitable parameter regions

(1) a 2-torus attractor exists at both sides of I5;
(2) an invariant circle attractor exists at both sides of I»;
(3) strange attractors exist at both sides of /5.
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Figure 15. Coexistence of attractors of the diffeomorphism G (4) for (8/2mx, n) = (0.089, 0.51).
(a) Quasi-periodic Hénon-like strange attractor and (b) ribbon-like quasi-periodic Hénon-like
strange attractor, Lyapunov exponents {; and dimension D, are given above the panels.
(c) ‘Equatorial slices’ of the attractors in () and (b) by a layer of width 2 x 10~ around the
plane z = 0. The slice of the attractor (a) has a similar shape to that of figure 12. The slice of the
attractor (b) consists of 5 ‘inner’ and 5 ‘outer’ components whose structure is strongly reminiscent
of the Hénon strange attractor, see the two magnifications in the boxes. () Magnification of (c)
near the origin, the intersection of the basin of (b) with z = 0 is shown in green. (e) Magnification
of the lower box in (c), the intersection of the basin of (b) with z = 0 is shown in green. The
first equatorial intersection (see appendix B) of W*(P_) with the plane z = 0 (blue) bounds the
union of the basins of the two attractors. The first intersection of W (Py) (red) has non-empty
intersection with both basins of attraction.

In case 1, we have been unable to detect strange attractors near the heteroclinic tangencies: the
2D invariant manifold W* (P, ) is always attracted by the 2-torus. In case 2 we have found two
possibilities: either no strange attractor is detected at the heteroclinic tangency, or a strange
attractor is created and it coexists with the invariant circle attractor, see figure 14 for an
example.
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Figure 16. Top row: sketches of configurations for the invariant manifolds of the saddle-focus fixed
point P_. Bottom row: numerical examples with map G of the sketches in the top row, for § = 0
and ¢ = 0.55,0.33,0.12. The fixed point P_ (green dot) is plotted with part of the 1D manifold
WH(P_) (red). A few iterations of a fundamental domain (separated by 5 iterates or multiples of
5) are plotted with thicker black lines. Note that, in fact, the manifold W* (P_) goes up and passes
very close to P;.

4.2. Homoclinic tangencies

By construction, we expect that homoclinic tangencies occur for the saddle-focus fixed points
P.. These homoclinic tangencies can be viewed as perturbations of the Shil'nikov homoclinic
bifurcations that can be expected in HSN vector fields [21, 30, 31, 40]. It is known that Hénon-
like strange attractors can occur in Poincaré sections near Shil'nikov homoclinic orbits [35]
of vector fields, although this result has not been formulated for unfoldings. It is therefore
reasonable to expect strange attractors near homoclinic tangencies of saddle-focus fixed points
of maps.

Although we have found the expected homoclinic tangencies of the ‘polar’ saddle foci
of map G, we have been unable to detect strange attractors which are clearly identifiable as
arising from those tangencies. There are indeed two problems:

(1) the homoclinic tangencies occur very close in parameter space to the heteroclinic
tangencies; this is due to the closeness of the various invariant manifolds involved;

(2) as a matter of fact, we do not know what are the typical characteristics (e.g. Lyapunov
dimension) of attractors arising from homoclinic tangencies of saddle-focus fixed points
for 3D maps.

This section aims to illustrate point 1 above. Point 2 will be dealt in a separate study.
The perturbation argument of section 4.1, based on phase portraits 4 and 5 in figure 1,
suggests the sequence of configurations illustrated in figures 16(a)—(c) as u is decreased:

(1) W*(P-) remains inside the hemispheric ‘cup’ bounded by W*(P_);
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Figure 17. Top row: sketches of configurations for the invariant manifolds of the saddle-focus fixed
point P,. Bottom row: numerical examples with map G of the sketches in top row computed with
map G, for § = 0 and . = 0.55,0.33,0.12. P, (red dot) is plotted with part of the 1D manifold
WS (P;) (blue) and a few iterations of a fundamental domain (separated by 5 or multiples of 5) are
plotted with thicker black lines. Note that, in fact, W*(P,) goes down until it reaches points very
close to P_.

(2) W*(P_) has transversal homoclinic intersections with W*(P_);
(3) W*(P-) lies completely outside the hemispheric cup and diverges to z — —oo0.

Map G exhibits this behaviour, see figures 16(d)—(f). Note that W"(P_) passes very close
to P,, then it spirals downwards, closely following the 2D unstable manifold W*(P,). In
figure 16(d), the 1D manifold W*(P-) ‘climbs up’ after its first return to U and then returns a
second time to a neighbourhood of P_. For definiteness, in what follows we will only consider
the first return of W*(P_) to a neighbourhood U of P_, see appendix B.4. By continuity,
(first-return) homoclinic tangencies of W*(P_) and W*(P_) are expected for values of u

(1) between those of figures 16(d) and (e); we will denote these as ‘inner’ tangencies;
(2) between those of figures 16(e) and (f) (‘outer’ tangencies).

The parameter loci where the above tangencies occur will be denoted as Ip and Op_,
respectively. The above discussion also holds for P,, mutatis mutandis. In reversed time
(that is, using the inverse G~!) the downward branch of W*(P,) first approaches P_, then
it spirals upwards closely following the 2D stable manifold W*(P_). As u is decreased, the
expected sequence is sketched in the top row of figure 17 and the behaviour of G on the bottom
row. Again, first-return homoclinic tangencies of W**(P,) are found for values of ju:

(1) between those of figures 17(d) and (e) (‘inner’ tangencies);
(2) between those of figures 17(e) and ( f) (‘outer’ tangencies).
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Figure 18. (a) Difference between the value of  of the curves I, and /p_ (Op,) as a function of
8, in red (green), see the text for details. (b) Same as (a) for O, and Op_ (Ip,), in red (green).
(c) Difference between the value of 1 of the curves Ip_ and Op, . (d) Same as (c) for Op_ and Ip, .

The corresponding parameter loci are denoted as Ip, and Op,, see appendix B for detail on the
algorithm we used to compute them.

In which order do the various tangencies occur as u is decreased? First of all, since
W (P_) eventually follows W*(P,) very closely, the homoclinic tangencies at Ip_ occur very
close (in parameter space) to the heteroclinic tangencies at I;. For the same reason, the
homoclinic tangencies at O p, also occur nearby. Indeed, the distance between /p_ and Op, is
smaller than 10~ and their relative position changes with 8, see figure 18(c).

Note that the homoclinic tangencies at Ip are impossible before the heteroclinic
tangencies I, (as u is decreased). Indeed, the two-dimensional manifold W* ( P,.) is a separatrix
between the 1D manifold W*(P-) and the 2D manifold W*(P_), compare with figure 13(a).
Similar considerations hold near the ‘outer’ heteroclinic tangency, see figures 18(d) and (d).

5. Discussion

Since we deal with the study of a diffeomorphism, an infinite amount of qualitative detail is
expected to occur, which in principle may depend on the full jet of the map. However, most
of these phenomena are expected to occur in tiny parameter domains. In previous and on-
going work [14, 15], we have shown that model map G displays all the basic phenomena to be
expected in generic 3D HSN-families of diffeomorphisms, within the unfolding class chosen
for the Poincaré-Takens normal form (5), see figure 1. This unfolding class is the dynamically
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richest for HSN vector fields [31, 40]. In this paper, we have analysed dynamical phenomena
(routes to chaos, multistability), some of them being described for the first time, which cannot
be inferred from the analysis of the normal form. By construction, we believe that the present
family of model maps displays the most relevant features for HSN diffeomorphisms.

Several phenomena detected for G require further, specific investigation.

(1) There is still not a complete theoretical explanation for the interruption of quasi-periodic
doubling cascades of invariant circles, its relation with loss-of-reducibility scenarios
in [32,33] and the onset of strange attractors, see section 2; the finiteness of the cascade
for quasi-periodic attractors is a distinguishing feature with respect to the well-known
infinite period doubling sequence for fixed or periodic points (see, e.g., [11,31,47]);

(2) similarly, there is no theoretical result concerning the quasi-periodic saddle-node
intermittency route described in section 3;

(3) lastly, we have not found an explanation for the lack of Shil'nikov-like attractors near
the homoclinic tangencies of the saddle-focus point P_ (see section 4). We are currently
investigating a model map for this type of attractors in a setting which does not involve
the nearby occurrence of HSN bifurcations.

Acknowledgments

The authors are indebted to Enric Castella, Angel Jorba and Robert Roussarie for help and
suggestions and thank the respective institutions for kind hospitality. RV acknowledges kind
support by the Willis Research Network (www.willisresearchnetwork.com). The research of
CS has been supported by grant MTM2006-05849/Consolider (Spain).

Appendix A. Quasi-periodic bifurcations and resonance ‘bubbles’

We describe the theoretical expectations for quasi-periodic bifurcations, restricting to the case
of invariant circles of a diffeomorphism. A full description of quasi-periodic bifurcations
would require embedding in a family of diffeomorphisms depending on at least two parameters.
Loosely speaking, one of the parameters is necessary to unfold the loss of normal hyperbolicity
and another parameter is required to enforce a Diophantine condition, necessary for KAM-like
persistence of the invariant circles, see [4,9, 12, 14, 15].

Consider first the case of quasi-periodic period doublings. In the standard (generic)
period doubling bifurcation of fixed points, the bifurcation set generically expected in a
two-dimensional parameter plane is a piecewise smooth curve. In the quasi-periodic period
doubling bifurcation, the bifurcation set is ‘Cantorized’ in the two-dimensional parameter
plane: a dense set of resonances interrupts the bifurcation boundary. This phenomenon is
sketched in figure 19 for the model map G (4), considered as a family depending on (i, §),
compare with [36, figure 1] and [9, figure 5].

An invariant circle ¥’ with Diophantine rotation number occurs for (i, §) belonging to
a Cantor-like set of curves Dj, D,, ..., called quasi-periodic ‘hairs’ in [12]. The circle €
is normally hyperbolic for parameters in the union of the so-called flat discs A; U U; and is
attracting in A; and unstable in U;. A doubled invariant circle attractor exists for parameters
in Uy, U,, Us, .... The points of tangency of disc U; with A; form a frayed (Cantorized)
bifurcation boundary Q. A frayed boundary consists of a Cantor set, contained inside a
curve, the gaps of which are filled up with resonance bubbles. The theory does not specify the
dynamics inside the resonance ‘bubbles’ By : there we expect intricate structures of bifurcations
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Figure 19. Sketch of the structure of the (i, §)-parameter plane for a quasi-periodic period doubling
of an invariant circle ¢ of map G (4), based on the theory of quasi-periodic bifurcations.

of periodic orbits. Subordinate quasi-periodic bifurcations are also found for the quasi-periodic
Hopf bifurcation [14, 15]: a full account of these phenomena is in preparation.

Quasi-periodic period doubling bifurcations admit a simple description if the bifurcating
invariant circle is reducible [33, 37, 38] and if parameters are restricted to move along a single
Diophantine ‘hair’ D; in the two-dimensional parameter space. In this case, one of the normal
eigenvalues of the circle " becomes —1 at a single point along the ‘hair’ D;: this is the point
where the two discs A; and U; are tangent, see [5] and compare with the ‘invariant curve
theorem’ of [36]. At that moment, ¥ turns unstable and a doubled circle attractor & shows
up. This may occur in two ways [22]:

(1) the circle Z consists of a single connected curve, which is roughly twice as ‘long’ as the
bifurcating circle €’; in this case the rotation number of & is halved with respect to the
rotation number of the bifurcating circle ¢ (near the bifurcation point) and the centre
manifold of the bifurcation is a Mobius strip;

(2) the circle Z consists of a pair of connected curves, which are mapped onto another by G
(a so-called periodically invariant circle); in this case, the rotation number of G? is the
same as the rotation number of the bifurcating circle 4 (near the bifurcation point) and
the centre manifold of the bifurcation is a cylinder.

A similar discussion holds for quasi-periodic saddle-node bifurcations of invariant circles. In
this case, however, the drawing of figure 19 is more involved since both the saddle and the node
invariant circles occur at the same side of the frayed bifurcation boundary Q. The discussion
is again simplified by fixing a Diophantine rotation number, which amounts to move along a
single ‘hair’ in the two-dimensional parameter space.

One of the normal eigenvalues of the invariant circle becomes 1 at a single point along the
‘hair’ [14]. This can be viewed as the merging of two different invariant circles, a node and
a saddle, with the same (Diophantine) rotation number. The points where this occurs form a
Cantor-like frayed boundary in the two-dimensional parameter space, parametrized over the
Diophantine rotation numbers [4, 9]. Chenciner [25-27] studied the phenomena occurring in
the resonance ‘bubbles’ amidst the Cantor-like frayed boundary. The structure of ‘bubbles’
for quasi-periodic Hopf bifurcations was studied in [14].
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In the studies of sections 2 and 3, we fix the parameter § and only vary the parameter .
This amounts to shift along a one-parameter path in the (i, §)-plane. In doing so, we cannot
ensure that the chosen parameter path precisely ‘hits’ one of the points of the frayed bifurcation
set. This would be the case for path P; in figure 19: such paths are called ‘good paths’ in [25]
and correspond to a Hopf-Landau scenario, see [4, section 4.3]. We can only expect this
situation with positive probability with respect to the choice of §. Indeed, the generic case is
path P, intersecting one of the resonance ‘bubbles’, since the latter are open and dense along
the frayed bifurcation boundary Q (compare with, e.g., [25, figure 11]).

For the above reason, when detecting a vanishing second Lyapunov exponent (up to
numerical accuracy) we can only conclude that a quasi-periodic bifurcation is expected for
nearby values in the (u, §)-parameter plane. However, numerical evidence shows that the
resonance bubbles are tiny in most of the cases: therefore, in such cases one can consider a
vanishing Lyapunov exponent as a quasi-periodic bifurcation for all practical purposes (that
is, ignoring the underlying fine-scale structure).

The above discussion is valid under the hypothesis of reducibility of the invariant circles.
Reducibility means that the linearized dynamics around the invariant circle is independent on
the angular coordinate along the circle in a suitable coordinate system. Following [37], consider
a diffeomorphism f : R” — R" and let x : $' — R", with $' = R/Z, be a parametrization
of an invariant circle with an irrational rotation number p € R, thatis f(y(0)) = y(0 + p)
forall @ € $'. Writing

F @) +h) = f(y©) + Dy f(yO@Dh+ ORI,

the linear normal behaviour around y (0) is described by the linear quasi-periodic skew-product
system

(x,0) = (A(@)x,0 + p), )

where A(6) = D, f(y(0)) and h € R". The invariant circle parametrized by y (0) is said to
be reducible if there exists a change of coordinates x = C(6)y such that (7) becomes

(y.0) = (By, 0 +p), ®

where the matrix B = C~'(6) A(6)C(8) does not depend on 6. As it turns out, reducibility is
a property of an operator on a space of functions, the so-called transfer operator, defined by

T,:C(S', C" — C@§', O, T,(¢p) =¢oR,,

where R, : g > gl R,(0) = 0 + p is the rigid rotation with angle p.

Reducibility implies that the linear stability properties of the invariant circle can be deduced
by looking at the eigenvalues of the matrix B in (8). If an invariant circle is non-reducible, the
full transfer operator 7, must be studied to determine the linear stability: this is an infinite-
dimensional problem. Essentially nothing is known about quasi-periodic bifurcations in the
non-reducible case, see [10,32,33,38]. The skew Hopf bifurcation provides an example
where KAM theory was developed for non-reducible systems [17,24,53,58]. Extension of
quasi-periodic bifurcation theory to non-reducible systems is a very interesting topic for future
research.

Appendix B. Computational methods

Appendix B.1. One-dimensional invariant manifolds of saddle fixed points

Let p be a hyperbolic fixed point of saddle type for G such that the derivative D,G has
eigenvalues A;, j = 1,2,3 with A; € R. Consider A; > 1 > [A;]|, j = 1,2. The inverse
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G~ 'isused for0 < A; < 1 < |A;] and G? (or its inverse) for A; < 0. The (local) unstable
manifold of p is expressed as an adapted parametrization

W:R — R3, with W(0) = p, suchthat G(W(r)) = W(A1). O]

The Taylor coefficients of W at the origin are computed with an algebraic manipulator up to a
given order (typically 10 or 20), using the method in [48, section 10]. A fundamental domain
is computed as an interval of # where the representation as a truncated Taylor series is accurate.
Specifically the fundamental domain is defined as the interval (/A 1, #p), where f; is such that

IG(W () = Win)| < e (10)

and ¢ is a user-prescribed tolerance (typically 10~!%). The manifold is then ‘globalized’
as explained in [48, section 11] (to which we refer for more details): three initial points
pj = W(;), j = 1,2,3 are chosen with ¢; in the fundamental domain. For j = 2 let
Atj = tj —tj_1, Asj = ||[p;j — pj—1ll and define Ac; as the angle between the segments
Dj» Pj—1 and p;_1, pj—i. A new point is computed by setting p;,; = W(t;41), with
tjy1 = tj + Atjyy. If the new value t;,, is larger than the upper extreme of the fundamental
domain, thenboth ¢, and At;,; are divided by A; and p ., isdefined as G(W (¢;41)): the iterate
number is increased by one. This procedure is repeated, incrementing the iterate number every
time that the parameter #;,; exceeds #o. If either As; or Aa; become too large (too small),
then the step At} is reduced. (respectively increased). The same algorithm can be used for
periodic points, by replacing the map G with a suitable power of G.

Appendix B.2. Two-dimensional invariant manifolds of saddle-focus fixed points

Consider first P, and denote a complex eigenvalue of the derivative Dp G by A = a +1ib
(with [A > 1| and a,b € R). We look for an adapted parametrization, that is a function
W : R? — R? such that

—b
GW(yi.y2) = WAy, where A(yr.y2) = (Z a) @;) an

For simplicity, a linear approximation is used for W"(P,):
Wy, y2) = Py + y1v + naou, (12)

where u, v € R? are the real and imaginary parts of an eigenvector w = u + iv of D r,G
corresponding to the eigenvalue A. Since A in (11) acts on (yq, y») € R? as the complex
multiplication Az, with z = y; +iy, € C, a fundamental domain is an annulus in the (y;, y)-
coordinates. Numerically, we look for z° = y? + iy? such that

IGW (Y, y)) — W) < e, (13)

where the tolerance ¢ is fixed at 10~"°. Then a fundamental domain is the annulus bounded
by the circles with centre the origin and radii |z°| and |z°/A|.

Appendix B.3. Heteroclinic tangencies of saddle-focus fixed points

Computation of the intersection of W"(P,) with the plane {z = 0} is used in section 4, see,
e.g., figure 13. This is achieved with the following algorithm. An equispaced grid of points
is fixed in the outer circle bounding the fundamental domain, that is the circle with centre the
origin and radius |z°|, see above. All points of the grid are iterated under G until the nth image
of all grid points lies below the horizontal plane {z = 0} and the n — 1th image lies above it.
In certain cases it is necessary to slightly shift the fundamental domain, for the latter condition
to be verified (this is done by reducing the modulus of z°).
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Figure 20. (a) Signed radial distance sd(6) between the first ‘equatorial’ intersections W*(P_) N
{z = 0} and W*(P;)N{z = 0} as a function of the angle # defining the radial direction. Parameters
(u, 8) = (0.32, 0) correspond to figure 13(e). (b) Amplitude (solid line), maximum and minimum
(dashed lines) of the signed radial distance sd(0) between W*(P_)N{z = 0} and W"(P;)N{z = 0}
as a function of § for © = 0.53. The amplitude is defined as max(sd(6)) — min(sd(8)). In an
interval near § = 0 the minimum distance is negative: parameter values lie at the left of (and close
to) curve /> in figure 3.

The intersection with {z = 0} is computed for each point on the grid by a secant
method: this yields a mesh of points in the first intersection of W*(P,) with {z = 0}. Here
first means closest to the origin of the adapted parametrization (see the previous section). The
first intersection of W*(P_) with {z = 0} is computed in the same way. The curves I; and O,
are ‘equatorial’ heteroclinic tangencies: they are computed as zeroes of the minimum signed
distance sd(6) between the first intersections of W*(P,) and W*(P_) with {z = 0}. The
distance sd(#) is a function sd(8) of the angular variable 6 defining the radial direction, see
figure 20(a) for an illustration.

Generically, the point of heteroclinic tangency between W*(P,) and W*(P_) does not
belong to the plane {z = 0}. Consequently, the curve I, is a lower bound for the location of
the ‘inner’ heteroclinic tangencies. Indeed, ‘equatorial tangencies’ occurring on I, correspond
generically to transversal heteroclinic intersections in 3D: this is observed by varying the
‘height’ of the horizontal intersection plane for W*(P,) and W*(P_). Similarly, the curve O,
is an upper bound for the location of the ‘outer’ heteroclinic tangencies.

The separation between the curves I, and O, is larger near the 1 : 5 gap, see figure 3. The
reason is that the intersections W*(P_)N{z = 0} and W*(P,) N{z = 0} are more ‘pentagonal’
for parameters near the 1 : 5 resonance gap (figure 13( f)) and ‘rounder’ for parameters farther
from the gap (figure 13(d)). Consequently, the amplitude of the oscillations of sd(#) is larger
for values of u near the 1:5 gap, see figure 20(b).

Appendix B.4. Homoclinic tangencies of saddle-focus fixed points

First of all, it might be impossible to identify a ‘first” tangency in the case of diffeomorphisms,
compare with [11]. Indeed, if W"(P-) is tangent to W*(P_), then a portion of W"(P_)
will be mapped inside a tubular neighbourhood of W*(P_), near the tangency point, by a
number of iterates of the map. The returning portion of W*(P_) may intersect W*(P-)
transversally: therefore there must have been a ‘previous’ tangency between W"(P_) and
WS (P-). To remove this ambiguity, we define (unambiguously) the ‘first-return’ tangency
as the tangency point between the first return of the image of a fundamental domain within
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W*(P-) to a fixed neighbourhood of P_. Here ‘first’ is understood as ‘closest to P_ in an
adapted parametrization’.

The curves Ip, and Op, are first-return ‘inner’ and ‘outer’ homoclinic tangencies (see
section 4) and are computed as follows. Consider P_: for fixed parameter values, a grid of
points is selected inside a fundamental domain for W*(P-) and a fixed number of iterates of
G is computed for each of these points. Considering a fixed neighbourhood N of the origin,
there are three possibilities, corresponding to three open regions of the parameter plane: all
iterates remain inside N, all iterates escape from N, or part of the iterates escapes and part
remains inside N. These three situations correspond, respectively, to figures 16(d)—(f). The
first case occurs for large . The (u, §)-parameter plane is then scanned along horizontal lines
(that is, for fixed §) and by decreasing u each time, until the configuration changes: in this
way, the p-value of the ‘inner’ (first-return) homoclinic tangency is bracketed.

A bisection procedure is then started to locate the occurrence up to a specified precision
(typically, 10~'2). Here the more refined algorithm described at the beginning of this section
is used for computation of W*(P_). Near the first return of W*(P_) to a neighbourhood of
P_, the images of the fundamental domain develop oscillations (figure 16 bottom row): the
trick is to focus on the minimum z-values of such oscillations. Near the ‘inner’ homoclinic
tangency, these z-minima approach P_ spiralling around it and there are two possibilities: the
minima may ultimately ‘climb up again’ or they may fall below W*(P_). In the former case,
we are still ‘before’ the tangency (figure 16(d)) and in the latter case we are ‘after’ the tangency
(figure 16(e)).

Appendix B.5. Rotation vector of an invariant 2-torus attractor for a diffeomorphism

We describe the algorithm used to compute the rotation vectors of invariant circles and 2-
tori in figures 6, 9 and 11. Consider an orbit p; = (x;, y;,z;) = G’/ (xo, Yo, 20) on an
invariant 2-torus attractor (see, e.g., figure 9(A)). We compute angles 0 ]1 = arctan(y;/x;) and

912 = arctan(z;/r;) where r; = /x]z + yjz. — ¢, for some constant ¢ > 0. The sequences of

angles are made monotone by keeping track of how many times the angles revolve around the
origin and adding a multiple of 27 accordingly.

The two rotation numbers p; and p, are estimated by a least-squares fit of the sequences
{9}, j =1,...,N} and {9]2, j = 1,..., N} as linear functions of j, respectively. To
estimate uncertainties o, , two more least square fits are performed using two different
subsets of the sequences {0;‘ ,j = 1,..., N}. This yields estimates p; and p; and we set
o, = min{|px — pil, [Pk — pxl}. The uncertainty in the ratio p = p;/p, is estimated as
0p ~ |P|(U,o1/|;01| +Upz/|p2|)-

We have used 10° iterates of model map G along an orbit on the attractors to estimate the
rotation vector. This algorithm is also applied to quasi-periodic Hénon-like strange attractors
as in figure 10(B), although there is no theoretical expectation concerning the existence of a
unique rotation vector in this case.
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