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1. INTRODUCTION

The theory of computation and continuation of bifurcations in dynamical systems with discrete
or continuous time is well-understood in the case of fixed points of autonomous systems and cases
reducible to them, at least for small codimension. This includes cases with periodic forcing or
bifurcations of periodic orbits. This is no longer true for quasi-periodic forcing or bifurcations
of invariant tori. Several problems emerge here. The dense occurrence of resonances obstructs
straightforward continuation methods. More alarmingly, the quasi-periodic bifurcation theory for
systems that are not reducible to Floquet form has not even been understood theoretically. This
paper summarizes theoretical results in the reducible case, provides algorithms for the computation
and continuation of invariant circles and their bifurcations and illustrates them with several
examples.

First a summary of theoretical results is given in Section 2. The simplest way to describe the
differences and additional difficulties with respect to the “classical” bifurcation theory is to say
that the quasi-periodicity gives rise to a “Cantorization” of the bifurcation sets in the product of
state space and parameter space, owing to the dense occurrence of resonances.

The discussion of algorithms is restricted to invariant circles of maps and is given in Section 3.
The basic idea is to work in a suitable Fourier space, expressing invariant circles as truncated Fourier
series. We consider both the continuation of invariant circles and of their bifurcation sets which,
in general, are Cantor-like. A quite delicate problem occurs when the rotation number changes
during the numerical continuation: the continuation process has to “skip” the resonances, fumbling
in search of suitable Diophantine rotation numbers. For the computation of bifurcations, one has
to examine the normal linear behavior around the invariant circle. Hence one has to look for the
reduction to Floquet form of the linear dynamics at the invariant circle.

In Section 4 these continuation methods are applied to the analyzis of a model map for the
Hopf-saddle-node bifurcation of fixed points. We analyze, successively, quasi-periodic bifurcations
of Hopf, saddle-node and period doubling type. A “simpler” additional case, a quasi-periodically
driven Hénon map, is studied in Section 5. In that case the rotation number is fixed, thereby
removing the problem of internal resonances. The challenges arise due to lack of reducibility of the
normal linear dynamics. A summary of open problem is given in Section 6.

2. QUASI-PERIODIC BIFURCATION THEORY

Quasi-periodic bifurcation theory is inspired by the “classical” bifurcation theory at equilibria,
fixed points and periodic orbits, for the case of invariant tori in a nearly integrable setting. The
bifurcation scenarios then mimic the classical scenarios on a nowhere dense set. This set sits in
the complement of infinitely many resonances occurring densely, and is defined by Diophantine
conditions. In appropriate dimensions the set has positive Hausdorff dimension.

Colloquially we say that the quasi-periodic bifurcation scenario Cantorizes the corresponding
classical scenario. In the resonant gaps typically periodicity and chaos can occur, or other forms of
quasi-periodicity. In many cases similar quasi-periodic bifurcations repeat themselves at smaller and
smaller scale, ad infinitum. Such scenarios abundantly occur in many examples and applications,
where often the nearly integrable setting is provoked by normal form theory at equilibria or periodic
orbits.
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2.1. Setting of the Problem

Starting point is the bifurcation theory of equilibria and periodic orbits for either flows or
maps. Moreover, preservation of structure such as a symplectic or volume form, a symmetry group
(including reversible cases) are optional. Classical examples of such bifurcations are the saddle-node,
the period doubling and Hopf bifurcation, as well as their structure preserving versions. Below we
review the theory for the case of flows with invariant tori, but completely analogous results exist
for the case of maps. In the simplest cases we then are dealing with invariant circles.

To fix thoughts we consider a parametrized C∞–system of the form

ẋ = ω(λ) + f(x, z, λ) (2.1)
ż = Ω(λ)z + h(x, z, λ),

for x ∈ Tn = R/(2πZ)n, z ∈ Rm and λ ∈ Rs; the latter two variables often only are “locally” defined,
in fact, z varies over a neighborhood of z = 0. Moreover, |f | = O(|z|) and |h| = O(|z|2) as |z| → 0.
Integrability of such a system amounts to equivariance with respect to the Tn action

(θ, (x, z)) �→ (x + θ, z),

in turn meaning that f and h do not depend on x. In general the bifurcation concerns the
invariant torus z = 0 for some specific parameter value λ = λ0, i.e., the torus Tn × {0} × {λ0} ⊂
Tn × Rn × Rs. For simplicity we set λ0 = 0.

Remark. We notice that system (2.1) has a Floquet form with an x–independent normal linear
part ω∂x + Ωz∂z. That such a form can be obtained, i.e., reducibility to Floquet form, is a serious
restriction and it is of great interest to extend the theory to nonreducible cases. First results in this
direction can be found in [14, 25, 27, 40, 41, 65], see below for some details.

By normalization or averaging techniques [4, 6] we can find integrable approximations of (2.1)
of the form

ẋ = ω(λ) + f̂(z, λ) (2.2)

ż = Ω(λ)z + ĥ(z, λ).

Observe that the two equations of the integrable system (2.2) decouple and the bifurcations that
are particularly of the present interest are led by those of the Tn–reduction

ż = Ω(λ)z + ĥ(z, λ), (2.3)

at (z, λ) = (0, 0).

In the general “dissipative” setting these concern with loss of hyperbolicity of Ω(0). First
considering the cases of lowest codimension and reduction to a center manifold this reduces to
the saddle-node and the Hopf bifurcations.

Remarks.

1. In the Hamiltonian setting on Tn ×Rn ×R2p ×Rs = {x, y, z, λ} the counterpart of (2.1) reads

ẋ = ω(y, λ) + f(x, y, z, λ)
ẏ = g(x, y, z, λ)
ż = Ω(y, λ)z + h(x, y, z, λ),

where we use the symplectic form
∑n

j=1 dxj ∧ dyj +
∑p

j=1 dzj ∧ dzp+j . In this setting the
“action” variable y acts as a distinguished parameter. In many applications the sport is to
see how far one can get when s = 0, only making use of the distinguished parameter y.

2. A unified approach to structure preserving cases is obtained by working with Lie algebras
of systems [4, 14, 16, 17]: next to the general “dissipative” and the symplectic setting, also
volume preserving, equivariant, reversible cases are included as well as combinations of these.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 1–2 2011



158 VITOLO et al.

ω1

ω2

Fig. 1. Sketch of the set of vectors ω = (ω1, ω2) satisfying the Diophantine condition (2.7) for the case n = 2:
the set consists of the union of closed half lines (or “hairs”). The set of vectors intersects the unit circle in a
Cantor set of positive measure.

2.2. The Quasi-periodic Saddle-node

In the general “dissipative” setting we consider the case where (2.3) undergoes a saddle-node
bifurcation. Here the center manifold of (2.3) is the (z, λ)–plane. At the moment of bifurcation we
have

Ω(0) = 0. (2.4)

Moreover, we can obtain the well-known C∞–format

ż = μ − cz2 + hot (z, μ). (2.5)

Recall that if in the equation (2.5) the coefficient c does not vanish, truncation of “hot” gives
structurally stable families up to C0–conjugation [55].

Next we assume that the map

λ �→ (ω(λ), μ(λ)) (2.6)

is submersive, a condition coined as BHT-nondegeneracy,1) compare [4, 14, 17]. For persistence we
introduce the following Diophantine condition. Let τ > n − 1 and γ > 0 be fixed. The condition
then reads

|〈ω, k〉| � γ|k|−τ for all k ∈ Z \ {0}. (2.7)

In the product of state space and the extended parameter space the Diophantine conditions (2.7)
define a nowhere dense set. Here we keep |z| and |λ| small and let ω ∈ Rn wander over a suitable
domain, keeping the entire set bounded. It has been shown [4] that, for nearly integrable C∞–small
perturbations, when restricted to this Diophantine set, the system (2.2) is structurally stable under
Whitney–C∞ conjugations. One often speaks of quasi-periodic stability.

1)Broer–Huitema–Takens
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Fig. 2. “Hairs” from Fig. 1 form the uncountable union of lines D1, D′
1, D2, D′

2, D3, D′
3 etc. that carry quasi-

periodic dynamics. The lines Dj and D′
j are tangent at Qj , where the former line refers to attracting and the

latter repelling tori. Since this dynamics is ∞-ly normally hyperbolic, these domains can be “fattened” leaving
over a countable union of resonance bubbles. The letters Aj and Rj refer attractors and repellors respectively.

Summarizing we can say that the quasi-periodic saddle-node in the center manifold has the
following model format

ẋ = ω(λ) + hot (x, z, λ)

ż = μ(λ) − cz2 + hot (x, z, λ).

For completeness we here also present an analogue for maps T1 × R → T1 × R:⎛
⎝ x

z

⎞
⎠ �→

⎛
⎝ x + 2πα(λ)

z + μ(λ) − cz2

⎞
⎠ + hot (x, z, λ). (2.8)

2.3. Normal Hyperbolicity

For the integrable approximation the Diophantine condition (2.7) gives rise to a nowhere dense
set of positive measure in the parameter space Rn × R = {ω, μ}. By the quasi-periodic stability it
follows that a Whitney smooth image of this parametrizes a collection of quasi-periodic invariant
n–tori for the original nearly integrable saddle-node system. These tori are r–normally hyperbolic
for any r ∈ N. By [45, Thm. 4.1] this nowhere dense collection of tori can be “fattened” to an open
subset of the parameter space. A sophisticated application of the Uniform Contraction Principle
[3, 4, 34] leads to an optimal fattening that leaves open only a countable union of small bubbles
around the resonances given by

μ = 0 and 〈ω, k〉 = 0 for some k ∈ Z.

Fig. 2 sketches the structure of the (μ, λ)-parameter space for system (2.8) in the case s = 1. A
general study of quasi-periodic cuspoid bifurcations was given by [69, 70].

Remarks.

1. It should be said that the dynamics inside the bubbles can be more exciting than quasi-
periodic, exhibiting the coexistence of periodicity, quasi-periodicity and chaos. For a case
study subordinate to a degenerate Hopf bifurcation we refer to [30–32].

2. The Hamiltonian counterpart is the quasi-periodic Hamiltonian center-saddle bifurcation [39]
which has an integrable approximation of the form

ẋ = ω + hot(y, z, μ)
ẏ = 0

ż1 = z2 + hot(y, z, μ)

ż2 = μ − z2
1 + hot(y, z, μ).

In this case no fattening occurs by hyperbolicity, but the “hairs” of Fig. 1 lead to a
“Cantorization” of the geometry given by catastrophe theory. For further cases and overviews
see [11–14, 41].
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2.4. The Quasi-periodic Hopf Bifurcation

We follow the above programme for the case where (2.3) undergoes a Hopf bifurcation. At the
moment of bifurcation we have

Ω(0) =

⎛
⎝ 0 −α

α 0

⎞
⎠ (2.9)

for α ∈ R \ {0}. normalization then leads to another well-known C∞–format⎛
⎝ ż1

ż2

⎞
⎠ =

⎛
⎝ μ −α

α μ

⎞
⎠

⎛
⎝ z1

z2

⎞
⎠ − c(z2

1 + z2
2)

⎛
⎝ z1

z2

⎞
⎠ + hot (z, μ). (2.10)

In this case the bht-nondegeneracy condition requires that the map

λ �→ (ω(λ), μ(λ), α(λ)) (2.11)

is submersive. Moreover the Diophantine conditions now take the form

|〈ω, k〉 + 
α| � γ|k|−τ for all k ∈ Z \ {0} and 
 ∈ Z with |
| � 4. (2.12)

From this, at the level of invariant n–tori, a similar quasi-periodic stability theorem can be derived
as for the saddle-node case. The parameter domains with normally hyperbolic n–tori can then be
found by an efficient fattening procedure. Also the (n + 1)–tori are persistent on such a fattened
domain. Again the complement of these sets is a countable union of small bubbles around the
resonances

μ = 0 and 〈ω, k〉 + 
α = 0 for some k ∈ Z \ {0} and 
 ∈ Z with |
| � 4.

Fig. 3 sketches the structure of the (μ, λ)-parameter space for system (2.10) in the case s = 1. Proofs
can be found in [3, 4], for overviews see [14, 24, 35]. The skew Hopf bifurcation [23, 25, 27, 65, 72]
is an analogue which is not reducible to Floquet form.

2.5. The Hopf–Nĕımark–Sacker Bifurcation

The Hopf–Nĕımark–Sacker bifurcation deals with the intermediate case where a periodic solution
bifurcates into an invariant 2–torus when the characteristic exponents cross the complex unit circle.
This case can be well studied by a Poincaré map with a bifurcating fixed point, say with derivative

exp

⎛
⎝ μ −2πα

2πα μ

⎞
⎠ ,

where μ passes through 0, see above. Excluding the strong resonances α = p/q, with p and q relative
prime and q � 4, the diffeomorphism can be shown to have an invariant circle. Its restriction to this
circle displays Arnold resonance tongues in a universal setting. For example compare with Fig. 4
displaying a similar array of tongues as these occur in the Arnold family

Pα,μ : x �→ x + 2πα + μ sinx (2.13)

of circle maps. No further Cantorization occurs in this case. For other descriptions see [14, 24, 35],
while for Hamiltonian and reversible counterparts we refer to [7–9, 16].

2.6. Quasi-periodic Period Doubling

On Tn × R × R = {x, z, μ} consider the involution

I : (x, z, μ) �→ (x1 + π, x2, . . . , xn,−z, μ), (2.14)

assuming the systems (2.1) and (2.2) to be equivariant with respect to I.
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Fig. 3. As in Fig. 2 the “hairs” from Fig. 1 form the uncountable union of lines D1, D2, D3, etc. that carry
quasi-periodic dynamics. Since this dynamics is ∞-ly normally hyperbolic, these domains can be “fattened”,
again leaving over a countable union of resonance bubbles. As before the letters Aj and Rj refer attractors
and repellors respectively. On the righthand side there are also domains A′

j , nearly overlapping with Rj ,

corresponding to the doubled torus attractors, which are Diophantine on ‘hairs’ D′
j . For clarity only A′

3 and

D′
3 have been included in the sketch.

The pitchfork bifurcation

ẋ = ω + hot(z2, μ) (2.15)

ż = z(μ − z2) + z hot(z2, μ)

is persistent in the present I–equivariant setting. This can serve as a double cover for a quotient
space obtained from T n × R × R by identifying points via

(x, z, μ) ∼ I(x, z, μ).

In fact it is much easier to stay on the double cover, keeping track of the deckgroup Z2 generated by
I. Notice that for n = 1 this is exactly the well-known Möbius strip, which also forms the natural
setting for the standard period doubling of limit cycles. The above applies mutatis mutandis [4, 17],
where Cantorization and fattening is according to Fig. 3. For more general studies on a q–fold
subharmonic bifurcations see [10, 14, 15, 26]; then the deckgroup equals Zq.

3. ALGORITHMS
3.1. Newton Algorithm for an Invariant Circle with Fixed Rotation Number

Quasi-periodic bifurcations of invariant circles are here computed by Fourier-based numerical
continuation and analysis of normal behavior. We follow [28, 29, 47], see [36, 37, 42–44, 54, 60, 63, 64]
for alternative methods. Let f : Rn → Rn be a diffeomorphism and let T1 = R/2πZ denote the unit
circle. An invariant circle with rotation number ρ is represented by a parametrization γ : T1 → Rn

satisfying the invariance equation

f(γ(θ)) = γ(θ + ρ) for all θ ∈ T1. (3.1)

This is written as an equation on the function space C(T1, Rn) = {γ : T1 → Rn} of all continuous
parametrizations. Define the transfer operator :

Tρ : C(T1, Cn) → C(T1, Cn), Tρ(γ) = γ ◦ Rρ, (3.2)

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 1–2 2011
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Fig. 4. Resonance tongues in the Arnold family (2.13) of circle maps for 0 � α � 1
2
. From each point

(α, μ) = (p/q, 0) a tongue emanates, in which the Pα,μ is periodic with rotation number p/q [1, 18, 24].
The boundaries of each tongue are curves of saddle-node bifurcations: moving outward the periodic points
annihilate one another pairwise. Note that for |μ| � 1 the map (2.13) is only endomorphic. The 24 tongues up
to q = 12 are shown. For μ = 1 the tongues have full measure.

where Rρ : T1 → T1 is the rigid rotation of angle ρ, that is Rρ(θ) = θ + ρ. Then (3.1) is equivalent
to

F (γ) = 0, (3.3)

where F is the functional
F : C(T1, Rn) → Rn, F (γ) = f ◦ γ − Tρ(γ), (3.4)

that is F (γ)(θ) = f(γ(θ)) − γ(θ + ρ) for all θ ∈ T1.
The solution of (3.3) is approximated by discretizing γ as a truncated Fourier series:

γN (θ) = a0 +
N∑

k=1

ak cos(kθ) + bk sin(kθ), a0, ak, bk ∈ Rn, (3.5)

where N is the truncation order. The unknowns are here the 2N + 1 Fourier coefficients a0, ak, bk ∈
Rn. The functional F in (3.4) is discretized by evaluating the image of γN at the (2N + 1) mesh
points θj = 2πj/(2N + 1) ∈ T1, j = 0, . . . , 2N : this yields a function FN of the Fourier coefficients,
defined by

FN : R(2N+1)n→R(2N+1)n, (a0, ak, bk)Nk=1 �→(f(γN (θj)) − γN (θj + ρ))2N
j=0. (3.6)

A solution of the discretized functional equation FN ((a0, ak, bk)Nk=1) = 0 yields an approximation
of the invariant circle γ(θ), expressed as a truncated series γN (θ) as in (3.5). Zeroes of Eq. (3.6) are
found by a Newton algorithm starting from initial values for the Fourier coefficients (a0, ak, bk)Nk=1.
The differential of FN around an invariant circle has a one-dimensional kernel, due to the freedom
in choosing the origin of θ. This can be dealt with in various ways: for example one may fix b1 = 0
or fix the value of a component of γ0 (or some other γj) at θ = 0.

The normal behavior of a quasi-periodic invariant circle is computed with the method of [47].
Given an invariant circle parametrized by γ(θ), since for h ∈ Rn we have

f(γ(θ) + h) = f(γ(θ)) + Dxf(γ(θ))h + O(||h||2), (3.7)

the normal linear behavior around γ(θ) is described by the skew-product system

(x, θ) �→ (A(θ)x, θ + ρ), (3.8)
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where A(θ) = Dxf(γ(θ)) and h ∈ Rn. Reducibility of the invariant circle is an important property
to characterize its normal behavior. Reducibility means that the linearized dynamics around the
invariant circle is independent on the angular coordinate along the circle in a suitable coordinate
system. A formal definition is now given. The invariant circle parametrized by γ(θ) as in (3.1) is
said to be reducible if there exists a change of coordinates x = C(θ)y such that (3.8) becomes

(y, θ) �→ (By, θ + ρ), (3.9)

where the matrix B = C−1(θ)A(θ)C(θ) does not depend on θ. Reducibility is a property of the
transfer operator defined in (3.2): if the invariant circle is reducible then the normal behavior is
fully characterized by the eigenvalues λ of

(T−ρ ◦ A(θ))ψ(θ) = λψ(θ), (3.10)

see [47]. The idea is to derive finite dimensional approximations for the operators T−ρ and A(θ). A
discretized version AN of A is given by the Jacobian of the mapping in (3.6). A discretization of
Tρ is the block-diagonal matrix

(T−ρ ◦ A(θ))N , (3.11)

where each block is a 2 × 2 matrix corresponding to rotation of angle kρ: indeed, the rotation
θ �→ θ + ρ applied to the Fourier series in (3.5) is a rotation of angle kρ on each subspace
corresponding to (ak, bk). If the circle is reducible to Floquet form, then the eigenvalues of the
discretized operator (3.11) provide approximations for the eigenvalues (λ‖, λ⊥

1 , . . . , λ⊥
n−1) of the

matrix B in (3.9): here λ‖ = 1 corresponds to the tangent linear dynamics and λ⊥
j , j = 1, . . . , n − 1

determine the linear dynamics in the normal directions to the circle.
The numerically computed eigenvalues of (3.11) are sorted according to their estimated error, as

described in [47, Sec. 3.2], and the most precise 25% is retained for the following computations. One
then aims to identify the number of distinct classes of ρ-related eigenvalues in the spectrum of the
discretized operator. Two eigenvalues λ1 and λ2 are called ρ-related (or related, for shortness) if there
exists k ∈ Z such that λ1 = exp(ikρ)λ2. A signature of reducibility of the normal linear behavior is
that the set of eigenvalues partitions into at most n distinct classes of related eigenvalues, where n is
the phase space dimension. This means that all the sufficiently precise eigenvalues of the discretized
transfer operator belong to circles in the complex plane having radii approximately equal to∣∣∣λ‖

∣∣∣ , ∣∣∣λ⊥
1

∣∣∣ , . . . ,
∣∣∣λ⊥

n−1

∣∣∣ .

The logarithms of these radii are the Lyapunov exponents: this provides direct information about
the stability of the invariant circle. Examples are given in Section 4.

An alternative method for the computation of quasi-periodic invariant circles (and tori) is the
so-called “fractional iteration” method developed by C. Simó in the 1990s. The basic idea is to
work in the phase space instead of the Fourier space. A return map is synthesized by interpolating
points obtained from different (integer) powers of the initial map (or suitable Poincaré iterates in
the case of flows). Once again, one looks for invariant circles which have “sufficiently Diophantine”
rotation number ω. Denoting by T = 2π/ω the “period” of the invariant circle, one can use the
interpolation procedure sketched above to define the T -th iterate of the map f : note that T /∈ Q,
since ω is Diophantine, hence the name of “fractional iteration”. A modified Newton method is
then used to find zeroes of the equation fT (x) − x = 0. The solution to this equation is a single
point on the invariant circle.

The fractional iteration method was applied to the three-dimensional restricted three-body
problem in [63, 64]. This method in general works well for stable or elliptic tori. In case of instability,
a parallel shooting strategy can be adopted, see [28, 29] for a broader discussion and a comparison
with the Fourier-based method. The applicability of the method can be fully justified if we assume
that the tori are sufficiently regular and the linearized dynamics around them is reducible. An
important advantage of the fractional iteration method with respect to Fourier-based methods is
the applicability to high dimensional cases: indeed, the method has been also applied successfully to
the computation of 2D invariant tori for PDE [59] with a moderate computational effort. However,
both the fractional iteration and the Fourier-based methods “suffer” in the case of resonant or
near-resonant dynamics.
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Fig. 5. Sketch of the structure of the parameter plane for a quasi-periodic period doubling of an invariant
circle of a map depending on two parameters (μ, δ), based on the quasi-periodic bifurcation theory of Section 2.

3.2. General Strategy for Numerical Continuation of Invariant Circles

We consider a map Gμ,δ depending on two real parameters (μ, δ). To start with, suppose that the
map Gμ,δ exhibits quasi-periodic period-doubling bifurcations where an invariant circle attractor
loses stability and a “doubled” circle attractor branches off, compare with Section 2.6. Generically
we expect that the (μ, δ)-parameter plane is Cantorized near the bifurcation: a Cantor-like foliation
by curves is expected to occur in the parameter plane, such that the bifurcating invariant circle has
quasi-periodic dynamics (satisfying a Diophantine condition like (2.7)) for all parameter values on
the Cantor-like foliation. The rotation number of the invariant circle is fixed to a single irrational
value when parameters vary on a single curve in the Cantor-like foliation. Each of these curves is
a quasi-periodic “hair” [20, 68], compare with Section 2.

The conceptual sketch in Fig. 5 illustrates the theoretical expectation for the Cantor-like
structure near a quasi-periodic period doubling bifurcation. An invariant circle C with Diophantine
rotation number occurs for (μ, δ) on the “hairs” D1,D2, . . . The “fattening” procedure of Section 2.3
yields so-called flat discs Aj and Uj in the parameter plane, such that the invariant circle C
is attracting for parameters in Aj , unstable for parameters in Uj and normally hyperbolic for
parameters in the union Aj ∪ Uj . A doubled invariant circle attractor C2 exists for parameters in
U1, U2, U3, . . .. The tangency points Qj of disks Uj and Aj form a frayed (Cantorized) bifurcation
boundary P . A frayed boundary can be thought of as a Cantor set, contained inside a virtual curve
(denoted as Q in Figs. 2, 3, and 5), the gaps of which are filled up with resonance “bubbles”.

The theory does not specify the dynamics inside the resonance “bubbles” Bk: there we expect
intricate structures of bifurcations of periodic orbits. Indeed, a cascade-like structure of subordinate
quasi-periodic bifurcations was found in [21, 22] for the quasi-periodic Hopf bifurcation.

Quasi-periodic period doubling bifurcations admit a simple description if the bifurcating
invariant circle is reducible [44, 47, 49] and if parameters are restricted to move along a single
Diophantine “hair” Dj in the two-dimensional parameter space. In this case, one of the normal
eigenvalues of the circle C becomes −1 at a single point along the “hair” Dj : this is the tangency
point Qj between two discs Aj and Uj , see [4] and compare with the “Invariant Curve Theorem”
of [46]. At that moment, C turns unstable and a doubled circle attractor 2C shows up. This may
occur in two ways [33, 51]:
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1. the circle 2C consists of a single connected curve, which is roughly twice as “long” as the
bifurcating circle C ; in this case the rotation number of 2C is halved with respect to the
rotation number of the bifurcating circle C (near the bifurcation point) and the center
manifold of the bifurcation is a Möbius strip;

2. the circle 2C consists of a pair of connected curves, which are mapped onto another by G (a
so-called periodically invariant circle); in this case, the rotation number of G2 is the same as
the rotation number of the bifurcating circle C (near the bifurcation point) and the center
manifold of the bifurcation is a cylinder.

The Newton method described in Section 3.1 can be applied to map Gμ,δ to numerically compute
the invariant circle C . In the simplest version, one can thereby refine an initial approximation of
the Fourier coefficients of C for fixed values of the parameters (μ, δ), for which the rotation
number ρ of C is known and is irrational. If the rotation number is not known, a modified Newton
algorithm [62] is used to refine initial approximations for both the Fourier coefficients and ρ. In
this way, one is constraining the Newton algorithm to a single point along a quasi-periodic “hair”.
Fig. 5 illustrates this initial process: the starting parameter pair (μ, δ)0 converges to (μ, δ)1 ∈ D1

by application of the modified Newton algorithm.
Parameters can be “slided” along a quasi-periodic “hair” Dj by using a modified Newton

algorithm which refines both the Fourier coefficients and the values (μ, δ), but leaves ρ fixed
to the same irrational value. In our experience, this is the most effective strategy, as the good
arithmetical properties of the Diophantine rotation numbers usually ensure much faster decay of
the Fourier coefficients than for (nearly)-resonant rotation numbers. This suggests the following
algorithm.

Algorithm 1: numerical continuation of quasi-periodic invariant circles.

1. Find an invariant circle Cρ0 for initial parameter values (μ, δ)0 and compute a numerical
approximation for its rotation number ρ0.
For example, Cρ0 may be found by forward iteration if it is attractive, or by analytical means
for specific parameter values. Approximations for ρ0 can be computed as described in e.g. [68,
Appendix B].

2. Compute a numerical approximation for the Fourier coefficients of Cρ0 .
This may be obtained by sorting the points of an orbit on Cρ0, interpolating them on a
regular grid with respect to an angular variable and computing the Fourier coefficients by
numerical integration using the interpolated points.

3. Compute refined approximations Cρ1 and ρ1 using a modified Newton method.
This will usually move the parameters onto values (μ, δ)1 on a Diophantine “hair”.

4. Predict the Fourier coefficients of a new invariant circle for parameter values (μ, δ)j+1 from
the invariant circle occurring at (μ, δ)j .
This prediction step is performed according to standard extrapolation techniques, e.g. using
a Lagrange polynomial [62] interpolating the Fourier coefficients and parameter values of the
last 2–4 computed invariant circles.

5. Refine the predicted invariant circle by a modified Newton method that leaves the rotation
number fixed.

Re-iteration of steps 4 and 5 yields an approximation for the quasi-periodic “hair” D1, corresponding
to rotation number ρ1, as a finite set of parameter pairs {(μk

ρ1
, δk

ρ1
) | k = 1, 2, . . .} and corresponding

Fourier coefficients. Steps 4 and 5 above form a usual predictor-corrector approach for numerical
continuation of invariant objects, with the only caveat that the rotation number is constrained to
remain fixed at the initial (Diophantine) value ρ1. This approach avoids the problems due to the
(generically) non-smooth dependence of the rotation number on the parameters. Algorithm 1 forms
the basis for our general strategy to compute quasi-periodic bifurcations.

Algorithm 2: numerical continuation of quasi-periodic bifurcations of an invariant
circle.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 1–2 2011



166 VITOLO et al.

1. Perform initial steps 1–3 of Algorithm 1.

2. During iteration of steps 4–5 of Algorithm 1, monitor a test function to detect crossing of
the single bifurcation point Qρ1 along “hair” D1.
This requires computing the normal behavior of Cρ1 using the method of Section 3.1. For
the quasi-periodic period doubling we use the test functions f1 = λ⊥

1 + 1 and f2 = λ⊥
2 + 1 to

check that one of the eigenvalues crosses -1 along the real line in the complex plane.

3. If a test function crosses zero, compute a precise approximation for the quasi-periodic
bifurcation point Q1.
We compute zeroes of the test functions f1(s) or f2(s) by a secant search on the pseudo-arc
length s along the continuation path on “hair” D1.

4. Use a predictor step to compute a new approximate value of parameters, rotation number
and Fourier coefficients at another quasi-periodic bifurcation and repeat the above steps.

Again, iteration of steps 3–4 of amounts to a usual prediction-correction approach, with the
following important caveats.

Assume that quasi-periodic bifurcation points Q1 and Q2 have been computed by Algorithm 2.
A predictor step for Q3 can then be obtained by linear extrapolation, as shown in Fig. 5. If the
predictor “lands” on a Diophantine “hair” (e.g. (μ, δ)t ∈ D3 for Fig. 5), then the continuation
procedure of Algorithm 1 can be started. The problem in our setting is that there is only a positive
probability that the predicted parameter values will “land” on a Diophantine “hair”. There is
also positive probability that the predictor will fall within a “bubble” (e.g. B2 for Fig. 5) where
the invariant circle may no longer exist. This is sketched by the predicted point falling in B2 in
Fig. 5.

Problems also arise if the predictor falls inside a resonance “gap” (not necessarily a “bubble”):
in this case, indeed, (3.1) does not hold, because the dynamics on the invariant circle is of Morse–
Smale type. In other words, we are in the interior of a resonance “tongue” (compare Fig. 4), where
the invariant circle is no longer analytic but only finitely differentiable, see e.g. [18, Sec. 3.1]. Hence
the Fourier coefficients decay slowly and the Newton method of Section 3.1 breaks down.

To prevent the above problems, the prediction step 3 is the only place where the rotation number
is allowed to vary in Algorithm 2: the ensuing correction is performed with fixed ρ. In this way, one
can ensure that the predicted ρ is Diophantine. Indeed, given a predicted value ρ̂, one can simply
change the continued fraction expansion of ρ̂ by adding a small correction as follows: first we add
a large quotient (so that the corrected number will be rather close to the initial ρ̂) and then a tail
like the golden mean. The number ρ thus obtained is a noble number and, hence, Diophantine.
This is the most sensitive part in the algorithm: the “fumbling” in parameter space in search of
“sufficiently irrational” rotation numbers, trying to “dodge” resonance gaps and “bubbles”.

4. EXAMPLE 1: A MODEL MAP FOR THE HOPF-SADDLE-NODE BIFURCATION OF
FIXED POINTS

We consider the following map:

G :

⎛
⎝w

z

⎞
⎠ �→

⎛
⎝ei(ω0+γδ)w[1 − γ(γμ + az + γz2)]

z + γ(1 − |w|2 − z2)

⎞
⎠ +

⎛
⎝γ3(ε1w

4 + ε2z
4)

0

⎞
⎠ , (4.1)

where w = x + iy ∈ C, z ∈ R and a = a1 + ia2 ∈ C. Map (4.1) was constructed in [21] as a model
to study the Hopf-saddle-node (HSN) bifurcation for fixed points of 3D diffeomorphisms. The HSN
bifurcation occurs when the eigenvalues of the derivative at the fixed point are

eiω0 , e−iω0 and 1, (4.2)

subject to the non-resonance conditions

einω0 �= 1 for n = 1, 2, 3, 4, (4.3)
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and to generic requirements on the higher-order terms and on the parameter dependence [21,
Lemma 6]. Map (4.1) was constructed to study the dynamics near a 1 : 5 resonance of the complex
conjugate eigenvalues, corresponding to ω0 = 2π/5. This resonance was chosen because it has the
lowest order among the weak resonances, and therefore it is likely to have a most visible influence
on the bifurcation diagram. As in [21, 68] we use (μ, δ) as control parameters and fix γ = 0.1,
ε1 = ε2 = 1, a1 = −1, a2 = 1/

√
2, see [67, App. 4E] for our choice of these coefficients.

Model map (4.1) is obtained by perturbing the flow of a truncated normal form for the Hopf-
saddle-node of equilibria of vector fields. As such, it exhibits quasi-periodic Hopf bifurcations which
are “inherited” by construction from the unperturbed vector field, see [21, 67]. As it turns out,
map (4.1) also exhibits quasi-periodic period doubling and saddle-node bifurcations of invariant
circles. These three bifurcation types are presented in the next sections, to illustrate the theory
of Section 2 and algorithm of Section 3.

4.1. Quasi-periodic Hopf Bifurcations

An invariant circle attractor of map (4.1) loses normal hyperbolicity (stability) as G decreases.
Thereby, the invariant circle turns into a repellor and an invariant 2-torus attractor branches off.
This process is illustrated in Fig. 6: the top row shows the invariant circle for three values of (μ, δ),
corresponding to an attractor, a weak attractor (very close to the quasi-periodic bifurcation) and a
repellor surrounded by the 2-torus attractor. The invariant circle is analytic in all cases, as indicated
by the decay of the modulus of the Fourier coefficients as a function of the wavenumber k. In this
case we used N = 100 for the order of the Fourier truncation in (3.5).

The bottom row of Fig. 6 illustrates the normal behavior of the invariant circles in the top
row. In each case, our algorithm indicates that the circle is reducible, since the eigenvalues of the
discretized transfer operator (3.11) all lie on circles in the complex plane. Specifically, following the
approach of [47], we checked that the 25% most precise eigenvalues belong – with sufficient accuracy
– to circles in the complex plane. The logarithms of the radii of these “circles of eigenvalues” are
the Lyapunov exponents of the invariant circles, see Section 3.1. In all cases, for the eigenvalues
(λ‖, λ⊥

1 , λ⊥
2 ) we observe numerically that:

λ‖ = 1: corresponding to the tangent direction along the invariant circle;

λ⊥
1 = λ⊥

2 : the two normal eigenvalues are complex conjugate, corresponding to dynamics of focus
type in the normal direction.

Tab. 1 shows the first 13 numerically computed eigenvalues of the discretized transfer operator (3.11)
for the invariant circle of Fig. 6 left. The algorithm identifies two classes of related eigenvalues: one
class corresponding to λ‖ and just one class corresponding to both λ⊥

1,2. In this case, the Lyapunov
exponents are χ1 = log λ‖ = 0 and χ2,3 = log(

∣∣λ⊥
1,2

∣∣) < 0. For the right column of Fig. 6, repulsivity
of the invariant circle is identified by one circle of eigenvalues outside the unit circle: this corresponds
to a pair of positive Lyapunov exponents.

According to the theory of Section 2, quasi-periodic bifurcations of invariant circles admit a
simple dynamical description when the parameters are constrained to vary on the set where the
rotation number on the invariant circle is fixed to an irrational (Diophantine) value. This set is
(locally) a curve and the collection of all such curves forms a Cantor-like foliation by quasi-periodic
“hairs” in the parameter plane. Quasi-periodic bifurcations occur on points along the “hairs” which
are isolated (if the bifurcations are nondegenerate) and form a frayed boundary in parameter space.
This frayed boundary is interrupted by “bubbles” corresponding to internal or normal-internal
resonances on the bifurcating invariant circles.

Fig. 7 left provides an illustration of the Cantor-like foliation in the (μ, δ)-parameter plane
corresponding to the quasi-periodic Hopf bifurcations of map G. The dots along the quasi-periodic
“hairs” mark the points where the circle of eigenvalues corresponding to λ⊥

1,2 crosses the unit circle,
compare with Fig. 6 center. All three Lyapunov exponents vanish at such points. This is illustrated
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(μ, δ/2π) = (1.2, 0.018), (μ, δ/2π) = (0.97, 0.01537), (μ, δ/2π) = (0.6, 0.01117)∣∣λ⊥
1

∣∣ = 0.99754
∣∣λ⊥

1

∣∣ = 0.99997
∣∣λ⊥

1

∣∣ = 1.00382
χ1 = 0, χ2,3 = −0.0025, χ1 = 0, χ2,3 = −0.00003, χ1,2 = 0.0038, χ3 = 0
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Fig. 6. Illustration of an invariant circle of the map G (4.1), undergoing a quasi-periodic Hopf bifurcation. Top
row: invariant circle for three values of (μ, δ/2π) (indicated on top of each panel), with rotation number fixed
to ρ = 0.200393786271967. Left & middle: attracting circle. Right: repelling circle coexisting with a 2-torus

attractor. In all 3 cases, the normal eigenvalues are complex conjugate: λ⊥
1 = λ⊥

2 . Modulus
��λ⊥

1

�� and related

Lyapunov exponents χ1 � χ2 � χ3 are indicated on top of each panel. Middle row: modulus
��(a1

k, b1
k)
��

2
of

the Fourier coefficients of the x-component of the parametrization of the invariant circle on top as a function
of k. Bottom row: eigenvalues of the discretized transfer operator (3.11) in C. The magnification in the inset
illustrates the existence of two classes of related eigenvalues of (3.11), corresponding to two separate circles in
C. Eigenvalues which our algorithm identifies as sufficiently precise are plotted with either thick dots (green)
or triangles (red), according to which of the two classes they are assigned to. The remaining ones are plotted
in black. The triangles (red) denote the class of the unit eigenvalue in the tangent direction.

in Fig. 8 left, showing the Lyapunov exponents as a function of μ varying along the horizontal line
labelled B in Fig. 7 left.

The rotation number ρ along line B is also shown in Fig. 8 left. The rotation number is constant
and equal to 0.2 for large μ: this corresponds to a 1:5 resonance “gap” where the invariant circle is
phase-locked to a pair of period five orbits, an attractor and a saddle, see Fig. 9a. Such resonant
invariant circles are only finitely differentiable and the algorithm of Section 3.1 breaks down, as
discussed in Section 3.2. By decreasing μ, the circle exits the 1:5 resonance gap and the rotation
number begins to increase (Fig. 8 left). Generically, one expects the graph of the rotation number
to be a devil’s staircase [38], where:

resonances on the invariant circle are dense in μ, corresponding to plateaus of constant rotation
number;

REGULAR AND CHAOTIC DYNAMICS Vol. 16 BBB Nos. 1–2 2011



QUASI-PERIODIC BIFURCATIONS OF INVARIANT CIRCLES 169

Table 1. First 13 eigenvalues (out of a total of 603) of the discretized transfer operator (3.11) for
the invariant circle of Fig. 6 (top left panel) with N = 100, sorted as described in Section 3.1. Two
classes are identified, corresponding to two distinct circles in the complex plane, see Fig. 6 (bottom left
panel). Class 0 corresponds to a pair of complex conjugate eigenvalues with modulus approximately
0.99754 and class 2 corresponds to the (unit) real eigenvalue in the tangent direction.

Modulus Argument class

0.9975425183436066 0.1392935712802970 4.963e+00 0

0.9975425183436066 -0.1392935712802970 4.963e+00 0

0.9975425183436070 1.1198177222738102 5.497e+00 0

0.9975425183436070 -1.1198177222738102 5.497e+00 0

0.9975425183436107 1.3984048648344078 5.642e+00 0

0.9975425183436107 -1.3984048648344078 5.642e+00 0

0.9975425183436095 -0.7626636377618755 7.030e+00 0

0.9975425183436095 0.7626636377618755 7.030e+00 0

0.9975425183436051 -0.4840764952012779 7.321e+00 0

0.9975425183436051 0.4840764952012779 7.321e+00 0

0.9999999999999969 0.0000000000000000 8.133e+00 2

0.9975425183436020 -0.4964476557922389 9.174e+00 0

0.9975425183436020 0.4964476557922389 9.174e+00 0

Table 2. Legend of the color coding for Fig. 7 right panel: the attractors are classified by means
of the Lyapunov exponents (χ1, χ2, χ3). If printed in grey tones, the most abundant domains (black,
dark blue, green and pale blue) are seen as black, dark grey, grey and pale grey, respectively.

color Lyapunov exponents attractor type

red χ1 > 0 = χ2 > χ3 strange attractor

yellow χ1 > 0 > χ2 > χ3 strange attractor

blue χ1 = 0 > χ2 = χ3 invariant circle of focus type

green χ1 = χ2 = 0 > χ3 invariant two-torus

black χ1 = 0 > χ2 > χ3 invariant circle of node type

grey 0 > χ1 > χ2 = χ3 periodic point of focus type

pale blue 0 > χ1 = χ2 � χ3 periodic point of focus type

magenta 0 > χ1 > χ2 > χ3 periodic point of node type

white no attractor detected

quasi-periodic dynamics occurs for a positive Lebesgue measure nowhere dense set of μ-
parameter values.

For the case of Fig. 8 left, we did not identify other resonance plateaus: they might be of very small
size, possibly below numerical resolution of standard double precision.

In the 1:5 resonance gap of Fig. 8 left, all Lyapunov exponents are negative: this corresponds to
a periodic attractor P 5

−, see Fig. 9a. This periodic attractor is of focus type in the μ-interval where
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Fig. 7. Left: Cantor-like foliation of curves (red) in the (μ, δ/2π) parameter plane where the invariant circle
of Fig. 6 has a fixed irrational rotation number ρ and is stable (solid) or unstable (dashed). The difference
in rotation number between any two consecutive curves is about 0.0001 (except, of course, for the 1:5 gap).

Thick dots (cyan): quasi-periodic Hopf bifurcations on frayed boundary H. Black: curves of SN 5
± of saddle-

node bifurcations of period 5 points. Asterisks: the three pairs of parameter values of Fig. 6 (left, middle, right
column), belonging to “hair” D defined by ρ = 0.200393786271967 constant on the invariant circle. See Fig. 8
below for the meaning of the lines B and C. Right: Lyapunov diagram of the map G near the intersection of
the 1:5 resonance gap with the frayed boundary H of quasi-periodic Hopf bifurcations, see Tab. 2 for the color
coding.
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Fig. 8. Left: Lyapunov exponents χ1 � χ2 � χ3 (bottom part of the panel) and rotation number ρ around the
origin (top part) as a function of μ for fixed δ/2π = 0.016, that is along the horizontal dotted line labelled B
in Fig. 7 left. Right: same as left for fixed μ = 1.2 and varying δ, that is along the vertical dotted line labelled
C in Fig. 7 left.

χ1 = χ2 and is of node type near the edge of the resonance gap. The maximal Lyapunov exponent
χ1 vanishes at the edge of the gap: this corresponds to a saddle-node bifurcation of period 5 points,
where the attractor P 5

− collapses with the saddle P 5
+ (see Fig. 9a) and they both disappear. This

occurs on bifurcation curve SN 5
+ which, together with saddle-node bifurcation curve SN 5

−, forms
the edges of the 1:5 resonance gap, see Fig. 7 left. Both SN 5

± are roughly parallel to the Diophantine
“hairs”: the curves of this Cantor foliation “accumulate” with a square-root asymptotics onto the
edges SN 5

± of the 1:5 resonance gap.
The 1:5 gap “intersects” the frayed boundary H of quasi-periodic Hopf bifurcations at a 1:5

internal resonance “bubble”. The main goal of [21] was to study this “bubble” using model G,
which was constructed ad-hoc. Generically, one expects a dense set of such “gaps” and “bubbles”
but, as mentioned above, the size of the other resonances in the parameter plane seems very small
in this case.

All three Lyapunov exponents vanish at a single point on curve B (Fig. 8 left): this is where
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Fig. 9. (a) The 1:5-resonant attracting invariant circle C is formed as the union of the unstable manifold

W u(P 5
+) (red) with the node-focus attractor P 5

− (blue dots), where P 5
+ (red squares) is a saddle-focus. (b) The

1:5-resonant repelling circle C is formed by the union of the stable manifold W u(P 5
−) (blue) with the node-

focus repellor P 5
+ (red squares), where P 5

− (blue dots) is a saddle-focus. In both cases, parameters lie within the

1:5 resonance gap and outside the elliptic closed domain bounded by the Hopf bifurcation curve labelled H5 in
Fig. 7 right. For (a) and (b) parameters lie respectively at the right and at the left of the frayed quasi-periodic
Hopf boundary H.

the quasi-periodic Hopf bifurcation takes place. Of course, we cannot state this with certainty:
horizontal lines such as B hit a “good” parameter value (in the terminology of [30, 46]) with
positive probability, but there is also positive probability that they hit a “bubble”. The thick
dots of Fig. 7 left belong to the frayed Hopf boundary H: they are identified by performing
continuation for fixed rotation number, varying (μ, δ), and looking for (μ, δ) values where the three
Lyapunov exponents vanish, or equivalently, the “inner” circle of eigenvalues of the discretized
transfer operator crosses the unit circle as in Fig. 6 bottom.

The Lyapunov exponents provide a powerful tool to characterize the dynamics. Several features
discussed above can be recognized in the Lyapunov diagram of Fig. 7 right. The circle is attracting
and quasi-periodic in the blue domain at the right of Fig. 7 right, where it is of focus type in the
normal direction, see Tab. 2. The quasi-periodic frayed Hopf boundary H is identified as separating
the blue from the green parameter domain: in the latter domain, a 2-torus attractor occurs. This
is identified by two vanishing Lyapnov exponents, compare with Fig. 8 left. At the right of H, the
1:5 resonance gap is identified in Fig. 7 right as a pale blue strip with grey edges matching the two
saddle-node bifurcation curves SN 5

± of Fig. 7 left. The resonance gaps of Fig. 7 left and right do
not match at the left of H, because the invariant circle has turned into a repellor in that region
(see Fig. 9b), whereas the Lyapunov diagram can only inform us about the attractors.

Additional bifurcations occur at the 1:5 “bubble” near H. The period 5 orbit P 5
− of Fig. 9a loses

stability at a Hopf bifurcation of periodic points. The invariant circle is therefore broken by loss of
normal hyperbolicity: the unstable manifold W u(P 5

+) no longer connects with P 5
− after the loss of

stability, see Fig. 10a. The stable manifold of P 5
− approaches P 5

+, but then escapes, see Fig. 10b.
A periodically invariant circle attractor, C 5, branches off from P 5

− at the Hopf bifurcation: C 5

consists of five circles mapped onto each other by the map G (only one of the five circles is shown
in Fig. 10a). The black lobe of the Lyapunov diagram Fig. 7 right within the 1:5 resonance gap is
explained by the presence of C 5, which is of node type near its branching from P 5

−. This is also
visible in Fig. 8 right, showing the Lyapunov exponents as a function of δ varying along line C
of Fig. 7 left. The rotation number around the origin has a horizontal plateau on an interval of δ
corresponding to the 1:5 resonance. However, the maximal Lyapunov exponent becomes zero for a
sub-interval corresponding to the presence of C 5, which is of node type since χ2 �= χ3.

A rather complex bifurcation structure occurs within the 1:5 “bubble” near H, related to
secondary quasi-periodic bifurcations of the period 5 invariant circle C 5. This was described
in [21], to which we refer the reader for details. Suffice here to say that, by the genericity of
the construction of our model map, the same level of complexity is expected near any resonance
“bubble” along frayed boundaries of quasi-periodic Hopf bifurcations. The ubiquitous presence of
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Fig. 10. (a) Projection on (x, z) of the points P 5
− (blue dot) and P 5

+ (red square), with one branch of the

1D unstable manifold W u(P 5
+) (red) and with the period five circle attractor C 5 (green). The fifth iterate

G5 is used for the computations, so that only one “fifth” of the whole phase portrait is shown. Magnification
of a neighborhood of P 5

− is given in the lower box, where a portion of W s(P 5
−) is added (blue). The upper

box contains a magnification of the “scrolls” of W u(P 5
+) around C 5. (b) P 5

− and P 5
+ are plotted together

with one branch of W s(P 5
−) (blue). After approaching P 5

− (in reversed time), W s(P 5
−) escapes to infinity. A

neighborhood of P 5
− is magnified in the box, where a portion of W u(P 5

+) is included (red). Parameters are
fixed at (μ, δ/(2π)) = (1, 0.0097).

 0.002

 0.006

 0.01

 0.014

 0.018

 0.4  0.6  0.8  1  1.2  1.4

(a)

δ

2π

μ

H

DH5
−

DH5
+

H5
+

H5
−

SN5
+

SN5
−

SNC5
−

SNC5
+

BT C5
−

BT C5
+

HC5
−

HSN5
+

HSN5
−PDC5

PDC5

SNC5
±

H,HC5
±

 0.006

 0.007

 0.008

 0.009

 0.01

 0.6  0.7  0.8  0.9  1

(b)

δ

2π

μ

H
DH5

−

H5
+

SNC5
−

SNC5
+

BT C5
−

HC5
−

HSN 5
−

Fig. 11. (a) Bifurcation diagram of G near the 1:5 “bubble”, see the text for the notation. The left half of curve

SN 5
+ is omitted for better visualization, compare with Fig. 7 left. (b) Magnification of (a). The curves SNC5

±,

HC5
±, PDC5

± and H are not (expected to be) smooth submanifolds of R2, but frayed bifurcation boundaries,
see Section 2.

resonance “bubbles” with their complex subordinate bifurcation structures is the main reason why
the numerical continuation of quasi-periodic bifurcations is difficult.

4.2. Quasi-periodic Saddle-node Bifurcations

A partial bifurcation diagram for the map G is shown in Fig. 11. The curves SN 5
± and H5

± are
saddle-node and Hopf bifurcations of period five points: SN 5

± are the same as in Fig. 7 left and
H5

± are the Hopf bifurcations where the period five invariant circle C 5 of Fig. 10 branches off from
the period five point P 5

−, also compare with Fig. 8 right. The frayed quasi-periodic Hopf boundary
H was discussed in the previous section and we refer to [21] for the codimension two points DH5

±,
BT C5

± and HSN 5
±.

In this section, we focus on quasi-periodic saddle-node bifurcations of the period five invariant
circle C 5. Such bifurcations occur on the two frayed bifurcation boundaries SNC5

± of Fig. 11. As
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Fig. 12. Quasi-periodic saddle-node bifurcation of an invariant circle of the map G5 (4.1) (see text for details).
Top row: invariant circle for three values of (μ, δ/2π) (indicated on top of each panel), with rotation number
fixed to ρ = 0.095734978819136. Left: attracting circle. center, right: unstable circle (saddle type). In all 3

cases the normal eigenvalues λ⊥
1,2 are real: their values and related Lyapunov exponents χ1 � χ2 � χ3 are

shown on top of each panel. Middle row: modulus
��(a1

k, b1
k)
��

2
of the Fourier coefficients of the x-component of

the parametrization of the invariant circle on top as a function of k. Bottom row: eigenvalues of the discretized
transfer operator (3.11) in C. Magnifications in the insets illustrate the existence of three classes of related
eigenvalues of (3.11), corresponding to three separate circles in C. Eigenvalues which our algorithm identifies
as sufficiently precise are plotted with either thick dots (green), triangles (red), or squares (blue) according to
which class they are assigned to. The remaining ones are plotted in black. The triangles (red) denote the class

of the unit eigenvalue in the tangent direction. The blue squares (green dots) correspond to the eigenvalue λ⊥
1

(λ⊥
2 ) which is (is not) involved in the bifurcation process.

usual, we start by fixing a (Diophantine) rotation number and describing the bifurcation process
as parameters (μ, δ) are “slided” along a single quasi-periodic “hair”. We find it convenient to use
the fifth image G5 for both the illustrations and the numerical computations. This allows us to
consider any of the five circles of C 5, which are invariant under G5: in the sequel, we fix one of
them and call it invariant circle by abuse of notation.

Fig. 12 top shows the invariant circle C 5 for three values of (μ, δ), corresponding to an attractor,
a weakly unstable circle (very close to the quasi-periodic saddle-node bifurcation) and an unstable
circle. The invariant circle is analytic in all cases, as indicated by the fast decay of the modulus of
the Fourier coefficients as a function of the wavenumber k. In this case we used N = 60 for the order
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Fig. 13. Left: Cantor-like foliation of curves in the (μ, δ) parameter plane where the invariant circle of Fig. 12
has a fixed irrational rotation number ρ and is stable (grey, solid) or unstable (red, dashed). Green dots: quasi-

periodic saddle-node bifurcations on frayed boundary SNC5
−, where the “hairs” of the Cantor-like foliation are

folded, see text for details. Black: resonance gap of order 50 on the invariant circle. Asterisks mark the three
pairs of parameter values of Fig. 12 (left, middle, right column), belonging to quasi-periodic “hair” defined by

ρ = 0.095734978819136 constant on the invariant circle C 5
±. This “hair” is formed by the union D ∪ D′ (blue),

with C 5
− stable on D and C 5

− unstable on D′. See Fig. 14 for the meaning of line B. Right: magnification of left

near a 3D Chenciner “bubble”, at the “tangency” of frayed boundary SNC5
− with the resonance gap of order

50 (black) on the invariant circle C 5
±. The plot is deformed for better visibility, using a transformed variable

�δ = δ − A ∗ μ − B on the vertical axis. The difference in rotation number between any two consecutive curves
is about 0.0003 for both the right and left panel.

of the Fourier truncation in (3.5). A smaller value of 30 or 40 would have sufficed, as suggested by
the middle row of Fig. 12.

The bottom row of Fig. 12 illustrates the normal behavior of the invariant circles in the top row.
As for Fig. 6, our algorithm indicates reducibility of the linearized dynamics on the circle, since the
eigenvalues of the discretized transfer operator (3.11) all lie on circles in the complex plane. In all
cases, we identify three distinct circles of eigenvalues and hence three distinct values of (λ‖, λ⊥

1 , λ⊥
2 ).

We observe numerically that:

λ‖ = 1: corresponding to the tangent direction along the invariant circle;

λ⊥
1 > λ⊥

2 : the two normal eigenvalues are real and distinct, corresponding to dynamics of node
type in the normal direction.

For the center and right columns of Fig. 12, instability of the invariant circle is identified by
one circle of eigenvalues outside the unit circle: this corresponds to a positive maximal Lyapunov
exponents χ1.

The three invariant circles of Fig. 12 occur for parameter values belonging to one and the same
Diophantine “hair” in the (μ, δ)-plane. This is illustrated in Fig. 13, showing the organisation of
the Cantor-like foliation of “hairs” for this quasi-periodic saddle-node bifurcation. Each “hair”
is divided by the bifurcation point in two parts D and D′, corresponding to stable and unstable
normal linear dynamics. The union D ∪D′ forms a smooth curve, as opposed to Fig. 2. As a matter
of fact, Dj ∪ D′

j in Fig. 2 actually form smooth curves in a higher dimensional space, for instance
in the (λ, μ, z)-space. The occurrence of cusps at Qj in Fig. 2 is due to the projection. This is usual
for saddle-node bifurcations, compare with the “standard” cusp y2 = x3.

The frayed bifurcation boundary SNC5
− is the envelope of the Cantor-like foliation at the

bifurcation points. Hence, the projection of the Cantor-like foliation onto the (μ, δ)-parameter
plane has a fold. A stable and a saddle-like invariant circle coexist in phase space for the same
(given) pair of (μ, δ) values, but the two circles have different rotation numbers. Suppose to move
the parameters (μ, δ) along a straight line towards the bifurcation boundary SNC5

−. Then the two
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Fig. 14. Lyapunov exponents χ1 � χ2 � χ3 (bottom part of the panel) and rotation number ρ around the
origin (top part) as a function of μ varying along the horizontal line B in Fig. 13 left, for fixed δ/2π = 0.00625.

invariant circles undergo different resonances at different parameter values. The straight line might
cross SNC5

− inside a resonance “bubble”, with the ensuing complicated dynamics described by
Chenciner [30–32].

On the other hand, the quasi-periodic saddle-node bifurcation admits a simple dynamical
description when parameters are constrained to vary on a single Diophantine “hair”, as Fig. 12
shows. Along this “hair”, a stable and an unstable invariant circle, both of node type and with
the same rotation number, can be thought of as merging at the bifurcation point coming from
the different directions of D and D′. In other words, the bifurcating invariant circles with the
same (Diophantine) rotation rumber do not coexist at the same parameter values. This description
necessitates from at least two parameter values and is somewhat different from the standard saddle-
node bifurcation for fixed points. However, it is the most natural for quasi-periodic saddle-node
bifurcations.

Fig. 14 shows the variation of the three Lyapunov exponents as the parameter μ varies along
line labelled B in Fig. 13 left. For large μ, say μ = 0.58, the dynamics takes place on the 2-torus
attractor, as indicated by two vanishing Lyapunov exponents. This corresponds to the green domain
in the Lyapunov diagram of Fig. 7 right. At the left of Fig. 14, say for μ = 0.56, the dynamics takes
place on the period five circle attractor C 5 of Fig. 12 left. When μ increases across the value 0.574
(marked by an arrow in Fig. 14), the second Lyapunov exponent vanishes (with a square-root
asymptotics): this is where the quasi-periodic saddle-node bifurcation takes place. Note that the
2-torus reappears immediately after. Indeed, this bifurcation takes place on the invariant 2-torus.

This is illustrated in Fig. 15. The period 5 circle attractor C 5 coexists in phase space with a
period 5 saddle-like circle. To distinguish them, we denote the attractor by C 5

− and the saddle by
C 5

+. In fact, they are part of the same (folded) family of invariant circles but their rotation numbers
are different, as discussed above. The unstable manifold W u(C 5

+) is attracted by C 5
− and the union

W u(C 5
+) ∪ C 5

− forms a phase-locked 2-torus, which is only finitely differentiable. In this sense, one
may say that the center manifold of this quasi-periodic saddle-node bifurcation is the 2-torus itself.
For the choice of parameter values of Fig. 15, the phase-locked 2-torus is not normally hyperbolic,
since the normal instability at the saddle C 5

+, given by χ1 = 0.0216 (corresponding to λ⊥
1 ) is larger

than the normal compression at the node C 5
−, given by χ3 = −0.0122.

Chenciner-like “bubbles” are visible along SNC5
− (as opposed to H, see Section 4.1). A resonance

“bubble” of order 50 is pointed to by an arrow in Fig. 13 left and magnified in the right panel.
The black line actually consists of a pair of very narrowly spaced saddle-node bifurcation curves of
period 50 points. These two curves delimit a narrow resonance gap where the attracting invariant
circle C 5

− is phase-locked to a period 50 attracting orbit.
The resonance gap is laid out in the parameter plane in a similar fashion as to the quasi-periodic

“hairs” and has a quadratic “tangency” with the frayed boundary SNC5
− at a Chenciner-like

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 1–2 2011



176 VITOLO et al.

ρ λ‖ λ⊥
1 λ⊥

2

C 5
+ 0.11109156678918 1.0 1.02186825875584 0.99929673737074

C 5
− 0.08812166712298 1.0 0.98788853248803 0.95388810564241

 0.2

 0.6

 1

-1 -0.6 -0.2  0.2  0.6

x

y

C 5
−

C 5
+

-0.8

-0.4

 0

 0.4

 0.8

-1 -0.6 -0.2  0.2  0.6

x

z

C 5
−

Fig. 15. Projection on (x, y) (left) and on (x, z) (right) of the saddle-like period five invariant circle

C 5
+ (green) with both sides of W u(C 5

+) (red) and with the period five circle attractor C 5
− (blue), for

(μ, δ/(2π)) = (0.746752823430779, 0.009760780820012), rotation numbers and eigenvalues are given on top.

The fifth iterate G5 of map (4.1) is used for the numerical computations, hence only one “fifth” of the whole
2-torus of G is shown.

“bubble” where SNC5
− is interrupted. One expects a dense set of such “bubbles” along SNC5

−: most
bubbles are “tiny” and go undetected by our algorithm. A few larger “bubbles” occur such as that of
Fig. 13 right: they are “skipped” by our algorithm thanks to the restriction to Diophantine rotation
numbers described in Section 3.2. At each “bubble” one expects all the complexity described in [30–
32] and even more, since we are in a 3D case as opposed to the planar case considered there.

4.3. Quasi-periodic Period Doubling Bifurcations

Fig. 16 illustrates a quasi-periodic period doubling bifurcation of the invariant circle C 5. Once
again, we use the fifth iterate G5. Although it would be more natural to consider a fixed rotation
number as we did above, the invariant circle C 5 this time has different rotation numbers in the
three cases of Fig. 16, whereas we keep fixed the parameter δ. The reason for our choice will become
clear below.

The invariant circle C 5 is attracting in Fig. 16 left, weakly unstable and unstable in Fig. 16 center
and right, respectively. A “doubled” circle 2C 5 coexists with C 5 in Fig. 16 right. This bifurcation
is of length-doubling type, in the sense that 2C 5 is a single connected curve of roughly twice the
length (and half the rotation number) of C 5, see [33, 51, 52]. In this case, the center manifold of
the bifurcation is a Möbius strip. Section 5 describes quasi-periodic period doublings which give
rise to a pair of disjoint curves, each mapped onto each other by the iterates of the map. In that
case, the center manifold is a cylinder.

The invariant circle C 5 is analytic in all cases, but the decay of the Fourier coefficients in
Fig. 16 (middle row) is here much slower than above (middle rows of Fig. 6 and 12). We herefore
used N = 180 for the order of the Fourier truncation (3.5). The numerically computed spectrum of
the discretized transfer operator indicates reducibility of the normal linear dynamics for C 5. In all
panels of Fig. 16 (bottom row), we identify three distinct circles of eigenvalues, corresponding to
distinct values of (λ‖, λ⊥

1 , λ⊥
2 ). Once again we find λ‖ = 1, corresponding to the tangent direction

along the invariant circle C 5. However, the eigenvalues λ⊥
1,2 produced by the method of Section 3.1

are complex and not conjugate. This is due to the non-orientability of the corresponding linear
bundles (eigendirections). Hence we use the double covering trick described in [42–44]. This shows
that the two complex eigenvalues λ⊥

1,2 actually correspond to the real and distinct eigenvalues
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Fig. 16. Quasi-periodic period-doubling bifurcation of period 5 invariant circle C 5 of (4.1). Top row: C 5 for
three values of μ (shown on top of each panel, with the three different ρ) and δ/2π = 0.00506 fixed. Left:

attracting circle. center: weakly unstable C 5 (saddle type). Right: unstable C 5 (red) which coexists with an

attracting doubled circle 2C 5 (blue). In all cases the normal eigenvalues of (3.11) are in C, but correspond to
�λ⊥
1,2 ∈ R using the “double covering trick”, see text. The related Lyapunov exponents χ1 � χ2 � χ3 are shown

on top of each panel. Middle row: modulus
��(a1

k, b1
k)
��

2
of the Fourier coefficients of the x-component of the

parametrization of the circle on top as a function of k. Bottom row: eigenvalues of (3.11) in C. Magnifications in
the insets illustrate the existence of three classes of related eigenvalues of (3.11), corresponding to three separate
circles in C. Eigenvalues which our algorithm identifies as sufficiently precise are plotted with either thick dots
(green), triangles (red), or squares (blue) according to which class they are assigned to. The remaining ones
are plotted in black. The triangles (red) denote the class of the unit eigenvalue in the tangent direction. The

green dots (blue squares) correspond to the eigenvalue �λ⊥
1 (�λ⊥

2 ) which is (is not) involved in the bifurcation
process.

λ̃⊥
1,2 indicated on top of Fig. 16, indicating dynamics of node type in the normal direction, as we

expected.

Fig. 17 shows the organization of the quasi-periodic “hairs” for this bifurcation scenario. The
frayed boundary of quasi-periodic doublings, identified by the thick dots, is nearly aligned with
the “hairs” of the Cantor-like foliation. This makes it difficult to visualise the crossing of the unit
circle illustrated in the middle row of Fig. 16, if parameters are moved along a single “hair”. For
this reason we chose to keep δ fixed in Fig. 16, instead of fixing the rotation number. Also for this
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Fig. 17. Left: Cantor-like foliation of curves in the (μ, δ) parameter plane where the invariant circle of Fig. 16
has a fixed irrational rotation number ρ and is stable (grey, solid) or unstable (red, dashed). The difference
in rotation number between any two consecutive curves is 0.002565. Magenta dots: quasi-periodic period
doubling bifurcations belonging to frayed boundary PDC5. Green dots: quasi-periodic saddle-node bifurcations
on frayed boundary SNC5

−. The three pairs of parameter values of Fig. 16 belong to the horizontal segment

(blue) crossing the frayed boundary PDC5. Lyapunov exponents along this segment are shown in Fig. 18.
Right: Lyapunov diagram of attractor for the same parameter window as Left, see Tab. 2 for the color coding.
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Fig. 17 left, corresponding to fixed δ/2π = 0.00506.

reason, to locate these doubling bifurcations we had to compute many “hairs” for rotation number
varying in a relatively narrow interval of values.

Fig. 18 shows the variation of the Lyapunov exponents along a line of constant δ (shown as a
small horizontal segment in Fig. 17) across the quasi-periodic doubling boundary. Quasi-periodic
dynamics seems to be abundant in the sense of measure, since the maximal Lyapunov exponent
χ1 never becomes significantly negative, as it would be if the invariant circle is phase-locked to
a periodic attractor. The rightmost vanishing of χ2 near μ = 0.341 occurs at the quasi-periodic
doubling boundary PDC5, see Fig. 11 left. Across this bifurcation, for μ slightly smaller than 0.341,
the doubled circle attractor 2C 5 is detected. Note that both circles C 5 and 2C 5 are of node type

near the doubling, that is λ̃⊥
1 > λ̃⊥

1 as indicated by the Lyapunov exponents χ2 �= χ3.

The eigenvalues λ̃⊥
1,2 then become complex conjugate in the narrow interval where χ2 = χ3. This

corresponds to normal linear dynamics of focus type. This can be interpreted as the eigenvalues

λ̃⊥
1,2 “racing around the origin” inside the complex plane and then re-entering the real axis on the

negative side (see e.g. [18, Fig. 12]), as indicated by χ2 and χ3 becoming distinct again. This process
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allows for the eigenvalue λ̃1 to cross the value -1 again, yielding a second quasi-periodic doubling
bifurcation where 2C 5 loses stability and a quadrupled circle attractor 4C 5 branches off.

As observed in [66–68], unlike the infinite Feigenbaum cascade of period doublings for periodic
points, the quasi-periodic doubling process only seems to involve a finite number of doublings,
after which the invariant circle breaks down and a chaotic attractor appears. For model map G
considered here, the ubiquitous presence of resonances on the invariant circles complicates the
description. For this reason, we resort to a quasi-periodically driven map in Section 5 to further
discuss this phenomenon.

5. EXAMPLE 2: THE QUASI-PERIODICALLY DRIVEN HÉNON DISSIPATIVE MAP
Consider a quasi-periodically driven Hénon map:

Ha,b,γ

⎛
⎜⎜⎜⎝

x

y

θ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 − (a + ε cos(θ))x2 + y

bx

θ + 2πγ (mod 2π)

⎞
⎟⎟⎟⎠ , (5.1)

where γ = (
√

5 − 1)/2 is the golden mean. For ε = 0 this reduces to the well-known Hénon
dissipative map.

The first problem we consider is: what is the effect of quasi-periodic driving on the period
doubling cascade occurring in the Hénon map? Is it possible to detect lack of reducibility for some
of the invariant circles undergoing the doublings?

To investigate this question, we fix the parameter b = 0.4 and look first at the unperturbed case
ε = 0 for increasing values of a, see figure 19. We recall that the sum of the two Lyapunov exponents
is equal to log(b) ≈ −0.916291 for the Hénon map. When the underlying attractor consists of stable
periodic points which are of focus type, the two Lyapunov coincide, hence they are both equal to
log(b)/2 ≈ −0.458145. This criterion can effectively be used to verify (lack of) reducibility.

When the parameter a is increased across the period doubling cascade, the width of the
parameter intervals where periodic attractors are of focus type quickly decreases with the period of
the attractor, see the top row of 19. Hence, the decrease of the maximal Lyapunov exponent χ to
log(b)/2 ≈ −0.458145 might go undetected if the a-parameter line is scanned with too coarse steps.
The bottom row of Fig. 19 uses the transformed variable − log10(a∞ − a) on the horizontal axis:
this allows to visualize the geometric scaling between the doublings associated to Feigenbaum’s
universality.

Let Lk denote the distance between the values ak and ak+1 where the k-th and (k + 1)-th period
doublings occur along the cascade. Then Lk ≈ Lk−1/G, where G ≈ 4.67 denotes the Feigenbaum
constant. It is also easy to check that if Fk denotes the width of the a-parameter intervals for
which a stable focus is found between ak and ak+1, then Fk ≈ CGkF 2

k−1, where C ≈ G−3 in the
present case. Hence the amplitude of such “stable focus intervals” decreases quadratically instead
of linearly.

For a fixed value of k and ε > 0 sufficiently small, map (5.1) has an attracting periodically
invariant circle of period 2k. In other words, there are 2k disjoint copies of a circle which are mapped
one onto another by (5.1). The linearized dynamics around the invariant circles is described by a
quasi-periodic skew product whose matrix is⎛

⎝−2(a + ε cos(θ))x(θ) 1

b 0

⎞
⎠ , (5.2)

where x(θ) is the first component of the orbit on the 2k invariant circles and the variable θ evolves
quasi-periodically according to

θ → θ + 2πγ (mod 2π).

For any ε > 0, the behavior of the maximal Lyapunov exponent χ as a function of a is different
than ε = 0 and the differences become more evident for larger ε, see figure 20. The most remarkable

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 1–2 2011



180 VITOLO et al.

difference is that only a finite number of period doublings is observed for ε > 0. This period doubling
interruption was already observed in [20, 68] for entirely different systems (namely, systems without
the skew-product structure of (5.1)).

Fig. 19. Illustration of period doublings for the uncoupled Hénon map (map (5.1) with ε = 0) for b = 0.4 and
varying a. Top row: the maximal Lyapunov exponent χ is represented as a function of a. Note the scaling of the
ak-values where the k-th period doubling occurs and of the width of the intervals with periodic attractors of
focus type (see text). The limit of ak is a∞ ≈ 0.991348146972. Bottom row: χ as a function of the transformed
variable − log10(a∞ − a), in different windows. Up to 19 period doublings can be seen.

Fig. 20. Illustration of quasi-periodic period doublings for map (5.1) with ε > 0. Plots of χ as a function of
log10(1− a) for different values of ε: 0.0001, 0.001, 0.01 for the top row and 0.05, 0.10, 0.25 for the bottom row,
from left to right.

The observed behavior suggests to examine the evolution of the maximal Lyapunov exponent χ
and of the rotation number ρ of the skew product (5.2) for small values of ε (e.g. ε = 0.0001), in a
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Fig. 21. Illustration of non-reducibility through plots of the maximal Lyapunov exponent (top) and of the
rotation number (bottom) in a selected domain. Left, bottom: horizontal lines at ρ = (1 − γ)/2 ≈ 0.190983
and γ/2 ≈ 0.309017. Right: Magnifications of the left panels, showing 2 bumps in χ (top) and a neighborhood
of the leftmost resonance in the rotation number ρ (bottom).

Fig. 22. Left: the “tail” of the period doubling cascade for ε = 0.0001, illustrated by plotting the maximal
Lyapunov exponent χ as a function of a. The sixth period-doubling is first seen. For slightly larger a, we
would expect a domain characterized by attracting periodically invariant circles of period 26 and of focus
type. While 26 periodic attracting circles still occur, the dynamics is not reducible. Reducibility is recovered
in a narrow parameter range and then lost again for larger a. This gives rise to attractors which are either
strange non-chaotic or highly folded circles and, finally, chaotic attractors when χ > 0. Right: evolution of χ
as a function of ε for fixed b = 0.4 and b = 0.9. Many phenomena occur which are yet to be clarified.

range of a-parameter values where one suspects that the system is not reducible. We consider values
of a larger than the value a4 of the fourth period doubling. Fig. 21 shows the decrease of χ after the
fourth period doubling bifurcation. The value of χ remains far from the value log(b)/2 and, hence,
the two Lyapunov exponents remain different. At the same time the rotation number is changing.
This is not compatible with the reduction to constant coefficients of the normal linear dynamics. In
this parameter range the maximal Lyapunov exponent χ displays two tiny “bumps” as a is varied,
see the magnification in the top right panel. The bottom right panel of Fig. 21 shows a detail of the
rotation number when it crosses the value (1 − γ)/2, corresponding to a resonance. The methods
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used for the computations of Fig. 21 and the relation to (lack of) reducibility are discussed in
[56, 57], where applications are presented to skew-products in the discrete and continuous case.

Fig. 22 presents additional phenomena near the interruption of the cascade in the present case.
For ε = 0.0001 the fourth, fifth and sixth quasi-periodic period doublings occur at the values a4 ≈
0.98469395, a5 ≈ 0.98992364 and a6 ≈ 0.99107925, respectively. The ratio (a5 − a4)/(a6 − a5) ≈
4.53 is still not too far from Feigenbaum’s value. Based on that ratio we could extrapolate the
location of a7 at 0.99133435 (this “prediction” works well in the autonomous case ε = 0). However,
strange attractors are already found before the “predicted” value of a7. Fig. 22 left shows the
evolution of χ starting from a slightly smaller than a6 until the entrance in the chaotic range. Until
a ≈ 0.991182 a clear-cut domain is first found, where the attractor consists of 26 circles. Then,
until a ≈ 0.991257 the attractor seems to consist of highly folded 26 circles, or to be a strange
non-chaotic attractor , except for a tiny domain nearby a = 0.991223 where a strange attractor is
detected, χ > 0. Finally, from a ≈ 0.991257 the attractor is definitely strange.

The evidence based on the value of χ was complemented by direct inspection of plots of the
attractors. The domain of non-reducibility in Fig. 21 is roughly

[0.987207, 0.987603] ⊂ [a4, a5] :
this is the first such domain found for increasing a. A second such domain is approximately
[0.990330, 0.990724] ⊂ [a5, a6], again located in the range where one would expect invariant circles
of stable focus type. In both cases the attractors are still periodically invariant circles of period
2k, but the dynamics is not of focus type. A third non-reducibility domain starts at a ≈ 0.991104
and no further domains of reducibility are found for larger a. Note that in this last domain there
is a first subdomain where the attractor consists of 26 circles beyond becoming a strange non-
chaotic or chaotic attractor. Hence, non-reducibility of the linearized quasi-periodic skew product
is compatible with the existence of invariant circles.

Finally in figure 22 the maximal Lyapunov exponent is plotted as a function of ε for b fixed at
b = 0.4, a = 0.9. For ε increasing from 0, many phenomena occur which are yet unclear, although
it seems that they are not only related to the loss of reducibility.

6. CONCLUSIONS
The theory of quasi-periodic bifurcations presents a number of unsolved challenging problems

and a considerable amount of work is needed to further both the theoretical understanding and the
numerical algorithms.

On the theoretical side we list three major lines.
1. Can a generic theory be developed for the dynamics of a resonance “bubble”? Examples of

particular case studies are [2, 30–32, 61] for a planar quasi-periodic saddle-node bifurcation
and [21] for a 3D quasi-periodic Hopf. Not much is known for normal-internal resonances,
see [19, 26, 71].

2. It would be useful to develop a quasi-periodic bifurcation theory in the far from integrable
case (compare Section 2.1), possibly along the lines of [50]. That is, a theory which is directly
applicable to models such as those analyzed in this paper, or more general systems found in
applications, such as [20, 53, 58, 66, 73].

3. Basically nothing is known about quasi-periodic bifurcations for non-reducible invariant
circles, see [40, 41, 44, 49, 56, 57]. For a treatment of the skew Hopf bifurcation see
[23, 25, 27, 65, 72].

The numerical algorithm proposed here is largely confined to systems with a few degrees of freedom.
The computations quickly become too cumbersome for larger phase space dimension. Recently
developed parallel algorithms may remedy this problem [48], although the computation of the
normal behavior by the approach of [47] may still remain intractable for larger systems. Appealing
alternatives may be the fractional iteration method [63, 64] (see Section 3.1) and the reducibility
method proposed in [42–44]. The latter seems particularly powerful in that it allows to compute the
dynamics on the torus, as well as an approximation for the torus itself. It would be very interesting
to apply this method to systems where the frequency changes with the control parameters, such as
those considered here. The lack of reducibility is, of course, a major open problem for all numerical
algorithms.
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