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Abstract

The Hénon family of planar maps is considered driven
by the Arnol’d family of circle maps. This leads to
a five-parameter family of skew product systems on
the solid torus. The dynamics of this skew product
family and its perturbations are studied by numeri-
cal means. In certain parameter domains Hénon-like
and quasi-periodic Hénon-like strange attractors are de-
tected. The persistence properties of these attractors
under perturbation of the skew-product structure of the
map are discussed.
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1 Introduction

Since the 1990°s several mathematical characterisa-
tions have been found concerning the structure of
strange attractors in families of maps. A basic exam-
ple is provided by the Hénon attractor [Hénon, 1976],
occurring in the family of maps

H,p:R?*—R?  (2,y) — (1 —az®+y, bx), (1)

where a and b are real parameters. Benedicks and
Carleson [Benedicks and Carleson, 1985; Benedicks
and Carleson, 1991] proved that there exists a set
of parameter values &, with positive Lebesgue mea-
sure, such that for all (a,b) € & the Hénon map
H,, (1) has a strange attractor coinciding with the
closure C1(W™(p)) of the unstable manifold of a sad-
dle fixed point p. Here CI1(—) denotes the topological
closure. Similar techniques were then used to prove
occurrence of strange attractors in parameterised fam-
ilies of maps, near homoclinic tangencies in two or
higher dimensions [Mora and Viana, 1993; Palis and
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Viana, 1994; Tatjer, 2001; Viana, 1993], and near tan-
gencies in the saddle-node critical case [Diaz, Rocha
and Viana, 1996]. See [Wang and Young, 2001] for
a general set-up to prove existence of strange attrac-
tors with one positive Lyapunov exponent in families
of two-dimensional maps. The strange attractors con-
sidered in these references are called Hénon-like [Diaz,
Rocha and Viana, 1996; Mora and Viana, 1993; Viana,
1993].

1.1 Setting of the problem

In this paper we perform a numerical study of certain
model map families, searching these for Hénon-like at-
tractors as well as for so-called quasi-periodic Hénon-
like attractors. A basic model for this study is the fam-
ily of maps of the solid torus R x $!, where $! = R/Z
is the circle, given by

x 1— (a+esin(270))a? +y
y|— b @
0 0 + « + dsin(270)

where both (e,d) are perturbation parameters. This
map is a skew product perturbation of the Hénon
map (1) by the Arnol’d family [Arnol’d, 1965]

Aps: 8P — 8 00+ a+dsin2m6).  (3)
First let us consider the uncoupled situation ¢ = 0.
The dynamics of the Arnol’d family is well-understood
and that of the Hénon family is partially known. For
the Arnol’d family, in the («, §)-plane there is a count-
able union of resonance tongues [Arnol’d, 1965; Broer,
Sim6 and Tatjer, 1998] with non-empty interior, cor-
responding to hyperbolic periodic dynamics. In the
complement, which is of positive measure, quasi-
periodic dynamics [Arnol’d, 1965; Broer, Huitema and

Sevryuk, 1996] takes place, see Figure 1. Similarly,
for the Hénon family in the (a, b)-plane there exists
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Figure 1. Organisation of the (v, d)-parameter plane of the
Arnol’d family (3) by resonance tongues, containing an open set
with periodic dynamics (indicated in black). The remaining param-
eter values (indicated in white) form a nowhere dense set of positive
measure with quasi-periodic dynamics.

a countable union of strips of non-empty interior cor-
responding to hyperbolic periodic dynamics. In the
complement, a set of positive measure corresponds
to strange attractors [Benedicks and Carleson, 1991].
Most of the strips are extremely narrow and only be-
come visible when they intersect another strip of the
same period in such a way that a “crossroad area” is
created [Bosch, Carcasses, Mira and Tatjer, 1991]. See
Figure 2.

Remark 1. Figures 1, 2, and 3 are mostly obtained by
numerical computation of Lyapunov exponents [Simo0,
2003]. See Section 2 for a description of the procedure
and Section 3 for the interpretation of the Lyapunov
exponents in terms of the dynamics. Figure 2 uses the
origin as initial point, which can land either in a peri-
odic sink, or on a strange attractor or can escape ‘to
infinity’. Notice that, due to multistability other initial
points can tend to different attractors. Moreover, some
of the periodicity strips are connected to windows of
sinks of the logistic family as this occurs for b = 0.

To fix ideas, consider map (2) in the uncoupled case
¢ = 0. There are at least four combinations of the dy-
namics of the Arnol’d and Hénon families that corre-
spond to parameter domains of positive measure.

1. We start considering the case where the Hénon
family is in a periodic attractor, so where the (max-
imal) Lyapunov exponent Ay < 0. Then the max-
imal Lyapunov exponent A 4 of the Arnol’d family
may be negative or zero.

(@) The case A4 < 0 is the most simple. Param-
eters (a, d, a, b) are such that both maps A, s
and H, ; are in a hyperbolic periodic attrac-
tor. In the solid torus R? x $! this also gives
a hyperbolic periodic attractor for map (2).

(b) If A4 = 0, the Arnol’d family is quasi-
periodic, while the Hénon family is in a peri-
odic attractor. The corresponding uncoupled

1 1.2

Figure2. Organisation of the (@, b)-parameter plane of the Hénon
family (1) by strips with periodic dynamics and crossroad areas (in
red). A complement of positive measure contains strange attractors
(in green). The upper right part of the diagram (in white) corresponds

to escape.
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Figure 3. Diagram of map (2) in the (v, &)-plane, for a =
1.25,b = 0.3 andd = 0.6/(27). Visble are: domains
which can be interpreted as having periodic attractors (code 1, yel-
low), quasi-periodic attractors (code 2, blue), Hénon-like attractors
(code 3, red) and quasi-periodic Henon-like attractors (code 4, light
blug). The diagram is obtained by examining the Lyapunov expo-
nents of (2). See Sections 2 and 3 for details.

dynamics of map (2) is a normally hyperbolic
(attracting) quasi-periodic invariant circle.

2. In the two remaining cases the Hénon family is
in a strange attractor, so with Ay > 0. This at-
tractor is the closure C1 (W™ (Orb(p))) of the un-
stable manifold of a periodic orbit of saddle type,
see [Benedicks and Carleson, 1985; Benedicks and
Carleson, 1991; Diaz, Rocha and Viana, 1996;
Mora and Viana, 1993; Viana, 1993]. We have to
distinguish two cases.

(@) The Arnol’d family is in a periodic attractor,
so with A4 < 0, and the product system has
a Hénon-like attractor. For illustrations see
Figure 4.

(b) The Arnol’d family is quasi-periodic, so with
A4 = 0, and the Hénon map has a strange



Figure 4. Hénon-like strange attractor of the family (2) for
(a,8) in an Arnol’d tongue of period three. Parameters
aefixedata = 13, b = 03, ¢ = 0.2, (a,0) =
(0.33793,0.116).

attractor. The uncoupled product dynamics is
said to be quasi-periodic Hénon-like, i.e., on
a strange attractor of the form CL(W*(%¥)),
where % is a quasi-periodic invariant circle
of saddle-type.

The Lyapunov diagram in Figure 3 strongly suggests
that all four cases persist for e # 0, |¢| < 1, in param-
eter sets of positive measure. More concretely, case
1(a) corresponds to code 1; case 1(b) to code 2; case
2(a) to code 3, and case 2(b) to code 4.

Persistence of the periodic attractors (case 1(a)) fol-
lows from the theory of normally hyperbolic invariant
manifolds [Hirsch, Pugh and Shub, 1977]. Persistence
of the attracting quasi-periodic invariant circles (case
1(b)) is proved in [Broer, Simd, Vitolo, 2005, Theo-
rem 3], by applying KAM theory [Broer, Huitema and
Sevryuk, 1996; Broer, Huitema, Takens and Braaksma,
1990]. Persistence of Hénon-like strange attractors
(case 2(a)) for |b|, |e| < 1 is proved in [Broer, Simo,
Vitolo, 2005], where partial results concerning quasi-
periodic Hénon-like attractors (case 2(b)) are shown.

The main focus of this paper is to study persistence
properties of quasi-periodic Hénon-like attractors for
small . See Figure 5 for an illustration of a quasi-
periodic Hénon-like attractor.

1.2 Motivation

Quasi-periodic Hénon-like attractors have been con-
jectured to occur in diffeomorphisms of R3 =
{z,y, 2}, obtained as Poincaré return maps for a clima-
tological model [Broer, Sim6 and Vitolo, 2002; Broer,
Simoé and Vitolo, 2003; Vitolo, 2003], like the attrac-
tor o7 displayed in Figure 6. Examination of a cross-
section X of the attractor (magnified in Figure 6 (B))
suggests that o/ is contained in a two-dimensional
manifold which is folded onto itself, in analogy with
the structure of the Hénon attractor [Hénon, 1976].
This manifold is conjectured to be the unstable man-
ifold W*(%) of a quasi-periodic invariant circle & of
saddle type. To illustrate the dynamics inside <7 we

Figure5. Quasi-periodic Héenon-like strange attractor of the
model family (2). Parameter values are fi xed at a = 1.85,
b= —-0.2,6=0a=(v5—-1)/2,¢ = 0.1. For abeter
visualisation of the folds, the plot is given in the variables
(u,v,w), whereu = (r+4) cos(9), v = (r+4) sin(0), with
r = z cos(0)+10ysin(0), andw = —z sin(0)+10y cos(6).

computed the image of the slice ¥ under the return
map. This yields a folded curve looking like a planar
Hénon attractor.

Also we mention that the occurrence of strange at-
tractors which look similar to Figure 5 is observed in
[Glendinning, 1998; Grebogi, Ott, Pelikan and Yorke,
1984; Keller, 1996; Osinga and Feudel, 2000; Osinga,
Wiersig, Glendinning and Feudel, 2001]. Although
most of these studies deal with endomorphisms of the
interval forced by a rigid rotation in a skew product
way, and some of them have negative Lyapunov expo-
nents (beyond the one trivially equal to zero), a rela-
tionship with the present approach is discussed later on.

The theoretical knowledge of attractors in dimension
higher than 2 is limited. As positive exceptions to this
we mention Viana [Viana, 1993; Viana, 1997], Tat-
jer [Tatjer, 2001], Wang & Young [Wang and Young,
2001] and Gonchenko et al. [Gonchenko, Ovsyan-
nikov, Sim6 and Turaev, 2005]. The Hénon-like attrac-
tors found in the present paper, to some extent, also
belong to this domain. In this sense one may say that
the understanding of the quasi-periodic Hénon-like at-
tractor is a next step in this research program. This led
us to examine model maps such as (2), that combine
quasi-periodic and Hénon-like dynamics.

1.3 Summary and outline
This paper contains a numerical study of map (2) and
of a more general model, given by

T =Tosapen: R2 xS — R? x §,

x 1— (a+esin(270))z? +y
y | — bx )]
0 0 4+ a + dsin(270) + py

depending on the six parameters (o, d,a, b, &, i).

Remark 2. Maps (4) and (2) are identical except for
the term py. Infact, map (4) is a “fully coupled’ version
of (2), where the skew-product structure is perturbed by



(8)

Figure6. (A) Strangeattractor .«7 of the Poincaréreturn map
of a climatological system [Broer, Simo and Vitolo, 2002].
Compare with Figure 5. The attractor <7 is plotted with a
‘dice’ ¥ and with the image of X under the return map. The
slice X containsall pointswith distance lessthat 0.0001 from
the plane z = 0. The image of Xis magnifi ed in the central
box. (B) Slice X of the attractor .2 in (A), projection on the
(z,9)-plane, withg = y — 0.133 * 2.

the term uy. The distinction in two maps is kept for the
sake of clarity. In the sequel we often refer to (2) as the
‘skew case’ and to (4) as the “fully coupled case’.

The results, presented in Section 3, are related to the
subdivision in four classes of dynamics as given in Sec-
tion 1.1 in the uncoupled setting 1 = ¢ = 0. Main fo-
cus is on the persistence of quasi-periodic Hénon-like
attractors for map (2) when ¢ = 0 and for map (4) when
both € and 1 are nonzero. A few theoretical results are
quoted from [Broer, Sim6, Vitolo, 2005], in order to
complete the dynamical picture. To clarify the discus-
sion, we begin by describing the numerical procedures
and by explaining our choices for the parameter values,
see next section.

2 Numerical methods and selection of parameter
values

In the present study of family 7 (4) several parame-

ters have been kept fixed. We chose 6 = 0.6/(2), so

that resonant zones of the Arnol’d family (3) are not too

narrow, while still most of the values of « give rise to
quasi-periodic dynamics. Concerning the parameters a
and b of the Hénon family (1), we fixed b = 0.3 for his-
torical reasons. It is the value used by Hénon [Hénon,
1976], and it is a good compromise between dissipa-
tion and visibility of the folds of the unstable manifold
W*(p) (compare the discussion in Section 1). It was
also used in [Simd, 1979] to study attractors as well
as homoclinic and heteroclinic tangencies (later on in
the literature renamed as “crises’). The value a = 1.25
corresponds to a periodic attractor of period 7 and al-
lows for moderate values of ¢ in the forcing before es-
cape occurs. Finally we selected the values 4 = 0
and p = 0.01 for the skew (2) and the fully coupled
case (4), respectively.

Diagrams such as that in Figure 3 are obtained by
computing an orbit of map (2) and examining the three
Lyapunov exponents A; > As > Aj. The latter are
computed from the so-called Lyapunov sums as follows
(also see [Simd, 2003]).

Let 7" be a three-dimensional map and consider an or-
bit {z; = T9(x¢),j =0,1,2,3,...}. Three linearly
independent tangent vectors (vg, wo, zo) are selected
and their images under the derivative DT™ along the
orbit {x;} are computed, where Gram-Schmidt orth-
normalisation is performed every step (or every m > 1
steps to speed up the procedure). Let 9; = DT'(x)vp.
Define f1 = ||01] and vy = ©1/f1. The remain-
ing two vectors are orthonormalised as follows: define
g1 = |[w} ], where

w’l =W, — (’Ul . 12)1)1)1 and Wy, = DT(Io)wo,
and put w; = wj/g;. Similarly for 2y, yielding a co-
efficient hy. The procedure is iterated, thus obtaining
three sequences f;, g;, hj, j > 1. The Lyapunov sums
are then defined as

LSy = "log(f;),

j=1

LS2 = "log(g;),
j=1

LS3 =" log(h;).
j=1

The maximal Lyapunov exponent A; is given by the
average slope of the Lyapunov sum LS} as n — oo,
that is, the average of the logarithmic rates of increase
of the length log(f;). The other two Lyapunov expo-
nents Ao, As are obtained in the same way from LS?
and LS? respectively.

In the numerical procedure, estimates are produced of
the average slope of LS§-c for j = 1,...,n for differ-
ent values of n up to a maximal number N of iterates.
The computation is stopped before IV iterates in case of
escape, or if a periodic orbit is detected, or if different



estimates of the average coincide within a prescribed
tolerance p. Typical values for N and p in the present
computations are 107 and 105, respectively.

The values of the Lyapunov exponents are used to
determine the types of attractor occurring in differ-
ent parameter regions. For example, attracting invari-
ant circles (or periodically invariant circles) are char-
acterised by a zero maximal Lyapunov exponent. In
particular, with the above choice of parameter values,
for the skew-product map (2) one may expect to have
a period 7 attracting invariant circle if («, d) is in the
quasi-periodic domain and ¢ is sufficiently small, com-
pare Figure 3.

However, in some cases we are forced to use the fol-
lowing complementary tool to help decide whether the
attractor is a quasi-periodic circle or not (this is often
necessary for map (2) when ¢ is small). After some
transient, the points of an orbit of map (2) (or of some
power of it) are sorted by the values of 6. If the at-
tractor is an invariant circle (x(6), y(0)), then the vari-
ation of the components (z,y) can be estimated from
the iterates along the orbit. This variation has to re-
main bounded when the number of iterates increases
and must converge to the true variation. This procedure
may fail as well, as reported in the next section.

3 Thedynamicsof themodel maps: numerical ob-
servations

The diagram in Figure 3 is based on the values of the
two largest Lyapunov exponents A1 and Ao, Ay > As.
To be more precise, code 1 (yellow) correspondsto 0 >
A1, code 2 (blue) to 0 = A; > A,, code 3 (red) to
A1 > 0> Ay and code 4 (light blue) to A; > 0 = As.
Typically we considered a Lyapunov exponent as equal
to zero whenever [A;| < 1075, j = 1,2.

The above codes have the following interpretation in
terms of dynamics: code 1 corresponds to a periodic
sink, code 2 to a quasi-periodic attracting invariant cir-
cle, code 3 to a Hénon-like attractor and code 4 to a
quasi-periodic Hénon-like attractor. Compare the four
classes of dynamics of map (2) described for ¢ = 0 in
Section 1.

Notice that the role of Az is not very relevant. It
can only help to decide, in case of periodic or quasi-
periodic attractors, whether the normal behaviour is of
nodal type (A2 > Ag3) or of focal type (A2 = A3). The
major role is played by A; and A, and their position
with respect to zero.

We now describe the dynamics of map (2) in more
detail, referring to Figure 3. Varying « with ¢ fixed
at 0.6/(2m) means that the driving Arnol’d family (3)
crosses several resonance tongues, along a horizontal
line in Figure 1. Inside each of these tongues, the dy-
namics of (3) is ‘phase-locked’ to a periodic attractor.
The Hénon family (1) also has a periodic attractor for
the selected parameter values (see previous section).
Therefore, map (2) has a periodic attractor inside the
Arnol’d tongues for ¢ = 0.

By normal hyperbolicity [Hirsch, Pugh and Shub,
1977], the periodic attractor is expected to persist for
small . This is confirmed by Figure 3 (yellow regions,
code 1). Due to the skew-product structure of (2), the
resonance tongues of (3) are not affected by increasing
€. However, the periodic attractor of (2) ceases to exist
for larger values of £ and a Hénon-like strange attractor
appears inside the tongues (red spots, code 2).

For « outside all Arnol’d tongues the dynamics of (3)
is quasi-periodic. This corresponds to a quasi-periodic
circle attractor of (2) at e = 0. By [Broer, Simo, Vi-
tolo, 2005, Theorem 3] this attractor persists for small
¢. Compare the dark blue parameter domains in Fig-
ure 3, code 3. For larger values of  quasi-periodic
Hénon-like attractors occur, in a relatively large part of
the parameter plane (code 4, light blue). We now exam-

0.2 0.25 0.3 10.35 0.4

Figure 7. Diagram of the fully coupled system (4) in the (v, €)-
plane, fora = 1.25,b = 0.3, u = 0.01 and 6 = 0.6/(27).
According to the values of the Lyapunov exponents, we interpret as
follows: domains of periodic attractors (code 1, yellow), of quasi-
periodic attractors (code 2, blue), of Hénon-like attractors (code 3,
red) and of ‘ quasi-periodic Hénon-like' attractors (codes4, light blue,
and 5, green).

ine the dynamics of map (4), where the skew-product
structure of (2) is perturbed by putting ¢ = 0.01. Fig-
ure 7 contains a diagram for map (4) produced in the
same way and for the same parameter values as Fig-
ure 3.

A remarkable difference between the skew-product
case (2) and the fully coupled case (4) is that a zero
Lyapunov exponent practically never occurs for the lat-
ter map. Indeed, any small perturbation p # 0 has the
effect of shifting the value of A, away from zero. Its
modulus remains small, but the sign may be either pos-
itive or negative, and both cases occur. This roughly
happens for those regions of the («, €)-parameter plane
which, in the skew case © = 0 seemingly show quasi-
periodic Hénon-like attractors (code 4 regions in Fig-
ure 3).

Therefore a new case appears for 1 # 0, namely
A1 > Ao > 0. Here the value of A, is small but defi-
nitely positive. For these parameter values we maintain



the code 4 (light blue) in Figure 7. (The existence of
parameter values for which the two largest Lyapunov
exponents are positive has been recently also found in
a quite different context, related to what can be con-
sidered as a discrete version of Lorenz attractor, see
[Gonchenko, Ovsyannikov, Sim6 and Turaev, 2005].)

Furthermore, in the case A; > 0 > A,, where Ay is
close to zero but definitely negative, one has to distin-
guish two possibilities. There are Hénon-like attractors
such that the 6-component is not periodic (this was the
case for map (2)). These are identified by the prop-
erty that the angular component 6 of the iterates should
cluster around the periodic attractor of (3) obtained in
the case . = 0. For these we keep the code 3 (red) in
Figure 7. The remaining cases with A, negative and
close to zero can be seen as a perturbation of the quasi-
periodic Hénon attractors occurring at ¢ = 0. For these
the code 5 (green) is used.

Comparing Figures 3 and 7 we observe:

1) Regions with code 1 (periodic attractors, yellow)
in Figure 3 is essentially preserved in Figure 7.
In the latter, more periodic attractors are detected
near the parameter regions that in the skew case
correspond to resonance.

2) Regions with code 3 (Hénon-like attractors, red)
are quite similar in both figures.

3) The region with code 4 in Figure 3 (quasi-periodic
Hénon attractors, light blue), roughly splits in two
regions in Figure 3, with codes 4 (light blue) and 5
(green) respectively. The difference is given by the
sign of Ay: positive in region 4, negative in region
5, but always close to zero.

4) The region with code 2 (blue) in Figure 3, where
A1 = 0 > A, is reduced in size in Figure 7: for
e sufficiently far from 0, several ‘blue’ points for
@ = 0 turn into green (A; > 0 > Ay) when p =
0.01.

Concerning the last point, one may expect that, for
those parameter values, the dynamics in the skew case
1 = 0 has a quasi-periodic attractor. In fact, the numer-
ical evidence in double precision arithmetics, shows
a different kind of attractors. In the literature these
are called ‘strange non-chaotic attractors’ (SNA). See
[Grebogi, Ott, Pelikan and Yorke, 1984; Keller, 1996;
Glendinning, 1998; Osinga and Feudel, 2000; Osinga,
Wiersig, Glendinning and Feudel, 2001; Jorba and Tat-
jer, 2005] for examples and theoretical results in vari-
ous contexts.

As explained in Section 2 one can use the variation as
an indicator to distinguish an invariant circle from in-
variant sets of other types. In the skew case this method
reveals a large domain on the upper part of the blue re-
gion, which seems to be characterised by the presence
of SNAs. This is illustrated in Figure 8, that contains
magnifications of both Figures 3and 7 for ¢ € [0, 0.05].
Parameter values characterised by “SNASs” are repre-
sented by colour magenta (code 6) in Figure 8. This
is particularly evident near the resonance tongue with
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Figure 8. Magnifi ed domain of Figures 3 (top) and 7 (bottom). In
the top fi gure a new code 6 (in magenta) is introduced, roughly lo-
cated above the blue region. In Figure 3 this magenta domain was
shown in blue. It apparently corresponds to “strange non-chaotic at-
tractors’. See the text for explanation and discussion.

rotation number 2/7. Narrow domains can be observed
near other resonances.

In fact, it turns out that a naive application of the vari-
ation criterion may fail to give correct results. The
“SNASs” detected by this method can be an artifact of
finite numerical precision in the computations. See the
next section and compare with [Broer, Simo, Vitolo,
2005].

4 Interpretation of theresults

Theoretical results from [Broer, Simg, Vitolo, 2005]
confirm a large part of the numerical study described
in the previous section. In particular, by a KAMm-like
Theorem in the dissipative setting [Broer, Simo, Vitolo,
2005, Theorem 3], existence of quasi-periodic attrac-
tors for map (4) is proved for small ¢, 1 .

By comparing top and bottom part of Figure 8, we
observe that most parameter values corresponding to
quasi-periodic attractors for 4 = 0 remain blue (code
2) for 4 = 0.01. This suggests that the parameter do-
main of validity of the above KAM-like Theorem is rel-
atively large.

It is striking that essentially all parameter values with
code 6 in Figure 8 (say, candidates for “SNA” in the
skew case), enter into the ‘green region’ (code 5, A; >
0 > Ay) for p = 0.01. This behaviour has been further
checked by varying p for a sample of values of (¢, ) :
even when 1 is as small as 10712 a positive maximal
Lyapunov exponent has been detected.

To clarify this lack of persistence of “SNAs”, a care-
ful numerical study of a few ‘toy models’ is performed
in [Broer, Simd, Vitolo, 2005]. One of the models used
there is the map of the cylinder R x $' given by

(z,0) — (1 — (a+esin(2m8))2?,0 +a), (5)

that is, the logistic family driven by a rigid rotation.
Computations are performed both in double precision
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Figure 9. Attractors observed for map (5) with (a,&, ) =
(1.30,0.30,/1000), where -y denotes the golden mean. Top:
standard double precision arithmetics is used, yielding an “SNA”.
Bottom: 150-decimal digits arithmeticsis used.

and with 150 decimal digits, for the same parameter
values and initial conditions. The computed attractors
are “SNAs” in the first case and smooth invariant cir-
cles in the second, see Figure 9.

As it is exhaustively clarified in [Broer, Simd, Vitolo,
2005], this phenomenon is due to the occurrence, lo-
cally in 6, of strong expanding normal behaviour of the
invariant circle, whereas the average normal behaviour
is contracting. This brings into serious doubt the occur-
rence of SNAs in the family (2), and motivates our use
of quotes when speaking about “SNAs”.

Persistence of Hénon-like attractors in family (2) fol-
lows from [Broer, Simd, Vitolo, 2005, Theorem 4]. In
particular, it is shown that Hénon-like attractors occur
for a positive measure set of parameter values, when
¢ and b are sufficiently small. This corresponds to red
(code 3) in Figure 3. Occurrence of Hénon-like attrac-
tors for larger values of € and b and for map (4) when
1 # 0 remains conjectural and based on the numerical
evidence.

Also conjectural is the existence of quasi-periodic
Hénon-like attractors in maps (2) and (4). For both
maps, by [Broer, Sim6, Vitolo, 2005, Theorem 1] we
expect that the attractor is contained in the closure
Cl(W*(%)) of a quasi-periodic invariant circle € of
saddle-type. However, we do not know on theoretical

grounds whether the attractor is equal to the closure
Cl(W*(¥€)) and whether a dense orbit exists with a
positive Lyapunov exponent.

We mention another point that should be clarified,
even from the numerical point of view, about the quasi-
periodic Hénon-like attractors. No visual differences
can be observed between these attractors in the three
cases Ao = 0, Ay < 0and Ay > 0. Recall that the
first case occurs for e = 0 (map (2)), whereas either
the second or the third occur whenever p = 0.

Figure 10 displays the attractor detected for
(e, ;) = (0.31,0.13,0.01) (in the region of
code 4 in Figure 7). The plot uses variables (u, v, w)
analogous to Figure 5. Moving the parameters to
(a,e, 1) = (0.28,0.13,0.01) (code 5 region in Figure
7)orto («,e,u) = (0.28,0.13,0.00) (code 4 region
in Figure 3), the detected attractor looks quite similar
to Figure 10. Further study is needed to clarify the
geometric differences in the three cases, by considering
the unstable manifold of the invariant circle of saddle
type which is expected to occur.

Figure 10. Attractor of 7 as in (4) for (a,e,pu) =
(0.31,0.13,0.01), with two positive Lyapunov exponents.
A1 ~ 0.29530 and As ~ 0.00016. No visual difference is
observed in the structure of attractors having Ao negative and close
to zero (fully coupled case pr > 0) and attractors with Ay = 0
(skew product case 4 = 0, map (2)). The representation uses vari-
ables (u, v, w) similar to FigureS.

5 Conclusion

A numerical study is performed of a model map which
is constructed in such a way as to combine quasi-
periodic and chaotic dynamics. The model map is a
perturbation of the product of the Arnol’d family of
maps of the circle times the planar Hénon family, and
it depends on several parameters.

Main tool in the present investigation is the computa-
tion of Lyapunov exponents on orbits belonging to at-
tractors of the model map. Large regions in the consid-
ered parameter domains are characterised by attractors
of quasi-periodic Hénon-like type. For such attractors,



in the skew product case (Arnol’d family unperturbed)
a positive and a zero Lyapunov exponents are detected.
After perturbation of skewness, either two positive or
one positive and one negative Lyapunov exponents are
detected. It remains to be clarified which other geomet-
rical and dynamical features differentiate the latter two
cases from the skew product situation.

Moreover, for certain parameter values in the skew
case it is necessary to use high precision arithmetics to
obtain reliable results. Indeed, attractors that, in double
precision, mistakingly look ‘strange nonchaotic’, turn
out to be smooth invariant circles.
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