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A class of strange attractors is described, occurring in a low-dimensional model

of general atmospheric circulation. The differential equations of the system are
subject to periodic forcing, where the period is one year – as suggested by Lorenz
in 1984. The dynamics of the system is described in terms of a Poincaré map,

computed by numerical means. It is conjectured that certain strange attractors
observed in the Poincaré map are of quasi-periodic Hénon-like type, i.e., they co-

incide with the closure of the unstable manifold of a quasi-periodic invariant circle
of saddle type. A route leading to the formation of such strange attractors is pre-

sented. It involves a finite number of quasi-periodic period doubling bifurcations,
followed by the destruction of an invariant circle due to homoclinic tangency.

1. Introduction

In this note we examine a class of strange attractors occurring in the model

ẋ = −ax − y2 − z2 + aF (1 + ε cos(ωt)),

ẏ = −y + xy − bxz + G(1 + ε cos(ωt)),

ż = −z + bxy + xz.

(1)

This is a variation on an autonomous model proposed by Lorenz in 19841

for the long term atmospheric circulation at mid latidute of the northern

hemisphere. The autonomous Lorenz-84 model, given by Eq. (1) with ε = 0,
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is used in climatological research, e.g. by coupling it with a low-dimensional

model for ocean dynamics.2 See Ref. 3 for the bifurcation diagram of the

autonomous system and Ref. 4 for its derivation from the Navier-Stokes

equations.

The variable x in (1) stands for the strength of a symmetric, globally

averaged westerly wind current. The variables y and z are the strengths

of cosine and sine phases of a chain of superposed waves transporting heat

poleward. The terms in F and G are thermal forcings: F is the symmetric

cross-latitude heating contrast and G accounts for the asymmetric heating

contrast between oceans and continents. The periodic forcing of frequency

ω = 2π/T , where the period T is fixed at 73, simulates a seasonal variation

of F and G. Indeed, T = 73 corresponds to one year in the time-scale unit

of Eq. (1), estimated to be five days. As in Refs. 1–4, the coefficients a and

b are fixed at a = 1/4 and b = 4.

In this note we only consider one of the dynamical phenomena observed

by numerical simulations in system (1), namely the occurrence of attractors

which we conjecture to be of quasi-periodic Hénon-like type. Moreover, only

G is used here as control parameter, while ε and F are kept fixed at 0.5 and

11 respectively. See Refs. 5–6 for a more detailed study of the bifurcation

diagram of Eq. (1) in the three-dimensional parameter space {F,G, ε}.

The dynamics of the forced system (1) is described in terms of the

one-parameter family of diffeomorphisms given by the Poincaré map

PG : R
3 → R

3, also called stroboscopic, first return or period map. The

map PG is computed by numerical integration of Eq. (1) over a period T ,

see Refs. 5–6 for the methods used.

2. The dynamics on quasi-periodic Hénon-like attractors

Let H : R
m → R

m be a map and A ⊂ R
m. Then A is called an attractor

if A is compact and H-invariant, if the stable set (basin of attraction)

W s(A ) has nonempty interior and if there exists a point p ∈ A such

that the orbit Orb(p) = {Hj(p)}j≥0 is dense in A . The attractor A

is called Hénon-like7,8,9 if there exist a saddle periodic orbit Orb(s) =

{s,H(s), . . . , Hn(s)}, a point p in the unstable manifold W u(Orb(s)), and

a tangent vector v ∈ TpR
m such that the orbit of p is dense in A and

A = Wu(Orb(s)), (2)

‖DHn(p)v‖ ≥ κλn for n ≥ 0, (3)

where overline denotes topological closure. Condition (3) means that the

dense orbit Orb(p) has a positive Lyapunov exponent. We say that the
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attractor A is quasi-periodic Hénon-like if there exist a quasi-periodic in-

variant circle C of saddle type, a point p ∈ W u(C ), and a vector v ∈ TpR
m

such that condition (3) holds while

A = Wu(C ).

The conjectural occurrence of this type of attractors in the family PG is

now illustrated by numerical results. An attractor D of the map PG is

plotted in Fig. 1 (A), where D = D1∪D2 is the union of two disjoint circles

D1 and D2 such that PG(D1) = D2 and P 2

G(Dj) = Dj for j = 1, 2. Upon a

slight variation of the parameters, this period two circle becomes resonant

(i.e., phase-locked to a periodic attractor) and it gets eventually destroyed

by homoclinic tangency10,11 of a periodic saddle point. For nearby param-

eter values the attractor A in Fig. 1 (B) is detected. The attractor A
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Figure 1. (A) Projection on (x, z) of the attracting period two circle D = D1 ∪ D2

occurring at G = 0.4969. (B) Same as (A) for the strange attractor A , at G = 0.4972.

(a) Power spectrum of the attractor in (A). The square modulus of the Fourier coefficients

(vertical axis) is plotted against the Fourier frequencies fk = k/N for k = 1, . . . , N/2

(horizontal axis). Here N = 216 is the sample length of the time series given by the

y-coordinate along an orbit on the attractor. The first six harmonics gk = kg1 of the

internal frequency g1 are labelled, and up to order k = 35 the harmonics are marked by
asterisks. (b) Power spectrum of the attractor in (B).



July 16, 2005 17:55 WSPC/Trim Size: 9in x 6in for Proceedings bsv-proc

4

Table 1. Numerical values of the Lyapunov dimension DL and

Lyapunov exponents λ1 ≥ λ2 ≥ λ3 of the attractors in Fig. 1.

Fig. 1 attractor DL λ1 λ2 λ3

(A) D 1 0 -0.18 -14.5

(B) A 2.016 0.24 0 -14.9

is contained inside a Möbius strip which is slightly fattened in the normal

direction. Indeed, the Lyapunov dimension DL of A is quite close to 2

(Table 1). This is due to the large absolute value of the negative Lyapunov

exponent λ3, corresponding to strong normal contraction, and to the fact

that λ2 ' 0. Since λ1 is positive, the dynamics on A is sensitive to initial

conditions. However, the property λ2 ' 0 suggests that the dynamics on

A still contains a quasi-periodic direction.

This idea is also supported by examination of power spectra, displayed

for D and A in Fig. 1 (a) and (b) respectively. The period two circle D has

two internal frequencies, g1 = 0.328 and h1 = 1

2
. The second harmonic g2 =

2g1 is the internal frequency of P 2

G on D1 and D2. Only a few harmonics

of g1 persist in the spectrum of A (Fig. 1 (b)), all others having turned

into broad band. Power spectra like in Fig. 1 (b) are of mixed type:12 they

contain marked peaks (atoms of the spectral density) but also have a broad

band component (locally continuous density).

The process leading to the formation of attractors like A (Fig. 1 (B))

passes through a finite number of quasi-periodic period doubling

bifurcations.13 A whole quasi-periodic period doubling cascade does not

take place, since the attracting periodic circles are eventually destroyed

due to homoclinic tangencies of a saddle periodic point.10,11 An attracting

invariant circle C of PG occurs at G = 0.4872 (Fig. 2 (A)). As G increases,

C loses stability through a quasi-periodic period doubling, and a circle at-

tractor C 2 is created (Fig. 2 (B)). The circle C still exists, is of saddle

type and its two-dimensional unstable manifold is a Möbius strip with C 2

as its boundary. Through another quasi-periodic doubling, the attracting

period two circle D is born (Fig. 1 (A)), and C 2 also becomes of saddle

type. We stress that the latter bifurcation is different from the previous

“length-doubling”, since two disjoint circles D1 and D2 are now created.

A strange attractor B, consisting of a single fattened Möbius strip, is

plotted in Fig. 3 (A). This attractor is formed as the two “belts” of A

(Fig. 1 (B)) melt together. Sections of B and A have a planar Hénon-

like structure,7,8,9 compare the slice Σ in Fig. 3 (B) and condition (2). To
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Figure 2. (A) Projection on (x, z) of the circle attractor C of PG, occurring at G =
0.4872. (B) Same as (A), for the circle C 2 at G = 0.4874.

illustrate the dynamics inside B, we computed the image under PG of all

points in the slice Σ. The image PG(Σ) is stretched and folded (Fig. 3 (A)),

and again has a planar Hénon-like stucture.

The main point of this note is the conjecture that the strange attractors

A Fig. 1 (B) and B Fig. 3 (A) are indeed quasi-periodic Hénon-like. To be

more precise, there exists a positive measure subset of the parameter space

for which A (resp. B) occurs. For such parameter values:

(1) the circle C 2 coexists with A (resp. C coexists with B).

(2) C 2 is quasi-periodic and of saddle type (resp. C is);

(3) A = W u(C 2) (resp. B = W u(C )).

3. Concluding remarks

Quasi-periodic Hénon-like attractors are also numerically observed in

a model map for the Hopf-saddle-node bifurcation of fixed point of

diffeomorphisms.14 This bifurcation is one of the organizing centers of the

Poincaré map PF,G,ε for ε not too large.5,6

However, for the above models a rigorous proof for the existence of quasi-

periodic Hénon-like attractors is out of reach, though a computer-assisted

proof may be possible. So in Ref. 15 we turn to the setting of product

maps on R
2 × S

1, which is easier to deal with. In particular, a new result

on Hénon-like attractors is obtained for maps given by the skew-product

of a planar Hénon map7,9 with the Arnol′d map on S
1. We also consider

perturbations of the product of certain dissipative planar maps with a rigid

rotation on S
1. In this case, it is proved that there exists a quasi-periodic

saddle-like invariant circle C such that the closure W u(C ) attracts an open

set of points. However, the characterization of quasi-periodic Hénon-like
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Figure 3. (A) Projection on (x, z) of the attractor B of the map PG, occurring at
G = 0.5. A slice contained in the layer centered at z = 0 with thickness 0.0001 is
labelled by Σ. The image of Σ under PG is labelled by PG(Σ) and magnified in the
central box. (B) Projection on (x, y − 0.133 ∗ z) of the slice Σ.

attractors largely remains open even in this simplified setting.
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