QUASI-PERIODIC HÉNON-LIKE ATTRACTORS IN THE LORENZ-84 CLIMATE MODEL WITH SEASONAL FORCING

H. W. BROER AND R. VITOLO

Department of Mathematics and Computing Science, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands E-mail: broer@math.rug.nl, renato@math.rug.nl

C. SIMÓ

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08071 Barcelona, Spain E-mail: carles@maia.ub.es

A class of strange attractors is described, occurring in a low-dimensional model of general atmospheric circulation. The differential equations of the system are subject to periodic forcing, where the period is one year – as suggested by Lorenz in 1984. The dynamics of the system is described in terms of a Poincaré map, computed by numerical means. It is conjectured that certain strange attractors observed in the Poincaré map are of quasi-periodic Hénon-like type, i.e., they coincide with the closure of the unstable manifold of a quasi-periodic invariant circle of saddle type. A route leading to the formation of such strange attractors is presented. It involves a finite number of quasi-periodic period doubling bifurcations, followed by the destruction of an invariant circle due to homoclinic tangency.

1. Introduction

In this note we examine a class of strange attractors occurring in the model

$$\dot{x} = -ax - y^2 - z^2 + aF(1 + \varepsilon \cos(\omega t)),$$

$$\dot{y} = -y + xy - bxz + G(1 + \varepsilon \cos(\omega t)),$$

$$\dot{z} = -z + bxy + xz.$$
(1)

This is a variation on an autonomous model proposed by Lorenz in 1984¹ for the long term atmospheric circulation at mid latidute of the northern hemisphere. The autonomous Lorenz-84 model, given by Eq. (1) with $\varepsilon = 0$,

is used in climatological research, e.g. by coupling it with a low-dimensional model for ocean dynamics.² See Ref. 3 for the bifurcation diagram of the autonomous system and Ref. 4 for its derivation from the Navier-Stokes equations.

The variable x in (1) stands for the strength of a symmetric, globally averaged westerly wind current. The variables y and z are the strengths of cosine and sine phases of a chain of superposed waves transporting heat poleward. The terms in F and G are thermal forcings: F is the symmetric cross-latitude heating contrast and G accounts for the asymmetric heating contrast between oceans and continents. The periodic forcing of frequency $\omega = 2\pi/T$, where the period T is fixed at 73, simulates a seasonal variation of F and G. Indeed, T = 73 corresponds to one year in the time-scale unit of Eq. (1), estimated to be five days. As in Refs. 1–4, the coefficients a and b are fixed at a = 1/4 and b = 4.

In this note we only consider one of the dynamical phenomena observed by numerical simulations in system (1), namely the occurrence of attractors which we conjecture to be of *quasi-periodic Hénon-like* type. Moreover, only G is used here as control parameter, while ε and F are kept fixed at 0.5 and 11 respectively. See Refs. 5–6 for a more detailed study of the bifurcation diagram of Eq. (1) in the three-dimensional parameter space $\{F, G, \varepsilon\}$.

The dynamics of the forced system (1) is described in terms of the one-parameter family of diffeomorphisms given by the Poincaré map $P_G: \mathbb{R}^3 \to \mathbb{R}^3$, also called stroboscopic, first return or period map. The map P_G is computed by numerical integration of Eq. (1) over a period T, see Refs. 5–6 for the methods used.

2. The dynamics on quasi-periodic Hénon-like attractors

Let $H: \mathbb{R}^m \to \mathbb{R}^m$ be a map and $\mathscr{A} \subset \mathbb{R}^m$. Then \mathscr{A} is called an attractor if \mathscr{A} is compact and H-invariant, if the stable set (basin of attraction) $W^s(\mathscr{A})$ has nonempty interior and if there exists a point $p \in \mathscr{A}$ such that the orbit $\operatorname{Orb}(p) = \{H^j(p)\}_{j \geq 0}$ is dense in \mathscr{A} . The attractor \mathscr{A} is called $H\acute{e}non\text{-}like^{7,8,9}$ if there exist a saddle periodic orbit $\operatorname{Orb}(s) = \{s, H(s), \ldots, H^n(s)\}$, a point p in the unstable manifold $W^u(\operatorname{Orb}(s))$, and a tangent vector $v \in T_p\mathbb{R}^m$ such that the orbit of p is dense in \mathscr{A} and

$$\mathscr{A} = \overline{W^u(\operatorname{Orb}(s))},\tag{2}$$

$$||DH^n(p)v|| \ge \kappa \lambda^n \quad \text{for } n \ge 0,$$
 (3)

where overline denotes topological closure. Condition (3) means that the dense orbit $\mathrm{Orb}(p)$ has a positive Lyapunov exponent. We say that the

attractor \mathscr{A} is quasi-periodic Hénon-like if there exist a quasi-periodic invariant circle \mathscr{C} of saddle type, a point $p \in W^u(\mathscr{C})$, and a vector $v \in T_p\mathbb{R}^m$ such that condition (3) holds while

$$\mathscr{A} = \overline{W^u(\mathscr{C})}.$$

The conjectural occurrence of this type of attractors in the family P_G is now illustrated by numerical results. An attractor \mathscr{D} of the map P_G is plotted in Fig. 1 (A), where $\mathscr{D} = \mathscr{D}_1 \cup \mathscr{D}_2$ is the union of two disjoint circles \mathscr{D}_1 and \mathscr{D}_2 such that $P_G(\mathscr{D}_1) = \mathscr{D}_2$ and $P_G^2(\mathscr{D}_j) = \mathscr{D}_j$ for j = 1, 2. Upon a slight variation of the parameters, this period two circle becomes resonant (i.e., phase-locked to a periodic attractor) and it gets eventually destroyed by homoclinic tangency^{10,11} of a periodic saddle point. For nearby parameter values the attractor \mathscr{A} in Fig. 1 (B) is detected. The attractor \mathscr{A}

Figure 1. (A) Projection on (x,z) of the attracting period two circle $\mathscr{D}=\mathscr{D}_1\cup\mathscr{D}_2$ occurring at G=0.4969. (B) Same as (A) for the strange attractor \mathscr{D} , at G=0.4972. (a) Power spectrum of the attractor in (A). The square modulus of the Fourier coefficients (vertical axis) is plotted against the Fourier frequencies $f_k=k/N$ for $k=1,\ldots,N/2$ (horizontal axis). Here $N=2^{16}$ is the sample length of the time series given by the y-coordinate along an orbit on the attractor. The first six harmonics $g_k=kg_1$ of the internal frequency g_1 are labelled, and up to order k=35 the harmonics are marked by asterisks. (b) Power spectrum of the attractor in (B).

4

Table 1. Numerical values of the Lyapunov dimension D_L and Lyapunov exponents $\lambda_1 \geq \lambda_2 \geq \lambda_3$ of the attractors in Fig. 1.

Fig. 1	attractor	$\mathrm{D_{L}}$	λ_1	λ_2	λ_3
(A)	2	1	0	-0.18	-14.5
(B)	\mathscr{A}	2.016	0.24	0	-14.9

is contained inside a Möbius strip which is slightly fattened in the normal direction. Indeed, the Lyapunov dimension D_L of $\mathscr A$ is quite close to 2 (Table 1). This is due to the large absolute value of the negative Lyapunov exponent λ_3 , corresponding to strong normal contraction, and to the fact that $\lambda_2 \simeq 0$. Since λ_1 is positive, the dynamics on $\mathscr A$ is sensitive to initial conditions. However, the property $\lambda_2 \simeq 0$ suggests that the dynamics on $\mathscr A$ still contains a quasi-periodic direction.

This idea is also supported by examination of power spectra, displayed for \mathscr{D} and \mathscr{A} in Fig. 1 (a) and (b) respectively. The period two circle \mathscr{D} has two internal frequencies, $g_1 = 0.328$ and $h_1 = \frac{1}{2}$. The second harmonic $g_2 = 2g_1$ is the internal frequency of P_G^2 on \mathscr{D}_1 and \mathscr{D}_2 . Only a few harmonics of g_1 persist in the spectrum of \mathscr{A} (Fig. 1 (b)), all others having turned into broad band. Power spectra like in Fig. 1 (b) are of mixed type:¹² they contain marked peaks (atoms of the spectral density) but also have a broad band component (locally continuous density).

The process leading to the formation of attractors like \mathscr{A} (Fig. 1 (B)) passes through a finite number of quasi-periodic period doubling bifurcations.¹³ A whole quasi-periodic period doubling cascade does not take place, since the attracting periodic circles are eventually destroyed due to homoclinic tangencies of a saddle periodic point.^{10,11} An attracting invariant circle \mathscr{C} of P_G occurs at G = 0.4872 (Fig. 2 (A)). As G increases, \mathscr{C} loses stability through a quasi-periodic period doubling, and a circle attractor \mathscr{C}^2 is created (Fig. 2 (B)). The circle \mathscr{C} still exists, is of saddle type and its two-dimensional unstable manifold is a Möbius strip with \mathscr{C}^2 as its boundary. Through another quasi-periodic doubling, the attracting period two circle \mathscr{D} is born (Fig. 1 (A)), and \mathscr{C}^2 also becomes of saddle type. We stress that the latter bifurcation is different from the previous "length-doubling", since two disjoint circles \mathscr{D}_1 and \mathscr{D}_2 are now created.

A strange attractor \mathscr{B} , consisting of a single fattened Möbius strip, is plotted in Fig. 3 (A). This attractor is formed as the two "belts" of \mathscr{A} (Fig. 1 (B)) melt together. Sections of \mathscr{B} and \mathscr{A} have a planar Hénon-like structure, ^{7,8,9} compare the slice Σ in Fig. 3 (B) and condition (2). To

Figure 2. (A) Projection on (x,z) of the circle attractor $\mathscr C$ of P_G , occurring at G=0.4872. (B) Same as (A), for the circle $\mathscr C^2$ at G=0.4874.

illustrate the dynamics inside \mathcal{B} , we computed the image under P_G of all points in the slice Σ . The image $P_G(\Sigma)$ is stretched and folded (Fig. 3 (A)), and again has a planar Hénon-like stucture.

The main point of this note is the conjecture that the strange attractors \mathscr{A} Fig. 1 (B) and \mathscr{B} Fig. 3 (A) are indeed quasi-periodic Hénon-like. To be more precise, there exists a positive measure subset of the parameter space for which \mathscr{A} (resp. \mathscr{B}) occurs. For such parameter values:

- (1) the circle \mathscr{C}^2 coexists with \mathscr{A} (resp. \mathscr{C} coexists with \mathscr{B}).
- (2) \mathscr{C}^2 is quasi-periodic and of saddle type (resp. \mathscr{C} is);
- (3) $\mathscr{A} = \overline{W^u(\mathscr{C}^2)}$ (resp. $\mathscr{B} = \overline{W^u(\mathscr{C})}$).

3. Concluding remarks

Quasi-periodic Hénon-like attractors are also numerically observed in a model map for the Hopf-saddle-node bifurcation of fixed point of diffeomorphisms.¹⁴ This bifurcation is one of the organizing centers of the Poincaré map $P_{F,G,\varepsilon}$ for ε not too large.^{5,6}

However, for the above models a rigorous proof for the existence of quasiperiodic Hénon-like attractors is out of reach, though a computer-assisted proof may be possible. So in Ref. 15 we turn to the setting of product maps on $\mathbb{R}^2 \times \mathbb{S}^1$, which is easier to deal with. In particular, a new result on Hénon-like attractors is obtained for maps given by the skew-product of a planar Hénon map^{7,9} with the Arnol'd map on \mathbb{S}^1 . We also consider perturbations of the product of certain dissipative planar maps with a rigid rotation on \mathbb{S}^1 . In this case, it is proved that there exists a quasi-periodic saddle-like invariant circle \mathscr{C} such that the closure $\overline{W^u(\mathscr{C})}$ attracts an open set of points. However, the characterization of quasi-periodic Hénon-like 6

Figure 3. (A) Projection on (x,z) of the attractor $\mathscr B$ of the map P_G , occurring at G=0.5. A slice contained in the layer centered at z=0 with thickness 0.0001 is labelled by Σ . The image of Σ under P_G is labelled by $P_G(\Sigma)$ and magnified in the central box. (B) Projection on (x,y-0.133*z) of the slice Σ .

attractors largely remains open even in this simplified setting.

Acknowledgments

The authors thank Theo Opsteegh, Floris Takens, and Ferdinand Verhulst for their interest in the subject. C.S. research has been supported by grants DGICYT BFM2000-805 (Spain), CIRIT 2001 SGR-70 (Catalonia) and, partially, by INTAS 2000-221 grant.

References

- 1. E. N. Lorenz, Tellus 36A, 98 (1984).
- 2. L. van Veen, T. Opsteegh and F. Verhulst, Tellus 53A, 616 (2001).
- 3. A. Shil'nikov, G. Nicolis and C. Nicolis, Int. J. Bif. Chaos 5(6), 1701 (1995).
- 4. L. van Veen, PhD thesis, University of Utrecht (2002).
- 5. H. W. Broer, C. Simó and R. Vitolo, Nonlinearity 15(4), 1205 (2002).
- 6. R. Vitolo, PhD thesis, University of Groningen (2003).
- 7. M. Benedicks and L. Carleson, Ann. Math. 133, 73 (1991).
- 8. L. Mora and M. Viana, Acta Math 171, 1 (1993).
- 9. M. Hénon, Comm. Math. Phys. 50, 69 (1976).
- 10. H. W. Broer, C. Simó and J. C. Tatjer, Nonlinearity 11, 667 (1998).
- 11. J. Palis and F. Takens, Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press (1993).
- 12. H. W. Broer and F. Takens, Archive Rat. Mech. An. 124, 13 (1993).
- H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, *Mem. AMS* 421, 83 (1990).
- 14. H. W. Broer, C. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of diffeomorphisms, in preparation.
- 15. H. W. Broer, C. Simó and R. Vitolo, Hénon-like strange attractors in a family of maps of the solid torus, *Preprint University of Groningen*, submitted (2002).