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1. Introduction to the problem

We consider the forced Duffing - Van der Pol oscillator, given by






ẋj = ωj , j = 1, . . . ,m,

ẏ1 = y2,

ẏ2 = −(a+ cy2
1)y2 − by1 − dy3

1 + εf(x1, . . . , xm, y1, y2, a, b, c, d, ε),

(1)

which is a vector field defined on T
m × R

2 = {(x1, . . . , xm), (y1, y2)}. Here

f is a smooth function which is 2π-periodic in its first m-arguments. We

take σ = (a, b) as parameter, ε as perturbation parameter and (c, d) as

coefficients. The internal frequency vector ω = (ω1, . . . , ωm) is to be non-

resonant, or quasi-periodic. The search is for quasi-periodic response so-

lutions, i.e. invariant m-tori of (1), with frequency vector ω, that can be

represented as graphs y = y(x) over T = T
m × {0}. For large values of

|a| we can use a contraction argument. However, if |a| ≪ 1 this approach

fails due to small divisors. Braaksma and Broer1 use KAM theory to find
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invariant tori for small |a|. This requires Diophantine non-resonance condi-

tions on the frequency vector ω and the normal frequencies. The case a ≈ 0

involves a Hopf bifurcation of the corresponding free oscillator (ε = 0). We

generalise the above setup by considering the family of vector fields

Xσ,ǫ(x, y) = ω∂x + (A(σ)y +B(y, c, d) + εF (x, y, σ, c, d, ε))∂y, (2)

where again (x, y) ∈ T
m × R

2, and σ, ε, (c, d) are taken as before. The

normal linear part of the unperturbed invariant torus T is given by

Nσ(x, y) = ω∂x +A(σ)y∂y.

Let λ = µ(σ) ± iα(σ) denote the eigenvalues of A(σ) where α(σ) is called

the normal frequency. We assume that the map σ 7→ (µ(σ), α(σ)) is a sub-

mersion, which allows to take (µ, α) as parameters instead of σ. A normal-

internal k : ℓ resonance of T occurs if

〈k, ω〉 + ℓα(σ) = 0 (3)

for k ∈ Z
m\{0} and ℓ ∈ Z\{0}. The smallest integer |ℓ| for which (3) holds,

is called the order of the resonance. Resonances up to order 4 are called

strong. The non-resonant and weakly resonant cases have been investigated

in Ref. 1. Here we consider resonances such that (3) holds for |ℓ| = 1, 2 and

3. Therefore we assume that at σ = σ0 the normal part Nσ0
of X versally

unfolds a Hopf bifurcation at y = 0 and that torus T is at strong normal-

internal resonance.

To study (2), an averaging procedure is followed to push time depen-

dence to higher order terms. Next a Van der Pol transformation is applied

to bring the normal frequencies close to zero. Using a suitable complex

variable z, the vector field X transforms to

Xλ,θ,δ(x, z) = ω∂x + δ2ℜ(λz + eiθ0 |z|2z + z̄ℓ−1)∂z + δ3Z̃(x, z).

For details see Wagener.6 Here θ0 is a generic constant, λ = µ + iα a

parameter and δ = εℓ−4 is a rescaled perturbation parameter. All non-

integrable terms are truncated, yielding the so-called ‘principal part’:

Z0 = ℜ(λz + eiθ0 |z|2z + z̄ℓ−1)∂z. (4)

In the next section we describe the bifurcation diagrams of Z0 for ℓ = 1, 2

and 3 summarising results from Refs. 2,3,6, for a periodic analogue see

Gambaudo.5 Bifurcations of equilibria of Z0 correspond to bifurcations of

quasi-periodic m-tori of the integrable vector field ω∂x+Z0. This interpre-

tation remains valid if we add integrable perturbations. However, adding

non-integrable (δ3) terms breaks the torus symmetry and quasi-periodic

bifurcation theory has to be invoked. For persistence results see Ref. 2.
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Table 1. Notation used for the codimension one bifurcation curves (leftmost two
columns) and codimension two points (rightmost two columns) for all figures in Sec. 2.

Notation Name Notation Name

HE1 Heteroclinic BT2 Bogdanov-Takens
L1 Homoclinic bifurcation DL2 Degenerate homoclinic
H1 Hopf bifurcation H2 Degenerate Hopf
PF1 Pitchfork PF2 Degenerate Pitchfork
SN1 Saddle Node (Fold) SN2 Cusp

SNLC1 Saddle node of limit cycles L2 Homoclinic at saddle node
SDZ2 Symmetric double zero

2. Results

In the previous section a normal form truncation (4) was introduced for

the general family of vector fields (2) at normal-internal resonance. Here

we present the bifurcation diagram of (4) in the (µ, α)-plane (we recall that

λ = µ + iα) for ℓ = 1, 2, 3. However, in certain cases the coefficient θ0 is

sometimes ‘activated’ as an extra parameter. For the k : 1 resonance, this

gives rise to a codimension three bifurcation point of nilpotent elliptic type,

which can be seen as an ‘organising centre’. Auxiliary variables ζ, ψ ∈ R

and ρ ∈ C are introduced by setting

ζ = |z|2, z =
√

ζeiψ, ρ = ρ1 + iρ2 = e−iθ0λ,

see Refs. 2,6. The bifurcation diagrams are reported at the end of the paper

and the notation used there is summarized in Table 1. Local bifurcations are

obtained analytically, while global bifurcations are found and continuated

by standard numerical tools such as AUTO.4 Proofs of the cases ℓ = 1, 2

are given in Ref. 2, whereas the case ℓ = 3 is treated in Refs. 3,5.

2.1. The k : 1 resonance

For ℓ = 1 the family (4) rewrites to

ż = λz + eiθ0 |z|2z + 1. (5)

System (5) is symmetric with respect to the group generated by

(t, z, λ, θ0) 7→ (t, z̄, λ̄,−θ0) and (t , z , λ, θ0 ) 7→ (−t ,−z ,−λ, θ0 + π).

Hence, we can restrict θ0 to 0 ≤ θ0 ≤ π
2
. Two types of local codimension

one bifurcations occur in system (5):

(1) a saddle node bifurcation SN1, given by

ρ4
1ρ

2
2 + 2ρ2

1ρ
4
2 + ρ6

2 + ρ3
1 + 9ρ1ρ

2
2 + 27

4
= 0;



July 4, 2007 18:19 WSPC - Proceedings Trim Size: 9in x 6in SPT2007-broer

4

(2) a Hopf bifurcation (with two branches Ha
1 and Hb

1), given by

µ3 − 4µ2α cos θ0 sin θ0 + 4µα2 cos2 θ0 + 8 cos3 θ0 = 0,

2(α− µ tan θ0)
2 − (µ sec θ0)

2 > 0.

Three types of local codimension two bifurcations occur for (5):

(1) two cusp points SN+
2 and SN−

2 , depending on θ0, given by

SN±
2 : µ = − 3

2
cos θ0 ±

√
3

2
sin θ0, α = − 3

2
sin θ0 ∓

√
3

2
cos θ0;

(2) two Bogdanov-Takens points BT+
2 and BT−

2 , given by

BT±
2 : µ = −

2 cos θ0

(2 ± 2 sin θ0)
1

3

, α = −
2 sin θ0 + 1

(2 ± 2 sin θ0)
1

3

;

(3) a degenerate Hopf-bifurcation point H2 given by

H2 : µ = −2 cos θ0, α = 0, π
6
< θ0 <

π
2
.

In the restricted parameter space (µ, α, θ0) there exists a unique codimen-

sion three singularity of nilpotent elliptic type. In Fig. 1 the bifurcation

diagram is presented along with the codimension two bifurcation points.

2.2. The k : 2 resonance

For ℓ = 2 the family (4) rewrites to

ż = λz + eiθ0 |z|2z + z̄. (6)

System (6) is symmetric with respect to the group generated by

(z, λ, θ) 7→ (z̄, λ̄,−θ) and (z , λ, θ) 7→ (−z , λ, θ).

Hence, we can restrict θ0 to 0 ≤ θ0 ≤ π. We have depicted the bifurcation

diagram in Fig. 3. Three types of local codimension one bifurcations occur

in system (6):

(1) a curve of pitchfork bifurcations PF1, given by |ρ| = 1;

(2) two curves of saddle-node bifurcations SN1, given by ρ2
2 = 1, ρ1 < 0;

(3) three Hopf bifurcation curvesH1, two are given by ℜ(eiθ0ρ) = 0, |ρ| > 1,

and the third by

1

4
(ρ1 + ρ2 tan θ0)

2 + ρ2
2 = 1,

1

2
ρ2
1 + 1

2
tan θ0ρ1ρ

2
2 < 1, ρ2 tan θ0 − ρ1 > 0.

Moreover, the following codimension two bifurcations take place:
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(1) Two degenerate pitchfork bifurcation points PF2 at ρ = ±i.

(2) Two symmetric double-zero bifurcation points SDZ2 at λ = ±i.

(3) A Bogdanov-Takens bifurcation point BT2 at ρ = | tan θ0|(1 + i cot θ0).

2.3. The k : 3 resonance

For ℓ = 3 the family (4) rewrites to

ż = λz + eiθ0 |z|2z + z̄2. (7)

System (7) is symmetric with respect to the group generated by

(t, z, λ, θ) 7→ (t, z̄, λ̄,−θ) and (t , z , λ, θ) 7→ (−t ,−z ,−λ,−θ + π).

Hence, we can restrict θ0 to 0 ≤ θ0 ≤ π
2
. Two types of local codimension

one bifurcations, depending on θ0, occur in system (7):

(1) a saddle-node bifurcation curve SN1, given by ρ1 = −ρ2
2 + 1

4
;

(2) a Hopf curve H1, given by ℜ(ρeiθ0 + 2ζeiθ0) = 0, ζ + ρ1 −
1

2
> 0.

If θ0 ≤ π
3

there is no Hopf bifurcation of a non-central equilibrium, while

the central equilibrium always undergoes Hopf bifurcation for µ = 0. Fur-

thermore, there are two Bogdanov-Takens points BT2 given by

BT±
2 : ρ2 = 1

2
(tan θ0 ±

√

tan2 θ0 − 3).

We consider two scenarios: the first corresponds to θ0 ≤ π
3
. Here, the

non-central equilibria will not have Hopf bifurcations and, as a result, no

Bogdanov-Takens bifurcations occur, see Fig. 4. The second scenario, de-

picted in Fig. 5, corresponds to θ0 > π
3
. Here there are Hopf as well as

Bogdanov-Takens bifurcations and the latter involve the occurrence of ad-

ditional phenomena of global nature. See Ref. 3 for proofs and details.
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